

**KAUST** 

#### CS 247 – Scientific Visualization Lecture 4: The Visualization Pipeline; Data Representation, Pt. 2

Markus Hadwiger, KAUST

#### Reading Assignment #2 (until Feb 8)



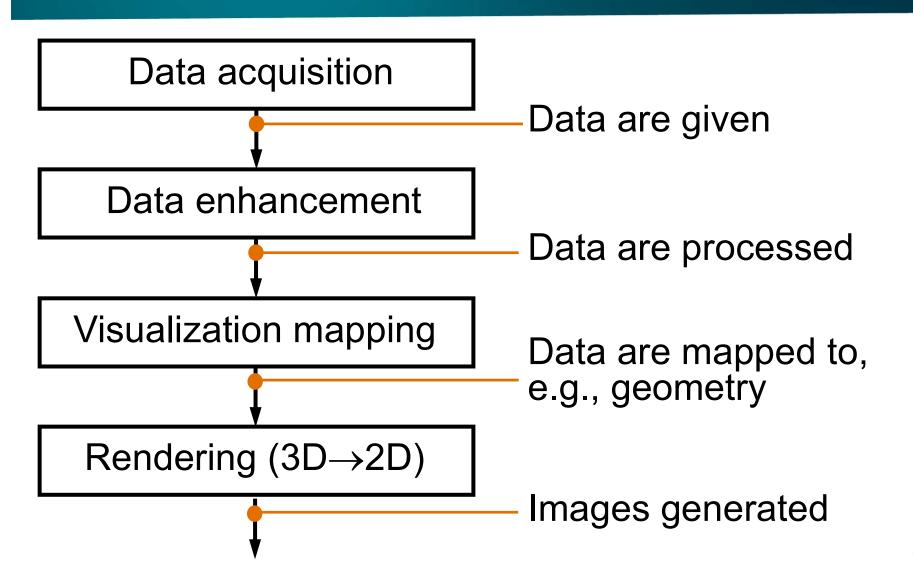
Read (required):

- Data Visualization book, finish Chapter 2
- Data Visualization book, Chapter 3 until 3.5 (inclusive)
- Data Visualization book, Chapter 4 until 4.1 (inclusive)
- Continue familiarizing yourself with OpenGL if you do not know it !

