£

)
King Abdullah University of «)

Science and Technology : I KA U ST

CS 247 - Scientific Visualization
Lecture 4: The Visualization Pipeline;
Data Representation, Pt. 2

Markuiiadwiger, KAUST

Reading Assignment #2 (until Feb 8)

Read (required):
» Data Visualization book, finish Chapter 2
» Data Visualization book, Chapter 3 until 3.5 (inclusive)

» Data Visualization book, Chapter 4 until 4.1 (inclusive)

» Continue familiarizing yourself with OpenGL if you do not know it !

The Visualization Pipeline

The Visualization Pipeline — Overview

Data acquisition

|

Data enhancement

t

Visualization mapping

i

Rendering (3D—2D)

|

Data are given

Data are processed

Data are mapped to,
e.g., geometry

Images generated

The Visualization Pipeline — Stage 1

Data acquisition
1 Data are given

* Measurements, e.g., CT/MRI
« Simulation, e.g., flow simulation

* Modeling, e.g., game theory

The Visualization Pipeline — Stage 2

t Data are given

Data enhancement
t Data are processed

* Filtering, e.g, smoothing (de-noising, ...)
* Resampling, e.g., on a different-resolution grid
» Data derivation, e.g., gradients, curvature

 Data interpolation, e.g., linear, cubic, ...

The Visualization Pipeline — Stage 3

t Data are processed

Visualization mapping

Data are mapped to,
t e.g., geometry

Make data “renderable”
* Iso-surface calculation
* Glyphs, icons determination
» Graph-layout calculation

 Voxel attributes: color, transparency, ...

The Visualization Pipeline — Stage 4

Data are mapped to,

t e.g., geometry
Rendering (3D—2D)
t Images generated

Rendering = image generation with computer graphics
* Visibility calculation
* lllumination
« Compositing (combine transparent objects, ...)

 Animation

Data == Functions

Mathematical Functions

Associates every element of a set (e.g., X) with exactly one
element of another set (e.g., Y)

Maps from domain (X) to codomain (Y)
]_ 14

f: R 5 R" %\L
x— f(x) : ’

Also important: range/image; preimage;
continuity, differentiability, dimensionality, ...

Graph of a function (mathematical definition):

G(f):={(x,f(x))|x e R"} C R" x R" ~ R"™™

10

Data Representation

R" R™
independent dependent
variables variables

scientific data g Rn+m

© Weiskopf/Machiraju/Moller

Example: Scalar Fields

2D scalar field pre-image
f:R* >R S(c) == fY(c)
x = f(x) iso-contour
Graph: G(f) == {(x, f(x))|x e R?} C R? x R ~R? (Vf#0)

e
SRS
4 ’\
/:’:’:’:”‘o, ‘

&0
e |
!’0"*‘?"” 0,;;7,/,?’?;;:;.
f &7

()
f

/
/
./’
(

)
o
!
0
¢
2,

(7
)
2/
27

%
%
977

%

7;
%
o
X
S
I
Y
(7
3
s‘\
§~
)

%%

12

Example: Scalar Fields

3D scalar field pre-image
f:RP>R S(c) == f(c)
aadic) iso-surface
Graph: G(f) = {(x.f(x))]x € R’} CR? x R ~ R* (V1 #0)

?

13

Sampled Functions

and Data Structures

Data Structures

* Topology

— Properties of geometric shapes that remain
unchanged even when under distortion

Same geometry (vertex positions), different topology (connectivity)

© Weiskopf/Machiraju/Moller

Data Structures

« Topologically equivalent

— Things that can be transformed into each other by
stretching and squeezing, without tearing or sticking
together bits which were previously separated

topologically equivalent

Data Structures

« Grid types

— (Grids differ substantially in the cells (basic building
blocks) they are constructed from and in the way
the topological information is given

°® [
[I) i ..
® o ©
o %0 E s\
o
o © ° "
scattered uniform rectilinear structured unstructured

© Weiskopf/Machiraju/Moller

Data Structures

An n-simplex
— The convex hull of n + 1 affinely independent points
— Livesin R™, withn<m
— 0: points, 1: lines, 2: triangles, 3: tetrahedra

Partitions via simplices are called triangulations

Simplical complex C is a collection of simplices with:
— Every face of an elementof Cisalsoin C
— The intersection of two elements of C is empty or it is a face of
both elements

Simplical complex is a space with a triangulation

av

Simplical complexes

Not a simplical complex

Data Structures

« Simplicial complexes can be of mixed dimensions
uptos<n
(except if “pure” complexes)

 Example:

Simplicial
3-complex °

[Wikipedia.org]

Data Structures

« 2-manifold meshes: neighborhood is
2-dimensional topological disc (or half disc for
manifolds with boundary)

Data Structures

« Non-manifold meshes

§>

N

Data Structures

« Grid types

— (Grids differ substantially in the cells (basic building
blocks) they are constructed from and in the way
the topological information is given

