
EUROGRAPHICS 2025 / A. Bousseau and A. Dai
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 44 (2025), Number 2

VortexTransformer: End-to-End Objective Vortex
Detection in 2D Unsteady Flow Using Transformers

X. Zhang1 and P. Rautek1 and M. Hadwiger1

1King Abdullah University of Science and Technology, Saudi Arabia

Lab Frame

Comoving Frame0 1 vortex possibility

Figure 1: Results visualized in different reference frames: On the top the pathlines are shown relative to the input lab frame. Vortex structures
are not visible from the pathline geometry, however the prediction was computed correctly in this frame of reference. By transforming the
pathlines into a moving reference frame, the vortex structures gradually become visible. On the bottom the pathlines are visualized in a
co-moving reference frame. The reference frame was not explicitly provided to the VortexTransformer network. In the co-moving reference
frame the vortex structures become clearly visible indicating that the network’s predictions are correct.

Abstract
Vortex structures play a pivotal role in understanding complex fluid dynamics, yet defining them rigorously remains challenging.
One hard criterion is that a vortex detector must be objective, i.e., it needs to be indifferent to reference frame transformations.
We propose VortexTransformer, a novel deep learning approach using point transformer architectures to directly extract vortex
structures from pathlines. Unlike traditional methods that rely on grid-based velocity fields in the Eulerian frame, our approach
operates entirely on a Lagrangian representation of the flow field (i.e., pathlines), enabling objective identification of both
strong and weak vortex structures. To train VortexTransformer, we generate a large synthetic dataset using parametric flow
models to simulate diverse vortex configurations, ensuring a robust ground truth. We compare our method against CNN and U-
Net architectures, applying the trained models to real-world flow datasets. VortexTransformer is an end-to-end detector, which
means that reference frame transformations as well as vortex detection are handled implicitly by the network, demonstrating
the ability to extract vortex boundaries without the need for parameters such as arbitrary thresholds, or an explicit definition of
a vortex. Our method offers a new approach to determining objective vortex labels by using the objective pairwise distances of
material points for vortex detection and is adaptable to various flow conditions.

CCS Concepts
• Human-centered computing → Scientific visualization; • Computing methodologies → Neural networks; Vector / tensor
field visualization;

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Asso-
ciation for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial
License, which permits use, distribution and reproduction in any medium, provided the original work
is properly cited and is not used for commercial purposes.

https://orcid.org/0000-0002-9426-0721
https://orcid.org/0000-0003-4821-7404
https://orcid.org/0000-0003-1239-4871

2 of 15 X. Zhang & P. Rautek & M. Hadwiger / VortexTransformer: End-to-End Objective Vortex Detection in 2D Unsteady Flow

1. Introduction

Vortex extraction from time-varying fluid data is a critical prob-
lem with applications across multiple domains, including geophys-
ical meteorology, aerospace applications, and automotive design.
However, the inherent complexity of time-varying fluid fields and
the elusive nature of vortices present significant challenges for re-
searchers attempting to extract and analyze these structures.

While there is no universally agreed-upon definition of a vortex,
it is generally accepted that vortices represent regions of co-rotating
fluid particles. A few commonly accepted properties of vortex cores
and topological features [BYH∗20] are:

• Lagrangian. In 2D, vortex cores are trajectories of material
points (i.e., pathlines). In 3D, vortex cores are curves advected
by the flow (i.e., path surfaces).

• Objectivity. The vortex structure and vortex core line should re-
main invariant to rigid observer motion (any time-dependent ro-
tation and translation). We introduce the concept of the observer
and provide a definition of objectivity below.

Observer. The term observer refers to a time-varying moving
reference frame, abstracting a moving camera that is recording rel-
ative velocities. A suitable choice of observer is essential for ana-
lyzing complex unstable flows, such as those in CFD wind tunnel
simulations. Figure 1 illustrates the significance of reference frames
by comparing a cylinder flow in the original reference frame (Fig. 1
top) with a co-moving reference frame, where vortex structures be-
come more readily visible. (Fig. 1 bottom).