#### **The Visualization Pipeline**

#### The Visualization Pipeline – Overview

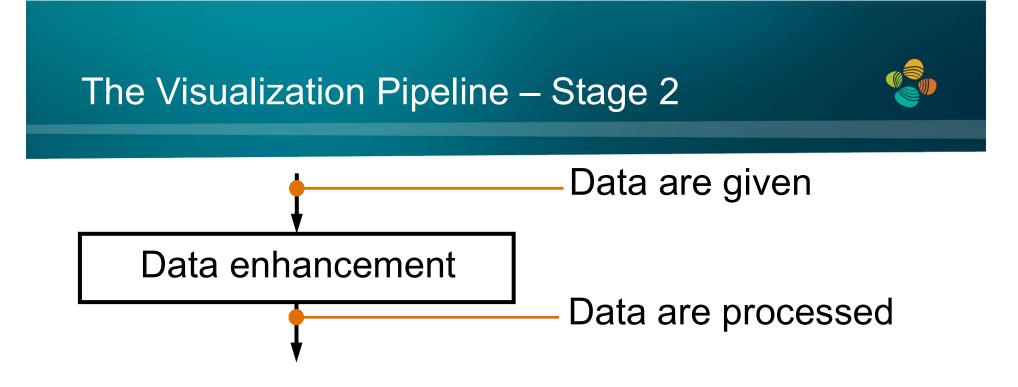




#### The Visualization Pipeline – Stage 1

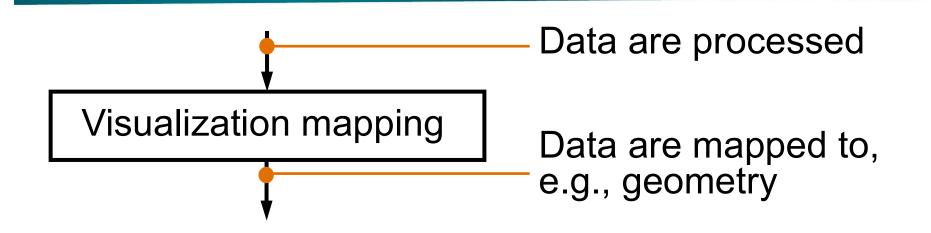


- Measurements, e.g., CT/MRI
- Simulation, e.g., flow simulation
- Modeling, e.g., game theory



- Filtering, e.g, smoothing (de-noising, ...)
- Resampling, e.g., on a different-resolution grid
- Data derivation, e.g., gradients, curvature
- Data interpolation, e.g., linear, cubic, ...

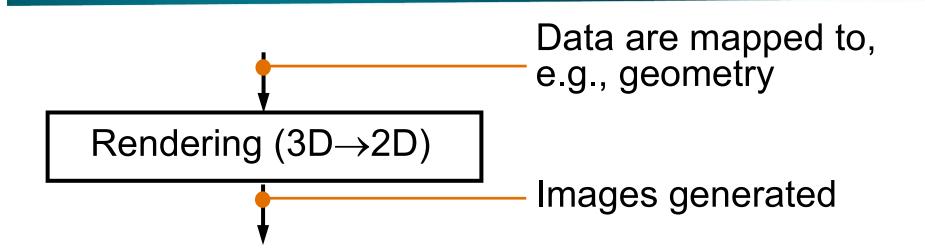
#### The Visualization Pipeline – Stage 3



#### Make data "renderable"

- Iso-surface calculation
- Glyphs, icons determination
- Graph-layout calculation
- Voxel attributes: color, transparency, ...

#### The Visualization Pipeline – Stage 4



Rendering = image generation with computer graphics

- Visibility calculation
- Illumination
- Compositing (combine transparent objects, ...)
- Animation



#### **Mathematical Functions**



Associates every element of a set (e.g., X) with *exactly one* element of another set (e.g., Y)

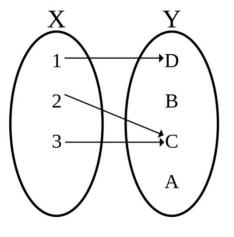
Maps from domain (X) to codomain (Y)

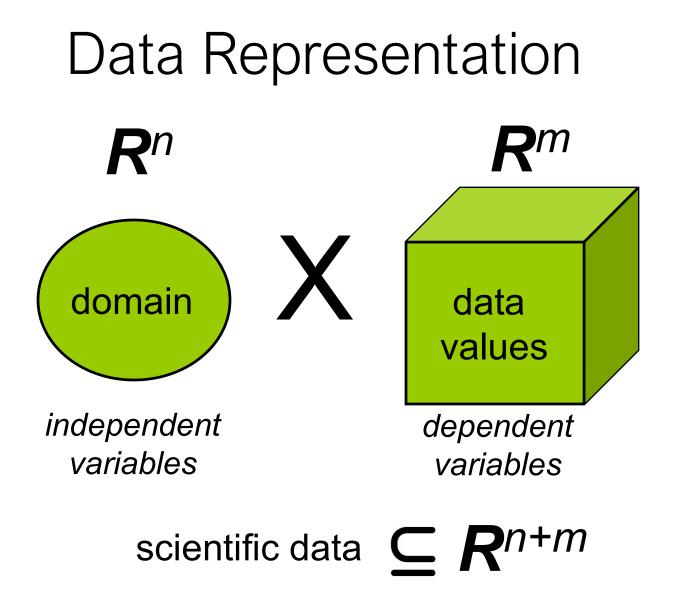
$$f: \mathbb{R}^n \to \mathbb{R}^m$$
$$x \mapsto f(x)$$

Also important: *range/image*; *preimage*; continuity, differentiability, dimensionality, ...

