
CS 247 – Scientific Visualization
Lecture 4: The Visualization Pipeline;

Data Representation, Pt. 2

Markus Hadwiger, KAUST

2

Reading Assignment #2 (until Feb 8)

Read (required):

• Data Visualization book, finish Chapter 2

• Data Visualization book, Chapter 3 until 3.5 (inclusive)

• Data Visualization book, Chapter 4 until 4.1 (inclusive)

• Continue familiarizing yourself with OpenGL if you do not know it !

The Visualization PipelineThe Visualization Pipeline

4

The Visualization Pipeline – Overview

Data acquisition

Data enhancement

Visualization mapping

Rendering (3D2D)

Data are given

Data are processed

Data are mapped to,
e.g., geometry

Images generated

5

The Visualization Pipeline – Stage 1

Data acquisition
Data are given

• Measurements, e.g., CT/MRI

• Simulation, e.g., flow simulation

• Modeling, e.g., game theory

6

The Visualization Pipeline – Stage 2

Data enhancement

Data are given

Data are processed

• Filtering, e.g, smoothing (de-noising, …)

• Resampling, e.g., on a different-resolution grid

• Data derivation, e.g., gradients, curvature

• Data interpolation, e.g., linear, cubic, …

7

The Visualization Pipeline – Stage 3

Visualization mapping

Data are processed

Data are mapped to,
e.g., geometry

Make data “renderable”

• Iso-surface calculation

• Glyphs, icons determination

• Graph-layout calculation

• Voxel attributes: color, transparency, …

8

The Visualization Pipeline – Stage 4

Rendering (3D2D)

Data are mapped to,
e.g., geometry

Images generated

Rendering = image generation with computer graphics

• Visibility calculation

• Illumination

• Compositing (combine transparent objects, …)

• Animation

Data == FunctionsData == Functions

Mathematical Functions

Associates every element of a set (e.g., X) with exactly one
element of another set (e.g., Y)

Maps from domain (X) to codomain (Y)

Also important: range/image; preimage;
continuity, differentiability, dimensionality, ...

Graph of a function (mathematical definition):

10

© Weiskopf/Machiraju/Möller

Data Representation

domain

independent
variables

Rn

data
values

dependent
variables

Rm

scientific data Rn+m

2D scalar field pre-image

iso-contour

Graph:

12

Example: Scalar Fields

gradient vector field

3D scalar field pre-image

iso-surface

Graph:

13

Example: Scalar Fields

Sampled Functions
and Data Structures
Sampled Functions
and Data Structures

© Weiskopf/Machiraju/Möller

Data Structures

• Topology
– Properties of geometric shapes that remain

unchanged even when under distortion

Same geometry (vertex positions), different topology (connectivity)

© Weiskopf/Machiraju/Möller

Data Structures

• Topologically equivalent
– Things that can be transformed into each other by

stretching and squeezing, without tearing or sticking
together bits which were previously separated

topologically equivalent

© Weiskopf/Machiraju/Möller

Data Structures

• Grid types
– Grids differ substantially in the cells (basic building

blocks) they are constructed from and in the way
the topological information is given

scattered uniform rectilinear structured unstructured

© Weiskopf/Machiraju/Möller

Data Structures
• An n-simplex

– The convex hull of n + 1 affinely independent points
– Lives in Rm , with n ≤ m
– 0: points, 1: lines, 2: triangles, 3: tetrahedra

• Partitions via simplices are called triangulations

• Simplical complex C is a collection of simplices with:
– Every face of an element of C is also in C
– The intersection of two elements of C is empty or it is a face of

both elements

• Simplical complex is a space with a triangulation

Simplical complexes Not a simplical complex

Data Structures

• Simplicial complexes can be of mixed dimensions
up to ≤ n
(except if “pure” complexes)

• Example:
Simplicial
3-complex

[Wikipedia.org]

Data Structures

• 2-manifold meshes: neighborhood is
2-dimensional topological disc (or half disc for
manifolds with boundary)

Data Structures

• Non-manifold meshes

© Weiskopf/Machiraju/Möller

Data Structures

• Grid types
– Grids differ substantially in the cells (basic building

blocks) they are constructed from and in the way
the topological information is given

scattered uniform rectilinear structured unstructured

© Weiskopf/Machiraju/Möller

Data Structures
• Structured and unstructured grids can be distinguished

by the way the elements or cells meet

• Structured grids
– Have a regular topology and regular / irregular geometry

• Unstructured grids
– Have irregular topology

and geometry

structured unstructured

24

Grid Types - Overview

unstructured grids hybrid grids

struc-
tured
grids

b
lo

ck-structure
d

 grid
s

ortho-
gonal
grids

curvi-linear grids

equi-
dist.
grids

rectilinear grids

Cartesian
grids (dx=dy)

uniform (regular)
grids (dxdy)