For many flow fields, we cannot find one reference frame that
follows all the vortices. Prior objective vortex extraction methods
split feature detection into two steps: first, they compute an ob-
server that optimally co-moves (often called the optimal observer)
with fluid flow patterns, using an expensive numerical optimiza-
tion method [GGT17, RZW∗23, HMTR], and second, they detect
and visualize features in the observed flow field (i.e., the flow field
relative to the optimal observer).

Objectivity. Given a time-dependent reference frame transfor-
mation (rotation Q and translation c):

x∗ = Q(t)x+ c(t) (1)

Objectivity can be formally defined as follows: A scalar field s is
objective if the scalar values remain unchanged under any rigid-
body reference frame transformation, i.e. s∗(x∗) = s(x). A vector
field v is objective if the vectors transform as: v∗(x∗) = Q(t)v(x).
A second-order tensor field T is objective if the tensors transform
as T∗(x∗) = Q(t)T (x)Q(t)T .

Physical features must be invariant to the observer to ensure they
are meaningful [Hal05]. Figure 2 illustrates the importance of ob-
jectivity in vortex detection. In Figure 2 (a), a zero field (i.e., all
velocities are zero) is visualized from a rotating observer, where
the relative velocities appear similar to a vortex due to the camera’s
rotation. An objective vortex detection method should not misinter-
pret such camera-induced motion as a vortex. In contrast, Figure 2
(b) shows a genuine vortex that remains invariant under any refer-
ence frame transformation.

However, existing deep learning-based vortex extraction meth-
ods [DWL∗19,DCW∗22,BCG20,dTG∗24,ZDM∗14], pay minimal

 Rotating observer:

(b) (c)(a)

Figure 2: From left to right: zero field observed by a rotating ob-
server u = (0,0,0.5); objective vortex generated by the Vatistas
profile; and saddle field generated by the Vatistas profile. The vec-
tor field is visualized using LIC [CL93], with color coding indicat-
ing velocity magnitude.

attention to the characteristics of vortices, with little consideration
of fundamental principles such as objectivity and Lagrangian in-
variance.

1.1. Contributions

Our main contributions are:

• We propose the first end-to-end, objective, deep-learning vortex
extractor using a Lagrangian representation. Our VortexTrans-
former (VT) learns the flow map from the material trajectories,
especially from their relative positions. Our approach is based
on the Point Transformer architecture [ZJJ∗21]. We added a new
Pathline Sampling Layer (PSL) to the network to explore the
pathline cluster’s invariance properties. In the ablation study, we
show that PSL improves the performance of network learning
and generalization.

• Extending the work of Berenjkoub et al. [BCG20] we provide a
methodology for generating a training dataset that contains vor-
tex labels that can be used to train for objectivity. We generate
the labeled data by applying multiple observer transformations
to steady velocity fields and maintain the known segmentation
of the Vatistas vortex profile by forcing the observer transforma-
tion at initial time is identity. This solves the problem of a lack
of ground truth data with reliable labels in the field of machine
learning for objective vortex detection.

• We experimentally demonstrate that previous deep-learning vor-
tex extractors were not objective.

2. Related Work

2.1. Traditional Vortex Detection Methods

Traditional vortex detection techniques can generally be clas-
sified into two main categories: threshold-based and line-based
methods, respectively. Threshold-based methods, including Q-
criterion [Hun87], λ2 [JH95], and ∆ [CPC90] criterion, rely on
the velocity gradient tensor, emphasizing the local rotational be-
havior of the flow. None of these local detectors mentioned above
are objective, for more details and other criteria, please refer to the
overview [GT18].