Graph of a function (mathematical definition):

$$G(f) := \{ (x, f(x)) | x \in \mathbb{R}^n \} \subset \mathbb{R}^n \times \mathbb{R}^m \simeq \mathbb{R}^{n+m}$$





© Weiskopf/Machiraju/Möller

#### **Example: Scalar Fields**



2D scalar field

$$f \colon \mathbb{R}^2 \to \mathbb{R}$$
$$x \mapsto f(x)$$

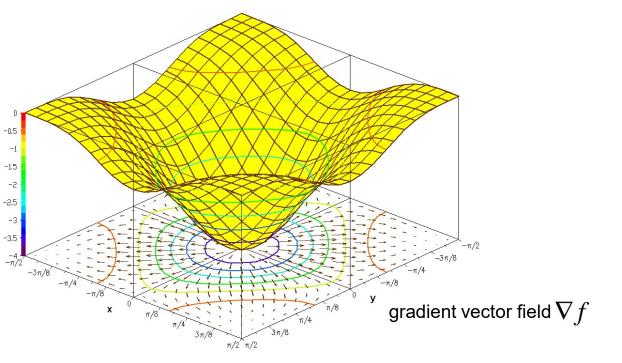
Graph:  $G(f) := \{(x, f(x)) | x \in \mathbb{R}^2\} \subset \mathbb{R}^2 \times \mathbb{R} \simeq \mathbb{R}^3$ 

pre-image

$$S(c) := f^{-1}(c)$$

#### iso-contour

 $(\nabla f \neq 0)$ 



#### **Example: Scalar Fields**



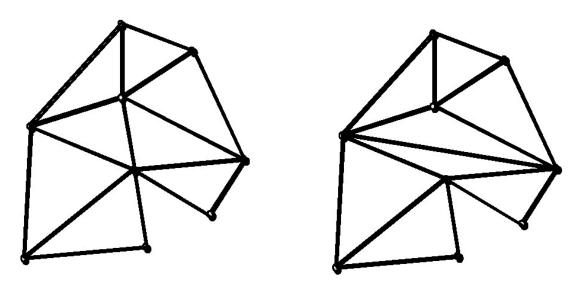
3D scalar field

$$f \colon \mathbb{R}^3 \to \mathbb{R}$$
$$x \mapsto f(x)$$

Graph: 
$$G(f) := \{(x, f(x)) | x \in \mathbb{R}^3\} \subset \mathbb{R}^3 \times \mathbb{R} \simeq \mathbb{R}^4$$

pre-image  $S(c) := f^{-1}(c)$ iso-surface  $(\nabla f \neq 0)$  Sampled Functions and Data Structures

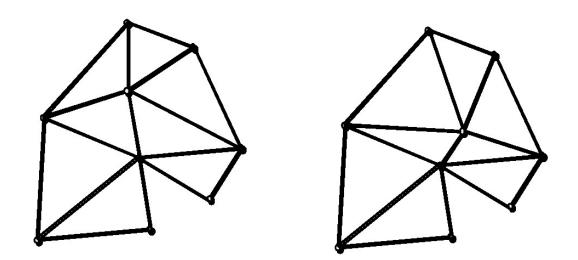
- Topology
  - Properties of geometric shapes that remain unchanged even when under distortion



Same geometry (vertex positions), different topology (connectivity)