Structured Grids

© Weiskopf/Machiraju/Möller

Data Structures

• Characteristics of structured grids
– Easier to compute with
– Often composed of sets of connected parallelograms

(hexahedra), with cells being equal or distorted with respect to
(non-linear) transformations

– May require more elements or badly shaped elements in order
to precisely cover the underlying domain

– Topology is represented implicitly by an n-vector of dimensions
– Geometry is represented

explicitly by an array of points
– Every interior point has the

same number of neighbors

structured unstructured

© Weiskopf/Machiraju/Möller

Data Structures
• Characteristics of structured grids

– Structured grids can be stored in a 2D / 3D array
– Arbitrary samples can be directly accessed by indexing a

particular entry in the array
– Topological information is implicitly coded

• Direct access to adjacent elements
– Cartesian, uniform, and rectilinear grids are necessarily

convex
– Their visibility ordering of elements with respect to any viewing

direction is given implicitly
– Their rigid layout prohibits the geometric structure to adapt to

local features
– Curvilinear grids reveal a much more flexible alternative to

model arbitrarily shaped objects
– However, this flexibility in the design of the geometric shape

makes the sorting of grid elements a more complex procedure

© Weiskopf/Machiraju/Möller

Data Structures

• Typical implementation of structured grids

DataType *data = new DataType [Nx * Ny * Nz];

val = data[i + j * Nx + k * (Nx * Ny)];

… code for geometry …

Data Structures
• Cartesian or equidistant grids

– Structured grid
– Cells and points are numbered sequentially with respect to

increasing X, then Y, then Z, or vice versa
– Number of points = Nx•Ny•Nz
– Number of cells = (Nx-1)•(Ny-1)•(Nz-1)

dx = dy = dz

2D 3D
Ny

i
Nx

j dx

dy

© Weiskopf/Machiraju/Möller

Data Structures

• Cartesian grids
– Vertex positions are given implicitly from [i,j,k]:

• P[i,j,k].x = origin_x + i • dx
• P[i,j,k].y = origin_y + j • dy
• P[i,j,k].z = origin_z + k • dz

– Global vertex index I[i,j,k] = k•Ny•Nx + j•Nx + i
• k = I / (Ny•Nx)
• j = (I % (Ny•Nx)) / Nx
• i = (I % (Ny•Nx)) % Nx

– Global index allows for linear storage scheme
• Wrong access pattern might destroy cache coherence

© Weiskopf/Machiraju/Möller

Data Structures

• Uniform grids
– Similar to Cartesian grids
– Consist of equal cells but with different resolution in at least

one dimension (dx ≠ dy (≠ dz))
– Spacing between grid points is constant in each dimension

→ same indexing scheme as for Cartesian grids
– Most likely to occur in applications where the data is

generated by a 3D imaging device providing different sampling
rates in each dimension

– Typical example: medical volume data
consisting of slice images

• Slice images with square pixels (dx = dy)
• Larger slice distance (dz > dx = dy)

Nx

Ny

i

j
dx

dy

Data Structures
• Rectilinear grids

– Topology is still regular but irregular spacing
between grid points

• Non-linear scaling of positions along either axis
• Spacing, x_coord[L], y_coord[M], z_coord[N], must be

stored explicitly

– Topology is still implicit

(2D perimeter lattice:
rectilinear grid in IRIS Explorer)

© Weiskopf/Machiraju/Möller

Data Structures

• Curvilinear grids
– Topology is still regular but irregular spacing

between grid points
• Positions are non-linearly transformed

– Topology is still implicit, but vertex positions are
explicitly stored

• x_coord[L,M,N]
• y_coord[L,M,N]
• z_coord[L,M,N]

– Geometric structure
might result in
concave grids

© Weiskopf/Machiraju/Möller

Data Structures

• Curvilinear grids

Thank you.

Thanks for material

• Helwig Hauser

• Eduard Gröller

• Daniel Weiskopf

• Torsten Möller

• Ronny Peikert

• Philipp Muigg

• Christof Rezk-Salama