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

X. Zhang & P. Rautek & M. Hadwiger / VortexTransformer: End-to-End Objective Vortex Detection in 2D Unsteady Flow 3 of 15

Objective criteria like Instantaneous Vorticity Deviation (IVD)
and Lagrangian-Averaged Vorticity Deviation (LAVD) [HHFH16]
offer a more global perspective. However, computing IVD requires
two user-defined hyper-parameters: the neighborhood size for av-
eraging the vorticity and the threshold for segmentation. The defi-
nition of IVD is provided in Appendix A. Determining appropri-
ate values for these parameters is particularly challenging given
the multiscale nature of vortex structures, which exhibit significant
variations in both size and angular momentum. This complexity of-
ten necessitates a human-in-the-loop approach to ensure that IVD
or LAVD methods produce clear and unambiguous iso-contours,
creating obstacles for practical applications.

Line-based vortex extraction methods, such as the reduced ve-
locity criterion by Sujudi and Haimes [SH95], identify vortex core-
lines by analyzing the eigenvectors of the Jacobian matrix J, with
vectors v satisfying v ∥ Jv. Despite its effectiveness, the Sujudi-
Haimes method often generates noisy results, necessitating com-
prehensive pre-processing and post-processing steps to ensure ac-
curate vortex detection. Fuchs et al. [FPS∗08] recommend start-
ing with the traditional Sujudi-Haimes approach and only switch-
ing to higher-order methods if necessary, as these can increase
computational costs and complexity. Building on this, Weinkauf et
al. [WSTH07] and Fuchs et al. [FPS∗08] extended the method to
address the discrepancy between pathline and streamline corelines
in unsteady flows, improving robustness in more dynamic scenar-
ios.

2.2. Machine Learning for Vortex Extraction

In recent years, machine learning and deep learning methods have
been increasingly applied to fluid flow visualization. Zhang et
al. proposed using the adaptive boosting [ZDM∗14] algorithm to
merge different local vortex criteria. Various convolutional neural
network (CNN) variants have been applied to vortex identification.
[DWL∗19] propose the first Convolution network (VortexNet), they
utilized a user-defined threshold for the IVD as labels to train a con-
volutional network, extracting vortex from the velocity grid. Sub-
sequent work modified the last several layers of [DWL∗19] from
linear layers to transposed convolution [WDY∗21]. Later studies
frequently employed the U-Net architecture [DCW∗22,DBW∗22].
Although these methods claim objectivity by using the IVD crite-
rion for segmentation labels [DWL∗19], IVD itself is known to be
of limited use. These methods inherit these limitations, making er-
rors when IVD is unreliable. Furthermore, treating the vector field
like an image aligns the network’s behavior closer to that of an edge
detector.

Berenjkoub et al. [BCG20] utilized Vatistas velocity to generate
steady vector fields and more reliable vortex segmentation labels.
Berenjkoub et al. [BCG20] achieve objectivity when an optimal
reference frame is pre-computed by optimization, the input to the
network is transformed input field and the quality of the results
largely depends on pre-computed transformation. The choice of the
observer, however, is non-trivial, particularly for flows without a
global reference frame. Therefore, this approach is not an end-to-
end approach like ours.

All methods mentioned apply convolutional neural networks

to Eulerian slices of the vector field, neglecting the fluid’s time-
varying nature and often resulting in suboptimal segmentation. De
Silva et al. [dTG∗24] present the first Lagrangian vortex detector
that avoids training directly on vector fields. Instead, they integrate
pathlines and then convert these pathlines into binary images. The
binary images are then fed to the network to predict whether a given
pathline is inside a vortex. Since a single pathline does not provide
enough information about the overall flow field, relying on indi-
vidual pathlines to infer vortex structures has severe shortcomings.
Their approach depends on the accumulated curl along pathlines,
which is not an objective property. This leads to false positive de-
tections in certain reference frames.

Lguensat et al. [LSF∗18] extracted ocean eddies from sea sur-
face height data, while Franz et al. [FRM∗18] trained a neural net-
work using the Okubo-Weiss criterion as input to detect ocean ed-
dies, subsequently employing a recurrent neural network (RNN)
for tracking. Bai et al. [BWL19] utilized CNNs to analyze im-
ages of streamlines for ocean eddy detection, and Kim and Gun-
ther [KG19] developed a CNN to extract a reference frame that
stabilizes unsteady flows for vortex coreline extraction. Liu et
al. [LLW∗19] also applied CNNs to extract shock waves. Beyond
vortex detection, deep learning techniques have been employed to
extract flowline features by converting flowlines into binary vol-
umes [HTW18, dSZS∗23].