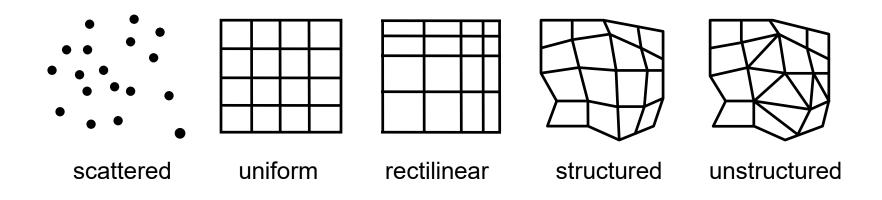
© Weiskopf/Machiraju/Möller

- Topologically equivalent
  - Things that can be transformed into each other by stretching and squeezing, without tearing or sticking together bits which were previously separated



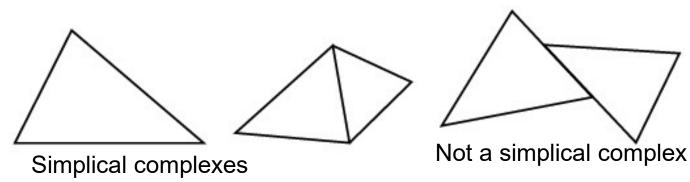
topologically equivalent

- Grid types
  - Grids differ substantially in the cells (basic building blocks) they are constructed from and in the way the topological information is given



© Weiskopf/Machiraju/Möller

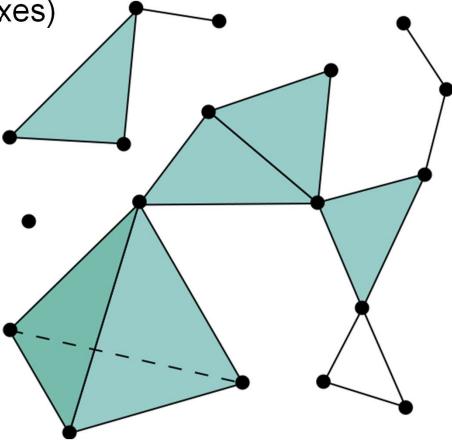
- An *n*-simplex
  - The convex hull of n + 1 affinely independent points
  - Lives in  $\mathbb{R}^m$ , with  $n \leq m$
  - 0: points, 1: lines, 2: triangles, 3: tetrahedra
- Partitions via simplices are called triangulations
- Simplical complex *C* is a collection of simplices with:
  - Every face of an element of C is also in C
  - The intersection of two elements of C is empty or it is a face of both elements
- Simplical complex is a space with a triangulation



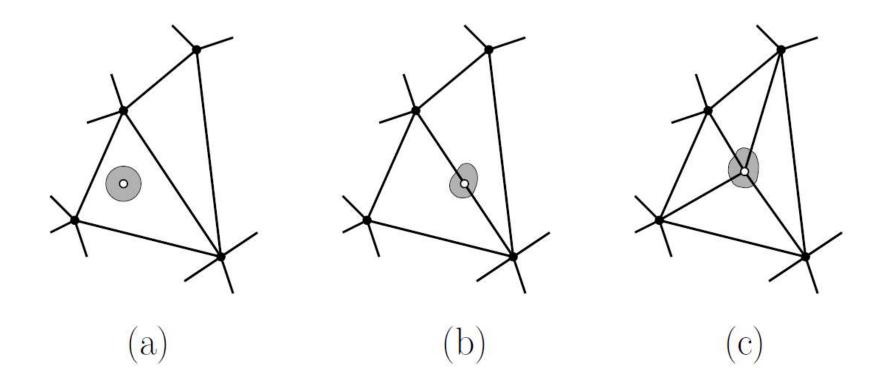
 Simplicial complexes can be of mixed dimensions up to ≤ n (except if "pure" complexes)