°® [
[I) i ..
® o ©
o %0 E s\
o
o © ° "
scattered uniform rectilinear structured unstructured

© Weiskopf/Machiraju/Moller

Data Structures

« Structured and unstructured grids can be distinguished
by the way the elements or cells meet

« Structured grids
— Have a regular topology and regular / irregular geometry

« Unstructured grids

— Have irregular topology
and geometry

—

N
structured unstructured

© Weiskopf/Machiraju/Moller

Grid Types - Overview

Cartesian
grids (dx=dy)

uniform (regular)
grids (dx=dy)

Splb painjonis-3o0|g

rectilinear grids

unstructured grids hybrid grids 5

Structured Grids

Data Structures

« Characteristics of structured grids

Easier to compute with

Often composed of sets of connected parallelograms
(hexahedra), with cells being equal or distorted with respect to
(non-linear) transformations

May require more elements or badly shaped elements in order
to precisely cover the underlying domain

Topology is represented implicitly by an n-vector of dimensions
Geometry is represented

explicitly by an array of points

Every interior point has the

same number of neighbors

—

N

Data Structures

« Characteristics of structured grids

Structured grids can be stored in a 2D / 3D array
Arbitrary samples can be directly accessed by indexing a
particular entry in the array

Topological information is implicitly coded
« Direct access to adjacent elements

Cartesian, uniform, and rectilinear grids are necessarily
convex

Their visibility ordering of elements with respect to any viewing
direction is given implicitly

Their rigid layout prohibits the geometric structure to adapt to
local features

Curvilinear grids reveal a much more flexible alternative to
model arbitrarily shaped objects

However, this flexibility in the design of the geometric shape
makes the sorting of grid elements a more complex procedure

Data Structures

» Typical implementation of structured grids

DataType *data = new DataType [Nx * Ny * Nz];
val =data[i+] " Nx+ k* (Nx *Ny) |;

... code for geometry ...

© Weiskopf/Machiraju/Moller

Data Structures

« Cartesian or equidistant grids
— Structured grid
— Cells and points are numbered sequentially with respect to
increasing X, then Y, then Z, or vice versa
— Number of points = Nx*Ny*Nz
— Number of cells = (Nx-1)¢(Ny-1)*(Nz-1)

i X
uJ H=max
y=tmax
Y Z=ma
=
"‘m\-‘“‘\ /'//
[L1
[L
2D } ¥ axis ™ “x:“\ //j // 3D
[
Ny \\\;‘;;} 26<’;/’ P
] ;-a"}-> P /ﬁxf::/
[~ e [
MH\\‘ f/ |~
F=tnin ~ [~ ™ LT L
: \\.. R e L
y=min N L
z=min ® axls " [
— | ~
NXx dx = dy = az

Data Structures

« Cartesian grids

— Vertex positions are given implicitly from [i,j,k]:
« P[i,j,k].x =origin_x + i * dx
« P[i,j,k].y =origin_y +jdy
« P[i,j,k].z =origin_z + k «dz

— Global vertex index I[i,j,k] = keNysNx + jsNx + |
o k=1/(NysNx)
o | = (I % (NysNx)) / Nx
o 1= (1% (NysNx)) % Nx

— Global index allows for linear storage scheme
» Wrong access pattern might destroy cache coherence

© Weiskopf/Machiraju/Moller

Data Structures

« Uniform grids

Similar to Cartesian grids

Consist of equal cells but with different resolution in at least
one dimension (dx # dy (# dz))

Spacing between grid points is constant in each dimension

— same indexing scheme as for Cartesian grids

Most likely to occur in applications where the data is
generated by a 3D imaging device providing different sampling

rates in each dimension _ dx
Typical example: medical volume data " ! ~
consisting of slice images {

 Slice images with square pixels (dx = dy)
 Larger slice distance (dz > dx = dy)

© Weiskopf/Machiraju/Moller

NXx

Data Structures

» Rectilinear grids

— Topology is still regular but irregular spacing
between grid points
« Non-linear scaling of positions along either axis

« Spacing, x_coord[L], y_coord[M], z_coord[N], must be
stored explicitly

— Topology is still implicit

w Permeter W eactor.
WS e —

WE e |

Wi ---l:—I

)) —
VI e
L —

F'e meter Wector

xm xczn xtan JdGh xm xcaa
x|:4:|
. . {5}
(2D perimeter lattice:

rectilinear grid in IRIS Explorer)

Data Structures

« Curvilinear grids
— Topology is still regular but irregular spacing

between grid points
« Positions are non-linearly transformed

— Topology is still implicit, but vertex positions are

explicitly stored
« x_coord[L,M,N]
« y_coord[L,M,N]
e z_coord[L,M,N]

— (Geometric structure
might result in
concave grids

Data Structures

« Curvilinear grids

Thank you.