Overall, deep learning approaches so far have ignored objectiv-
ity as a prerequisite for vortex extraction. A brief overview of the
properties of representative methods is presented in Table 1.

2.3. Objective Vortex Detection Methods

Since the work of Haller [Hal05], objectivity, also called frame in-
difference, has been recognized as a crucial property that all vortex
detectors should have. Often, a specific vortex detection method is
defined first, with objectivity then proved specifically only for the
given method, such as for LAVD [HHFH16] or for the objective
deformation component of the input flow [KPH22].

The first generic method to enforce objectivity was presented by
Günther and Theisel [GGT17]. Subsequent work built on the con-
cept of Killing vector fields and Lie derivatives as a general mathe-
matical framework [HMTR]. This enables exploiting the Lie group
and Lie algebra structures of observer motions, which is also pos-
sible for flow fields defined in curved spaces [RMB∗21], and also
greatly facilitates interactive exploration of different observers, ei-
ther from a pre-computed set of observers [ZHTR22], or for ob-
servers interactively computed in a region of interest determined
by using a lens metaphor [RZW∗23]. Recent work has also focused
on enforcing that vortex core lines should be guaranteed to be path-
lines of the input flow [GT24].

2.4. Point Transformer

Deep learning for point cloud processing often relies on
permutation-invariant operators like pointwise MLPs and pool-
ing layers to aggregate features across point sets [QSMG17,
QYSG17]. Some approaches enhance this by connecting points
into a graph and applying graph operations [LS18, SFYT18], such

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

4 of 15 X. Zhang & P. Rautek & M. Hadwiger / VortexTransformer: End-to-End Objective Vortex Detection in 2D Unsteady Flow

Method VortexNet [DWL∗19] VourtexBoundary [BCG20] MVUnet [DCW∗22] VortexViz [dTG∗24] Ours

Training data RealData+IVD Vatistas Profile RealData+IVD RealData+IVD Vatistas Profile + reference frame transformations
Input Patch Velocity Patch Velocity Patch Velocity+Vorticity+IVD Flowline Image+Accumulate Vorticity Relative Positions+IVD
Model CNN2D Unet Unet CNN2D+MLP Transformer
Output Cls Seg Seg Cls Seg
Objective ✗ ~ ✗ ✗ ✓

Data representation Eulerian Eulerian Eulerian Eulerian/Lagrangian Lagrangian

Table 1: Comparison of deep learning vortex extraction models: Our model is the first to use a transformer architecture which allows us
to directly train on Lagrangian data representation (i.e., particle trajectories). We augment the training data with multiple reference frame
transformations for better ground truth data. Further, our method is the first one to purely train on objective properties (i.e., relative positions
and IVD). In the above table, Cls denotes "vortex classification", Seg denotes "Vortex segmentation".

as DGCNN [WSL∗19], which performs graph convolutions on
kNN, or PointWeb [ZJFJ19], which densely connects local neigh-
borhoods. DeepGCNs [LMTG19] explore the benefits of deeper
graph convolutional networks for 3D scene understanding.

Following the success of Transformer and self-attention
models in revolutionizing natural language processing [Vas17,
Dev18, WFB∗19, Dai19], there has been a notable shift to-
wards transformer-based architectures in point cloud learn-
ing [ZJJ∗21,GCL∗21,RRL23,WLJ∗22,YGX∗23,WJW∗24]. These
transformer-based methods have demonstrated that the scaled-dot
attention mechanism is highly effective in capturing the geometric
features of point clouds.

3. Method

We highlighted the need for an objective and Lagrangian vortex ex-
traction method. To achieve this, Section 3.1 introduces our training
data generation, while Section 3.2 introduces our Vortex Trans-
former model designed to meet these requirements.