Example:
 Simplicial
 3-complex

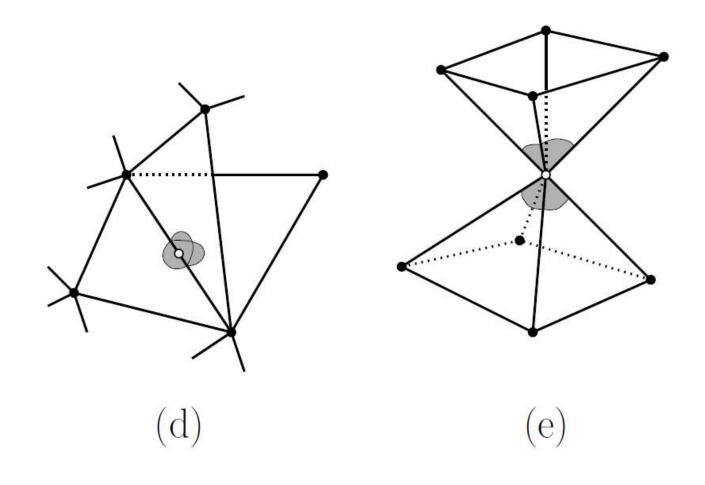
[Wikipedia.org]



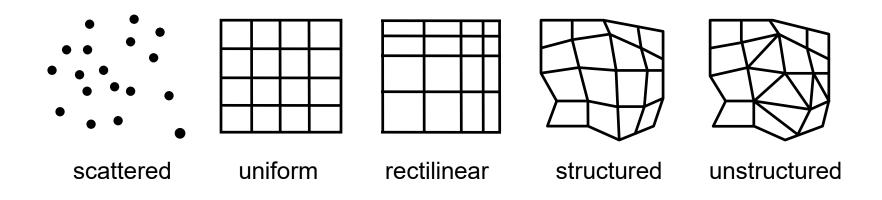
 2-manifold meshes: neighborhood is 2-dimensional topological disc (or half disc for manifolds with boundary)



Non-manifold meshes

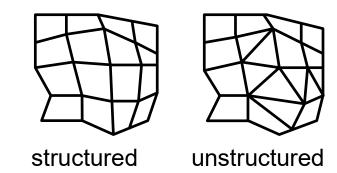


- Grid types
  - Grids differ substantially in the cells (basic building blocks) they are constructed from and in the way the topological information is given



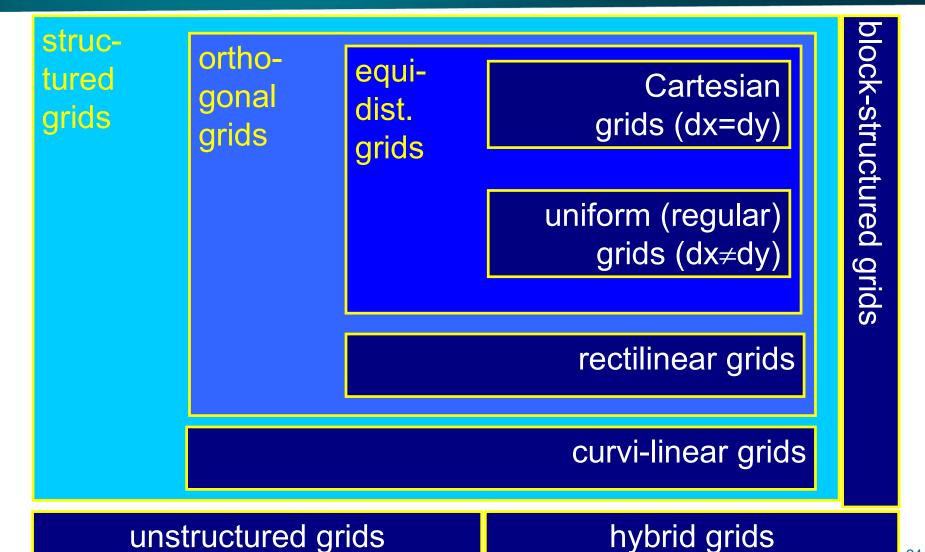
© Weiskopf/Machiraju/Möller

- Structured and unstructured grids can be distinguished by the way the elements or cells meet
- Structured grids
  - Have a regular topology and regular / irregular geometry
- Unstructured grids
  - Have irregular topology and geometry



