

CS 247 – Scientific Visualization Lecture 7: Scalar Fields, Pt. 3

Markus Hadwiger, KAUST

Reading Assignment #4 (until Feb 22)

Read (required):

- Real-Time Volume Graphics book, Chapter 5 until 5.4 inclusive (*Terminology, Types of Light Sources, Gradient-Based Illumination, Local Illumination Models*)
- Paper:
 Marching Cubes: A high resolution 3D surface construction algorithm, Bill Lorensen & Harvey Cline, ACM SIGGRAPH 1987
 [> 16,000 citations and counting...]

http://dl.acm.org/citation.cfm?id=37422

Quiz #1: Feb 17

Organization

- First 30 min of lecture
- No material (book, notes, ...) allowed

Content of questions

- Lectures (both actual lectures and slides)
- Reading assignments (except optional ones)
- Programming assignments (algorithms, methods)
- Solve short practical examples

Example

contour levels

---4 ---4? ---6- ε ---8+ ε

2 types of degeneracies:

- isolated points (*c*=6)
- flat regions (*c*=8)

Basic contouring algorithms:

- cell-by-cell algorithms: simple structure, but generate disconnected segments, require post-processing
- contour propagation methods: more complicated, but generate connected contours

"Marching squares" algorithm (systematic cell-by-cell):

- process nodes in ccw order, denoted here as x_0, x_1, x_2, x_3
- compute at each node \mathbf{X}_i the reduced field $\tilde{f}(x_i) = f(x_i) (c \varepsilon)$ (which is forced to be nonzero)
- take its sign as the ith bit of a 4-bit integer
- use this as an index for lookup table containing the connectivity information:

$$\bullet \quad \tilde{f}(x_i) < 0$$

•
$$\tilde{f}(x_i) < 0$$

• $\tilde{f}(x_i) > 0$

Alternating signs exist in cases 6 and 9.

Choose the solid or dashed line?

Both are possible for topological consistency.

This allows to have a fixed table of 16 cases.

$$f(x_i) < c$$

•
$$f(x_i) < c$$

• $f(x_i) \ge c$

Alternating signs exist in cases 6 and 9.

Choose the solid or dashed line?

Both are possible for topological consistency.

This allows to have a fixed table of 16 cases.

$$\bullet \quad f(x_i) \le c$$

o
$$f(x_i) > c$$

Alternating signs exist in cases 6 and 9.

Choose the solid or dashed line?

Both are possible for topological consistency.

This allows to have a fixed table of 16 cases.

Orientability (1-manifold embedded in 2D)

Orientability of 1-manifold:

Possible to assign consistent left/right orientation

Iso-contours

- Consistent side for scalar values...
 - greater than iso-value (e.g, *left* side)
 - less than iso-value (e.g., right side)
- Use consistent ordering of vertices (e.g., larger vertex index is "tip" of arrow; if (0,1) points "up", "left" is left, ...)

not orientable

Moebius strip (only one side!)

•
$$\tilde{f}(x_i) < 0$$

•
$$\tilde{f}(x_i) < 0$$

• $\tilde{f}(x_i) > 0$

Orientability (2-manifold embedded in 3D)

Orientability of 2-manifold:

Possible to assign consistent normal vector orientation

not orientable

Moebius strip (only one side!)

Triangle meshes

- Edges
 - Consistent ordering of vertices: CCW (counter-clockwise) or CW (clockwise) (e.g., (0,1,2) on one side of edge, (1,0,3) on the other side)
- Triangles
 - Consistent front side vs. back side
 - Normal vector; or ordering of vertices (CCW/CW)
 - See also: "right-hand rule"

Topological consistency

To avoid degeneracies, use symbolic perturbations:

If level c is found as a node value, set the level to c- ε where ε is a symbolic infinitesimal.

Then:

- contours intersect edges at some (possibly infinitesimal) distance from end points
- flat regions can be visualized by pair of contours at c- ε and c+ ε
- contours are topologically consistent, meaning:

Contours are closed, orientable, nonintersecting lines.

