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Reading Assignment #3 (until Feb 15)

Read (required):
» Data Visualization book, finish Chapter 3 (read starting with 3.6)

» Data Visualization book, Chapter 5 until 5.3 (inclusive)



Data Structures

« Grid types

— (Grids differ substantially in the cells (basic building
blocks) they are constructed from and in the way
the topological information is given
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Grid Types - Overview

Cartesian
grids (dx=dy)

uniform (regular)
grids (dx=dy)

Splb painjonis-3o0|g

rectilinear grids

unstructured grids hybrid grids )




Unstructured Grids



Data Structures

« Unstructured grids
— Can be adapted to local features
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Data Structures

 |f no implicit topological (connectivity) information is

given, the grids are called unstructured grids
— Unstructured grids are often computed using quadtrees
(recursive domain partitioning for data clustering), or by
triangulation of point sets
— The task is often to create a grid from scattered points

« Characteristics of unstructured grids

— (Grid point geometry and connectivity must be stored

— Dedicated data structures needed to allow for efficient
traversal and thus data retrieval

— Often composed of triangles or
tetrahedra

— Typically, fewer elements are needed
to cover the domain

—
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Data Structures

» Unstructured grids

— Composed of arbitrarily positioned and connected
elements

— Can be composed of one unique element type
or they can be hybrid (tetrahedra, hexas, prisms)

— Triangle meshes in 2D and tetrahedral grids in 3D
are most common

— Can adapt to local features
(small vs. large cells)

— Can be refined adaptively

— Simple linear interpolation
In simplices
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Data discretizations

Types of data sources have typical types of discretizations:
+ Measurement data:

— typically scattered (no grid)
* Numerical simulation data:

— structured, block-structured, unstructured grids

— adaptively refined meshes

— multi-zone grids with relative motion ’

— etc.

» Imaging methods:
— uniform grids
+ Mathematical functions:
— uniform/adaptive sampling on demand

Ronald Peikert



Unstructured grids

2D unstructured grids:

» cells are triangles and/or quadrangles

« domain can be a surface embedded in 3-space

(distinguish n-dimensional from n-space)

Ronald Peikert



Unstructured grids

3D unstructured grids:

« cells are tetrahedra or hexahedra

« mixed grids (“zoo meshes”) require additional types:
wedge (3-sided prism), and pyramid (4-sided)

Ronald Peikert



Common Unstructured Grid Types (1)

« Simplest: purely tetrahedral

Markus Hadwiger 13



Grid Structures

Tet grid example




Common Unstructured Grid Types (2)

Pre-defined cell types
(tetrahedron, triangular prism, quad pyramid,
hexahedron, octahedron)

 Only triangle / quad faces

* Planar / non-planar faces

15
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(Nearly) arbitrary polyhedra

 Possibly non-planar faces

Markus Hadwiger



Example: General Polyhedral Cells

Exhaust manifold

* 81,949 general, non-convex cells
(equivalent to 4,094,724 tetrahedral cells!)

» 324,013 vertices

* Color coding: temperature distribution

Markus Hadwiger 17



Hybrid Grids



Data Structures

Hybrid grids

— Combination of different grid types




Data Structures

Hybrid grid example
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Data Structures



Data Structures

» Typical implementations of unstructured grids

— Direct form
x1,yl, (z1) — 2D
P 2 vz, (22) face 1 struct face
Coords for x3,y3, (z3) _| float verts[:?] 2]
vertex 1 x2,y2,(z2) — paratype vals
x3,y3, (z3) face 2 struct face
x4,y4, (z4) float verts[3][3] 3D

DataType val;

— Additionally store the data values
— Problems: storage space, redundancy
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Data Structures

» Typical implementations of unstructured grids
— Indirect form

vertex list face list

x1l,y1l, (z1) 1,2,3

x2,y2, (2z2) 1,2,4

Coords for x3,y3, (z3) 3,2,4
vertex 1 x4,y4, (z4)

— More efficient than direct approach in terms of
memory requirements
— But still have to do global search to find local

information (i.e.-what faces share an edge)




Scalar Fields



Programming Assignment 2 + 3




Scalar Fields are Functions

1D scalarfield: () C R — R
« 2D scalar field: () C R2 — R

.3D scalarfield: ) C R® — R

— volume visualization!

more generally: () C n-manifold



Basic Visualization Strategies

Mapping to geometry
« Function plots
» Height fields
* Isocontours/isolines, isosurfaces

