

KAUST

CS 247 – Scientific Visualization Lecture 5: Data Representation, Pt. 3 Scalar Fields, Pt. 1

Markus Hadwiger, KAUST

Reading Assignment #3 (until Feb 15)

Read (required):

- Data Visualization book, finish Chapter 3 (read starting with 3.6)
- Data Visualization book, Chapter 5 until 5.3 (inclusive)

- Grid types
 - Grids differ substantially in the cells (basic building blocks) they are constructed from and in the way the topological information is given

Grid Types - Overview

Unstructured Grids

- Unstructured grids
 - Can be adapted to local features

- Unstructured grids
 - Can be adapted to local features

- If no implicit topological (connectivity) information is given, the grids are called unstructured grids
 - Unstructured grids are often computed using quadtrees (recursive domain partitioning for data clustering), or by triangulation of point sets
 - The task is often to create a grid from scattered points
- Characteristics of unstructured grids
 - Grid point geometry and connectivity must be stored
 - Dedicated data structures needed to allow for efficient traversal and thus data retrieval
 - Often composed of triangles or tetrahedra
 - Typically, fewer elements are needed to cover the domain

structured

unstructured

- Unstructured grids
 - Composed of arbitrarily positioned and connected elements
 - Can be composed of one unique element type or they can be hybrid (tetrahedra, hexas, prisms)
 - Triangle meshes in 2D and tetrahedral grids in 3D are most common
 - Can adapt to local features (small vs. large cells)
 - Can be refined adaptively
 - Simple linear interpolation in simplices

Data discretizations

Types of data sources have typical types of discretizations:

- Measurement data:
 - typically scattered (no grid)
- Numerical simulation data:
 - structured, block-structured, unstructured grids,
 - adaptively refined meshes
 - multi-zone grids with relative motion
 - etc.
- Imaging methods:
 - uniform grids
- Mathematical functions:
 - uniform/adaptive sampling on demand

Ronald Peikert

Unstructured grids

2D unstructured grids:

- cells are triangles and/or quadrangles
- domain can be a surface embedded in 3-space (distinguish n-dimensional from n-space)

Ronald Peikert

Unstructured grids

3D unstructured grids:

• cells are tetrahedra or hexahedra

 mixed grids ("zoo meshes") require additional types: wedge (3-sided prism), and pyramid (4-sided)

Common Unstructured Grid Types (1)

• Simplest: purely tetrahedral

Grid Structures

Tet grid example

Common Unstructured Grid Types (2)

Pre-defined cell types (tetrahedron, triangular prism, quad pyramid, hexahedron, octahedron)

- Only triangle / quad faces
- Planar / non-planar faces

Common Unstructured Grid Types (3)

(Nearly) arbitrary polyhedra

• Possibly non-planar faces

Example: General Polyhedral Cells

Exhaust manifold

- 81,949 general, non-convex cells (equivalent to 4,094,724 tetrahedral cells)
 324,013 vertice
 - Color coding: temperature distribution

Hybrid Grids

• Hybrid grids

Combination of different grid types

Hybrid grid example

Typical implementations of unstructured grids
 – Direct form

- Additionally store the data values
- Problems: storage space, redundancy

Typical implementations of unstructured grids

 Indirect form

Indexed face set

- More efficient than direct approach in terms of memory requirements
- But still have to do global search to find local information (i.e. what faces share an edge)

Scalar Fields

Programming Assignment 2 + 3

Scalar Fields are Functions

•1D scalar field: $\Omega \subseteq R \to R$

•2D scalar field:
$$\Omega \subseteq R^2 \to R$$

• 3D scalar field: $\Omega \subseteq \mathbb{R}^3 \to \mathbb{R}$ \rightarrow volume visualization!

more generally: $\Omega \subseteq$ n-manifold

Basic Visualization Strategies

Mapping to geometry

- Function plots
- Height fields
- Isocontours/isolines, isosurfaces
- Color mapping
- Specific techniques for 3D data
 - Indirect volume visualization
 - Direct volume visualization
 - Slicing

Visualization methods depend heavily on dimensionality of domain

Function Plots and Height Fields (1)

