

**KAUST** 

## CS 247 – Scientific Visualization Lecture 3: Data Representation, Pt. 1

Markus Hadwiger, KAUST

## Reading Assignment #2 (until Feb 8)



Read (required):

- Data Visualization book, finish Chapter 2
- Data Visualization book, Chapter 3 until 3.5 (inclusive)
- Data Visualization book, Chapter 4 until 4.1 (inclusive)
- Continue familiarizing yourself with OpenGL if you do not know it !

#### **OpenGL** Tutorial



This week?

#### Optional, but highly recommended if you haven't used OpenGL before!

We can do another tutorial later, specifically focusing on shaders.

# Programming Assignments Schedule (tentative)

| Assignment 0: | Lab sign-up: setup piazza + bitbucket account, fork repo  | until | Jan 31 |
|---------------|-----------------------------------------------------------|-------|--------|
|               | Basic OpenGL example                                      |       |        |
| Assignment 1: | Volume slice viewer                                       | until | Feb 14 |
| Assignment 2: | Iso-contours (marching squares)                           | until | Feb 28 |
| Assignment 3: | Iso-surface rendering (marching cubes)                    | until | Mar 16 |
| Assignment 4: | Volume ray-casting, part 1                                | until | Apr 1  |
|               | Volume ray-casting, part 2                                | until | Apr 8  |
| Assignment 5: | Flow vis, part 1 (hedgehog plots, streamlines, pathlines) | until | Apr 22 |
| Assignment 6: | Flow vis, part 2 (LIC with color coding)                  | until | May 6  |

## Programming Assignment #1: Slice Viewer



#### Basic tasks

- Download data into 3D volume texture
- Display three different axis-aligned slices using OpenGL texture mapping using the 3D volume texture

#### Minimum

- The slice position should be adjustable for each slice view.
- Make sure the aspect ratio of the shown slices is correct.
- If the window is resized, the slice is resized with the correct aspect ratio (no distortions)

#### Bonus

- Show all three axis aligned slices at once
- Show arbitrarily aligned slices with an interface to change the arbitrary slice



#### #include <iostream>







#include <lostream>



#### C:\Development\git\Teaching\Work\CS247\_Assignment1\x64\Debug\CS247\_Assignment1.exe AMCS/CS247 Scientific Visualization - Slice Viewer - - -GL\_VERSION major=4 minor=3 = Keyboard commands: b - Toggle among background clear colors w - Increase current slice s - Decrease current slice a - Toggle viewing axis 1 - Load lobster dataset 2 - Load hydrogen dataset 1 odding data .... Datasets/skewed\_head.dat volume dimensions: x: 184, y: 255, z:170 downloading volume to 3D texture increasing current slice: 86 increasing current slice: 88 increasing current slice: 89 increasing current slice: 90 toggling viewing axis to: 0 toggling viewing axis to: 0 increasing current slice: 93 increasing current slice: 94 inc princogierror(cnar rife, inc fine) { // Returns 1 if an OpenGL error occurred, 0 otherwise. GLenum glErr; int retCode = 0; glErr = glGetError(); while (glErr != GL\_NO\_ERROR) printf("glError in file %s @ line %d: %s\n", file, line, gluErro retCode = 1; glErr = glGetError(); return retCode;



Markus Hadwiger, KAUST

#### **3D Texture Mapping**





## **Data Representation**

#### **Data – General Information**



#### Data:

- Focus of visualization, everything is centered around the data
- Driving factor (besides user) in choice and attribution of the visualization technique
- Important questions:
  - Where do the data "live" (data space)
  - Type of the data
  - Which representation makes sense (secondary aspect)

#### **Data Space**



Where do the data "live"?

- Inherent spatial domain (SciVis):
  - 2D/3D data space given
  - examples: medical data, flow simulation data, GIS data, etc.
- No inherent spatial reference (InfoVis):
  - abstract data, spatial embedding through visualization
  - example: data bases
- Aspects: dimensionality, domain, coordinates, region of influence (local, global)

## Data Type



#### What type of data?

#### Data types:

- Scalar = numerical value (natural, integer, rational, real, complex numbers)
- Non-numerical (categorical) values (e.g., blood type)
- Multi-dimensional values, i.e., codomain (n-dim. vectors, second-order (n × n) tensors, higher-order tensors, ...)
- Multi-modal values (vectors of data with varying type [e.g., row in a table])
- Aspects: dimensionality, codomain (superset of range/image)

#### **Mathematical Functions**



Associates every element of a set (e.g., X) with *exactly one* element of another set (e.g., Y)

Maps from domain (X) to codomain (Y)

$$f \colon X \to Y$$
$$x \mapsto f(x)$$

Also important: *range/image*; *preimage*; continuity, differentiability, dimensionality, ...

Graph of a function (mathematical definition):

$$G(f) := \{(x, f(x)) | x \in X\} \subset X \times Y$$



#### **Mathematical Functions**



Associates every element of a set (e.g., X) with *exactly one* element of another set (e.g., Y)

Maps from domain (X) to codomain (Y)

$$f: \mathbb{R}^n \to \mathbb{R}^m$$
$$x \mapsto f(x)$$

Also important: *range/image*; *preimage*; continuity, differentiability, dimensionality, ...