Color mapping

Specific techniques for 3D data
* Indirect volume visualization
* Direct volume visualization
« Slicing

Visualization methods depend heavily on dimensionality of domain

Markus Hadwiger, KAUST 27



Function Plots and Height Fields (1)

Function plot for a 1D scalar field

{(x, f(x))|x € R}

XD 43401 x4

 Points t \
* 1D manifold; line
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Function Plots and Height Fields (1)

Function plot for a 1D scalar field

1(s,f(s)) s € R}

XD 43401 x4

 Points t \
* 1D manifold; line
. N ™ o \\
\
\\\.
05} \
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Function Plots and Height Fields (2)

Function plot for a 2D scalar field
2
{(x, f(x))|x e R7}

* Points

« 2D manifold: surface

Surface representations
» Wireframe
* Hidden lines
« Shaded surface

Markus Hadwiger, KAUST 30



Function Plots and Height Fields (2)

Function plot for a 2D scalar field
{(s,0,f(s,1)) |(s,1) € R?}

* Points

« 2D manifold: surface

Surface representations
» Wireframe
* Hidden lines
« Shaded surface

Markus Hadwiger, KAUST 31



Color Mapping / Color Coding

Map scalar value to color
 Color table (e.g., array with RGB entries)

» Procedural computation; manual specification

With opacity (alpha value “A”): 1D transfer function (RGBA table, ...)

grayscale i ' : rainbow

not recommended!



Color Mapping / Color Coding

Map scalar value to color
 Color table (e.g., array with RGB entries)

» Procedural computation; manual specification

With opacity (alpha value “A”): 1D transfer function (RGBA table, ...)

heat map . | rainbow

not recommended!



Contours

Set of points where the scalar field s has a given value c:

Sie):=f"1c) S(c):={xeR": f(x)=c}

bilinear interpolation
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Common contouring algorithms
« 2D: marching squares, marching triangles

» 3D: marching cubes, marching tetrahedra

Implicit methods linear interpolation

* Point-on-contour test

* Isosurface ray-casting

Markus Hadwiger, KAUST 34



Contours

Set of points where the scalar field s has a given value c:

Sc):=f"'c) S(c):={xeR?: f(x)=c}

bilinear interpolation

— = . .
I g i 7 / /
)
i o ;
v !
: .
b g "
-

Common contouring algorithms
« 2D: marching squares, marching triangles

» 3D: marching cubes, marching tetrahedra

Implicit methods linear interpolation

* Point-on-contour test

* Isosurface ray-casting

Markus Hadwiger, KAUST 35



Contours

Set of points where the scalar field s has a given value c:

S):=f"e)  S(c)={xeR’: f(x)=c}

bilinear interpolation
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Common contouring algorithms
« 2D: marching squares, marching triangles

» 3D: marching cubes, marching tetrahedra

Implicit methods linear interpolation

* Point-on-contour test

* Isosurface ray-casting
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What are contours?
Set of points where the scalar field s has a given value c:
S(c) :={xeR": f(x) =c}

Examples in 2D:
* height contours on maps

* isobars on weather maps

Contouring algorithm:
« find intersection with grid edges

e connect points in each cell

Ronald Peikert SciVis 2009 - Contouring and Isosurfaces
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Example

(2)  contour levels

— 4
el i
6-¢
— 8-¢
- - - 8+¢€

2 types of degeneracies:
» isolated points (c=6)
 flat regions (c=8)

Ronald Peikert SciVis 2009 - Contouring and Isosurfaces 2-3



Confours in a quadrangle cell

Basic contouring algorithms:

» cell-by-cell algorithms: simple structure, but generate
disconnected segments, require post-processing

« contour propagation methods: more complicated, but
generate connected contours

"Marching squares" algorithm (systematic cell-by-cell):
* process nodes in ccw order, denoted here as X, X1,X2,X3
* compute at each node X; the reduced field
f(xl-) — f(xi) - (c — g) (which is forced to be nonzero)
« take its sign as the it bit of a 4-bit integer

« use this as an index for lookup table containing the connectivity
information:

Ronald Peikert SciVis 2009 - Contouring and Isosurfaces 2-10



Confours in a quadrangle cell
® f(x;)<0
O f(xi) > ()
@ Ej - m Alternating signs exist
in cases 6 and 9.
Choose the solid or
dashed line?
Both are possible for
11

topological
consistency.
This allows to have a
fixed table of 16
12 13 14 15 —

Ronald Peikert SciVis 2009 - Contouring and Isosurfaces 2-1



Thank you.