Function plot for a 1D scalar field

 $\{(x, f(x)) | x \in \mathbb{R}\}$

- Points
- 1D manifold: line

Function Plots and Height Fields (1)

Function plot for a 1D scalar field

$$\{(s, f(s)) | s \in \mathbb{R}\}$$

- Points
- 1D manifold: line

Function Plots and Height Fields (2)

Function plot for a 2D scalar field

$$\{(x, f(x)) | x \in \mathbb{R}^2\}$$

- Points
- 2D manifold: surface
- Surface representations
 - Wireframe
 - Hidden lines
 - Shaded surface

Function Plots and Height Fields (2)

Function plot for a 2D scalar field

$$\{(s,t,f(s,t)) | (s,t) \in \mathbb{R}^2\}$$

- Points
- 2D manifold: surface
- Surface representations
 - Wireframe
 - Hidden lines
 - Shaded surface

Color Mapping / Color Coding

Map scalar value to color

- Color table (e.g., array with RGB entries)
- Procedural computation; manual specification

With opacity (alpha value "A"): 1D transfer function (RGBA table, ...)

not recommended!

Color Mapping / Color Coding

Map scalar value to color

- Color table (e.g., array with RGB entries)
- Procedural computation; manual specification

With opacity (alpha value "A"): 1D transfer function (RGBA table, ...)

not recommended!

Contours

Set of points where the scalar field *s* has a given value *c*:

$$S(c) := f^{-1}(c)$$
 $S(c) := \{x \in \mathbb{R}^n : f(x) = c\}$

Common contouring algorithms

- 2D: marching squares, marching triangles
- 3D: marching cubes, marching tetrahedra

Implicit methods

- Point-on-contour test
- Isosurface ray-casting

bilinear interpolation

Contours

Set of points where the scalar field *s* has a given value *c*:

$$S(c) := f^{-1}(c)$$
 $S(c) := \{x \in \mathbb{R}^2 : f(x) = c\}$

Common contouring algorithms

- 2D: marching squares, marching triangles
- 3D: marching cubes, marching tetrahedra

Implicit methods

- Point-on-contour test
- Isosurface ray-casting

bilinear interpolation

Contours

Set of points where the scalar field *s* has a given value *c*:

$$S(c) := f^{-1}(c)$$
 $S(c) := \{x \in \mathbb{R}^3 : f(x) = c\}$

Common contouring algorithms

- 2D: marching squares, marching triangles
- 3D: marching cubes, marching tetrahedra

Implicit methods

- Point-on-contour test
- Isosurface ray-casting

What are contours?

Set of points where the scalar field *s* has a given value *c*:

$$S(c) := \{x \in \mathbb{R}^n \colon f(x) = c\}$$

Examples in 2D:

- height contours on maps
- isobars on weather maps

Contouring algorithm:

- find intersection with grid edges
- connect points in each cell

Example

2 types of degeneracies:

- isolated points (*c*=6)
- flat regions (*c*=8)

Basic contouring algorithms:

- cell-by-cell algorithms: simple structure, but generate disconnected segments, require post-processing
- contour propagation methods: more complicated, but generate connected contours

"Marching squares" algorithm (systematic cell-by-cell):

- process nodes in ccw order, denoted here as x_0, x_1, x_2, x_3
- compute at each node \mathbf{x}_i the reduced field $\tilde{f}(x_i) = f(x_i) (c \varepsilon)$ (which is forced to be nonzero)
- take its sign as the ith bit of a 4-bit integer
- use this as an index for lookup table containing the connectivity information:

Contours in a quadrangle cell

• $\tilde{f}(x_i) < 0$ • $\tilde{f}(x_i) > 0$

Alternating signs exist in cases 6 and 9. Choose the solid or dashed line? Both are possible for topological consistency. This allows to have a fixed table of 16 cases.

Thank you.

Thanks for material

- Helwig Hauser
- Eduard Gröller
- Daniel Weiskopf
- Torsten Möller
- Ronny Peikert
- Philipp Muigg
- Christof Rezk-Salama