Graph of a function (mathematical definition):

$$G(f) := \{ (x, f(x)) | x \in \mathbb{R}^n \} \subset \mathbb{R}^n \times \mathbb{R}^m \simeq \mathbb{R}^{n+m}$$







| data                  | description                                           | visualization example                                           |
|-----------------------|-------------------------------------------------------|-----------------------------------------------------------------|
| $N^1 \rightarrow R^1$ | value series                                          | bar chart, pie chart, etc.                                      |
| $R^1 \rightarrow R^1$ | scalar function over R                                | (line) graph                                                    |
| R²→R <sup>1</sup>     | scalar function over R <sup>2</sup>                   | 2D-height map in 3D,<br>contour lines in 2D,<br>false color map |
| $R^2 \rightarrow R^2$ | 2D vector field                                       | hedgehog plot, LIC,<br>streamlets, etc.                         |
| $R^3 \rightarrow R^1$ | scalar function over R <sup>3</sup><br>(3D densities) | iso-surfaces in 3D,<br>volume rendering                         |
| $R^3 \rightarrow R^3$ | 3D vector field                                       | streamlines/pathlines in 3D                                     |





| data                                                       | description       | visualization example      |
|------------------------------------------------------------|-------------------|----------------------------|
| $N^1 \rightarrow R^1$                                      | value series      | bar chart, pie chart, etc. |
| Midget Sales (millions)<br>15<br>12<br>5<br>1980 1981 1982 | PLplot Example 12 |                            |







| data                           | description                        | visualization example                                                   |
|--------------------------------|------------------------------------|-------------------------------------------------------------------------|
| R <sup>2</sup> →R <sup>1</sup> | function over R <sup>2</sup>       | 2D-height map in 3D,<br>contour lines in 2D,<br>false colors (heat map) |
|                                | 0.0 0.5 0.0 0.5 0.0 -1 -2 -2 -2 -2 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                   |







# datadescriptionvisualization example $R^2 \rightarrow R^2$ 2D-vector fieldhedgehog plot, LIC,<br/>streamlets, etc





| data                           | description | visualization example          |
|--------------------------------|-------------|--------------------------------|
| R <sup>3</sup> →R <sup>3</sup> | 3D-flow     | streamlines,<br>streamsurfaces |
|                                |             |                                |





# Data Representation

- Discrete (sampled) representations
  - The objects we want to visualize are often 'continuous'
  - But in most cases, the visualization data is given only at discrete locations in space and/or time
  - Discrete structures consist of samples, from which grids/meshes consisting of cells are generated
- Primitives in different dimensions

| dimension            | cell                                                                                               | mesh                                 |
|----------------------|----------------------------------------------------------------------------------------------------|--------------------------------------|
| 0D<br>1D<br>2D<br>3D | points<br>lines (edges)<br>triangles, quadrilaterals (rectangles)<br>tetrahedra, prisms, hexahedra | polyline(–gon)<br>2D mesh<br>3D mesh |

#### **Grids – General Questions**



Important questions:

- Which data organization is optimal?
- Where do the data come from?
- Is there a neighborhood relationship?
- How is the neighborhood info stored?
- How is navigation within the data possible?
- What calculations with the data are possible ?
- Are the data structured (regular/irregular topology)?

- The (geometric) shape of the domain is determined by the positions of sample points
- Domain is characterized by
  - Dimensionality: 0D, 1D, 2D, 3D, 4D, ...
  - Influence: How does a data point influence its neighborhood?
  - Structure: Are data points connected? How? (Topology)

- Influence of data points
  - Values at sample points influence the data distribution in a certain region around these samples
  - To reconstruct the data at arbitrary points within the domain, the distribution of all samples has to be calculated
- Point influence
  - Only influence on point itself
- Local influence
  - Only within a certain region
    - Voronoi diagram
    - Cell-wise interpolation (see later in course)
- Global influence
  - Each sample might influence any other point within the domain
    - Material properties for whole object
    - Scattered data interpolation

- Voronoi diagram
  - Construct a region around each sample point that covers all points that are closer to that sample than to every other sample
  - Each point within a certain region gets assigned the value of the sample point
  - Nearest-neighbor interpolation





- Scattered data interpolation
  - At each point the weighted average of all sample points in the domain is computed
  - Weighting functions determine the support of each sample point
    - Radial basis functions simulate decreasing influence with increasing distance from samples
  - Schemes might be non-interpolating and expensive in terms of numerical operations

- Requirements:
  - Efficiency of accessing data
  - Space efficiency
  - Lossless vs. lossy
  - Portability
    - Binary less portable, more space/time efficient
    - Text human readable, portable, less space/time efficient
- Definition
  - If points are arbitrarily distributed and no connectivity exists between them, the data is called scattered
  - Otherwise, the data is composed of cells bounded by grid lines
  - Topology specifies the structure (connectivity) of the data
  - Geometry specifies the position of the data

- Some definitions concerning topology and geometry
  - In topology, qualitative questions about geometrical structures are the main concern
    - Does it have any holes in it?
    - Is it all connected together?
    - Can it be separated into parts?
- Underground map does not tell you how far one station is from the other, but rather how the lines are connected (topological map)



- Topology
  - Properties of geometric shapes that remain unchanged even when under distortion



Same geometry (vertex positions), different topology (connectivity)

- Topologically equivalent
  - Things that can be transformed into each other by stretching and squeezing, without tearing or sticking together bits which were previously separated



topologically equivalent

- Grid types
  - Grids differ substantially in the cells (basic building blocks) they are constructed from and in the way the topological information is given



 $\ensuremath{\mathbb{C}}$  Weiskopf/Machiraju/Möller

#### Thank you.

#### Thanks for material

- Helwig Hauser
- Eduard Gröller
- Daniel Weiskopf
- Torsten Möller
- Ronny Peikert
- Philipp Muigg
- Christof Rezk-Salama