© Weiskopf/Machiraju/Möller

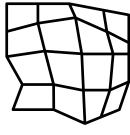
#### Grid Types - Overview

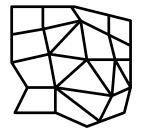




### Structured Grids

- Characteristics of structured grids
  - Easier to compute with
  - Often composed of sets of connected parallelograms (hexahedra), with cells being equal or distorted with respect to (non-linear) transformations
  - May require more elements or badly shaped elements in order to precisely cover the underlying domain
  - Topology is represented implicitly by an *n*-vector of dimensions
  - Geometry is represented explicitly by an array of points
  - Every interior point has the same number of neighbors





 ${\small @ Weiskopf/Machiraju/M\"oller}$ 

structured

unstructured

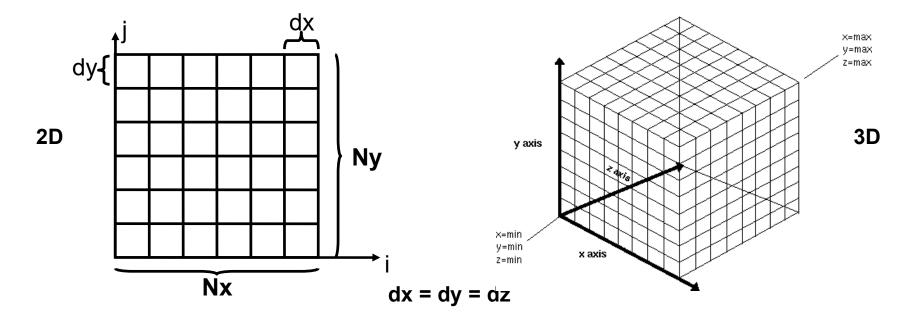
- Characteristics of structured grids
  - Structured grids can be stored in a 2D / 3D array
  - Arbitrary samples can be directly accessed by indexing a particular entry in the array
  - Topological information is implicitly coded
    - Direct access to adjacent elements
  - Cartesian, uniform, and rectilinear grids are necessarily convex
  - Their visibility ordering of elements with respect to any viewing direction is given implicitly
  - Their rigid layout prohibits the geometric structure to adapt to local features
  - Curvilinear grids reveal a much more flexible alternative to model arbitrarily shaped objects
  - However, this flexibility in the design of the geometric shape makes the sorting of grid elements a more complex procedure

• Typical implementation of structured grids

```
DataType *data = new DataType [Nx * Ny * Nz ];
val = data[ i + j * Nx + k * ( Nx * Ny ) ];
```

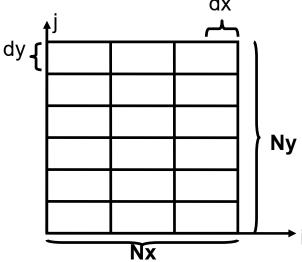
```
... code for geometry ...
```

- Cartesian or equidistant grids
  - Structured grid
  - Cells and points are numbered sequentially with respect to increasing X, then Y, then Z, or vice versa
  - Number of points = Nx•Ny•Nz
  - Number of cells =  $(Nx-1) \cdot (Ny-1) \cdot (Nz-1)$



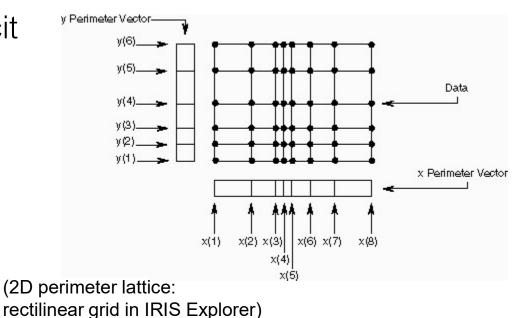
- Cartesian grids
  - Vertex positions are given implicitly from [i,j,k]:
    - $P[i,j,k].x = origin_x + i \cdot dx$
    - P[i,j,k].y = origin\_y + j dy
    - $P[i,j,k].z = origin_z + k \cdot dz$
  - Global vertex index I[i,j,k] = k•Ny•Nx + j•Nx + i
    - k = I / (Ny•Nx)
    - j = (I % (Ny•Nx)) / Nx
    - i = (I % (Ny•Nx)) % Nx
  - Global index allows for linear storage scheme
    - Wrong access pattern might destroy cache coherence