Ambiguities of contours

What is the correct contour of c=4?

Two possibilities, both are orientable:

- connect high values ————
- connect low values ------

Answer: correctness depends on interior values of f(x).

But: different interpolation schemes are possible.

Better question: What is the correct contour with respect to bilinear interpolation?

Bi-Linear Interpolation: Critical Points

Critical points are where the gradient vanishes (i.e., is the zero vector)

here, the critical value is 2/3=0.666...

"Asymptotic decider": resolve ambiguous configurations (6 and 9) by comparing specific iso-value with critical value (scalar value at critical point)

Linear interpolation in 1D:

$$f(\alpha) = (1 - \alpha)v_1 + \alpha v_2$$

Line embedded in 2D (linear interpolation of vertex coordinates/attributes):

$$f(\alpha_1, \alpha_2) = \alpha_1 v_1 + \alpha_2 v_2$$
 $f(\alpha) = v_1 + \alpha(v_2 - v_1)$ $\alpha_1 + \alpha_2 = 1$ $\alpha = \alpha_2$

$$f(\alpha) = v_1 + \alpha(v_2 - v_1)$$
$$\alpha = \alpha_2$$

Line segment:

$$\alpha_1, \alpha_2 \geq 0$$

 $\alpha_1, \alpha_2 \ge 0$ (\rightarrow convex combination)

Compare to line parameterization with parameter t:

$$v(t) = v_1 + t(v_2 - v_1)$$

Linear combination (*n*-dim. space):

$$\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n = \sum_{i=1}^n \alpha_i v_i$$

Affine combination: Restrict to (n-1)-dim. subspace:

$$\alpha_1 + \alpha_2 + \ldots + \alpha_n = \sum_{i=1}^n \alpha_i = 1$$

Convex combination:

$$\alpha_i \geq 0$$

(restrict to simplex in subspace)

The weights α_i are the *n* normalized **barycentric** coordinates

→ linear attribute interpolation in simplex

$$lpha_1 v_1 + lpha_2 v_2 + \ldots + lpha_n v_n = \sum_{i=1}^n lpha_i v_i$$
 $lpha_1 + lpha_2 + \ldots + lpha_n = \sum_{i=1}^n lpha_i = 1$
 $lpha_i \ge 0$

attribute interpolation

spatial position interpolation

wikipedia

$$\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n = \sum_{i=1}^n \alpha_i v_i$$

$$\alpha_1 + \alpha_2 + \ldots + \alpha_n = \sum_{i=1}^n \alpha_i = 1$$

Can re-parameterize to get (n-1) *affine* coordinates:

$$lpha_1 v_1 + lpha_2 v_2 + lpha_3 v_3 =$$
 $ilde{lpha}_1 (v_2 - v_1) + ilde{lpha}_2 (v_3 - v_1) + v_1$
 $ilde{lpha}_1 = lpha_2$
 $ilde{lpha}_2 = lpha_3$

Contours in triangle/tetrahedral cells

Linear interpolation of cells implies piece-wise linear contours.

Contours are unambiguous, making "marching triangles" even simpler than "marching squares".

Question: Why not split quadrangles into two triangles (and hexahedra into five or six tetrahedra) and use marching triangles (tetrahedra)?

Answer: This can introduce periodic artifacts!

Contours in triangle/tetrahedral cells

Illustrative example: Find contour at level *c*=40.0 !

original quad grid, yielding vertices ■ and contour
 triangulated grid, yielding vertices ● and contour

Bi-Linear Interpolation: Comparisons

linear

(2 triangles per quad; diagonal: bottom-left, top-right)

Markus Hadwiger 20

Bi-Linear Interpolation: Comparisons

linear

(2 triangles per quad; diagonal: top-left, bottom-right)

Markus Hadwiger 21

Bi-Linear Interpolation: Comparisons

bi-linear

Markus Hadwiger 22

Thank you.

Thanks for material

- Helwig Hauser
- Eduard Gröller
- Daniel Weiskopf
- Torsten Möller
- Ronny Peikert
- Philipp Muigg
- Christof Rezk-Salama