- Uniform grids
  - Similar to Cartesian grids
  - Consist of equal cells but with different resolution in at least one dimension ( dx ≠ dy (≠ dz))
  - Spacing between grid points is constant in each dimension
     → same indexing scheme as for Cartesian grids
  - Most likely to occur in applications where the data is generated by a 3D imaging device providing different sampling rates in each dimension
  - Typical example: medical volume data consisting of slice images
    - Slice images with square pixels (dx = dy)
    - Larger slice distance (dz > dx = dy)

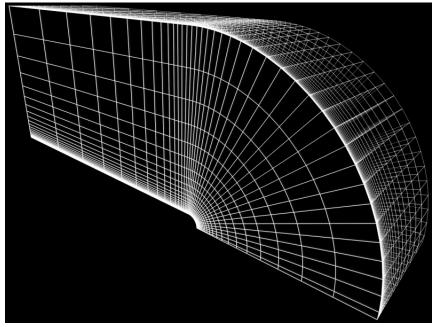


© Weiskopf/Machiraju/Möller

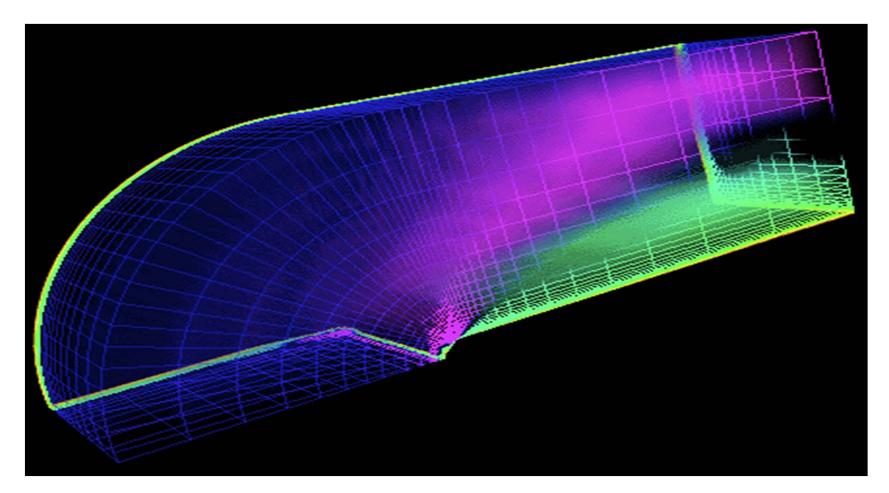
- Rectilinear grids
  - Topology is still regular but irregular spacing between grid points
    - Non-linear scaling of positions along either axis
    - Spacing, x\_coord[L], y\_coord[M], z\_coord[N], must be stored explicitly
  - Topology is still implicit



- Curvilinear grids
  - Topology is still regular but irregular spacing between grid points
    - Positions are non-linearly transformed
  - Topology is still implicit, but vertex positions are explicitly stored
    - x\_coord[L,M,N]
    - y\_coord[L,M,N]
    - z\_coord[L,M,N]
  - Geometric structure might result in concave grids



• Curvilinear grids



#### Thank you.

#### Thanks for material

- Helwig Hauser
- Eduard Gröller
- Daniel Weiskopf
- Torsten Möller
- Ronny Peikert
- Philipp Muigg
- Christof Rezk-Salama