3.1. Data Generation

3.1.1. Steady Field Generation

In order to generate massive segmentation labels of unsteady flow
fields, we generate synthetic steady flow fields using the Vatis-
tas [VKM91] experimentally-obtained vortex velocity profile. The
steady Vatistas velocity at any point x = (x,y) of 2D plane is given
by:

v(x) = Si ·x ·
v0(∥x∥)
∥x∥ , (2)

with v0(r) =
r

2πr2
c

((
r
rc

)2n
+1
) 1

n
(3)

where v0(r) is the Vatistas velocity profile [VKM91], rc denotes
the radius with maximum velocity and n controls the shape of
the velocity profile function. The effect of n is further illustrated
in [KG19]. Matrix Si with i ∈ {1,2,3} defines three base shapes
(saddle, clockwise vortex, counterclockwise vortex):

S1 =

(
1 0
0 −1

)
︸ ︷︷ ︸

saddle

S2 =

(
0 1
−1 0

)
︸ ︷︷ ︸

center (cw)

S3 =

(
0 −1
1 0

)
︸ ︷︷ ︸
center (ccw)

(4)

For S2 and S3, the vortex boundaries are locations with maximal

tangential velocity, i.e. vortex area in these two cases are area with
positive signed distance:

d(x) = rc −∥x∥ (5)

The steady velocity field v(x) is then deformed by introducing a
deformation matrix D, which is the composition of rotation θ and a
non-uniform scaling (sx,sy), and a translation vector T:

D(θ,sx,sy) =

(
sx cos(θ) −sy sin(θ)
sx sin(θ) sy cos(θ)

)
(6)

x′ = D ·x+T (7)

d′(x′) = d(D−1 · (x′−T)) (8)

v′(x′) = D ·v(x) = D ·v(D−1 · (x′−T)) (9)

The above recipe is discussed in detail in [BCG20]. Figure. 2 (b-
c) presents examples of a steady Vatistas velocity patch. It’s im-
portant to highlight that the Vatistas function is nonlinear to radius,
meaning a rotating observer cannot cancel out the resulting vortex.

We extend [BCG20] by allowing mixtures of up to two vortices
(m ∈ [1− 2]), given in eq. 10, ensuring that the vortices are suffi-
ciently spaced apart, such that the distance between any two vortex
cores exceeds the sum of their radius. This extension enables the
generation of more complex and realistic flow scenarios while en-
suring that the vortices do not significantly influence each other’s

steady mixture field

observed unsteady field

Figure 3: A steady mixture field with two Vatistas profiles (left) ob-
served by different observers results in various observed unsteady
fields (right). In the steady field, yellow is used to indicate the vor-
tex segmentation label, and the corresponding observed unsteady
fields shares this segmentation for the first time slice.

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

X. Zhang & P. Rautek & M. Hadwiger / VortexTransformer: End-to-End Objective Vortex Detection in 2D Unsteady Flow 5 of 15

w₁(t) = a₁(t) ×

wn(t) = an(t) ×

+ b₁(t) × + c₁(t) ×

+ bn(t) × + cn(t) ×

=

…… … …

e₁ e₂ e₃

wi(t)

t

i = { 1, ..., n }

Figure 4: Observer representation using Killing fields. Any physical observer is determined by a time-dependent Killing field w(x, t) =
a(t)e1(x)+b(t)e2(x)+c(t)e3(x). The basis vector fields e1 (purple), e2 (yellow), and e3 (cyan) are constant basis vector fields. Any possible
(time-dependent) observer wi is solely determined by a time-dependent function t 7→ (ai(t),bi(t),ci(t)) of three scalar coefficients (ai,bi,ci)
per time t.

segmentation labels.

v(x,y) =
m

∑
p=1

vp(x,y), (10)

3.1.2. Parameter Space Fitting

In order to restrict the parameter space to physically plausible
flows, similar to [KG19], we split the real flow data (2D Un-
steady Cylinder Flow with von Karman Vortex Street [Pop04],
Boussinesq Flow and RFC64 [GST16]) into spatial patches, and
use gradient descent to find Vatistas parameters to fit every patch.
The detail and result Vatistas parameter distribution histogram is
given in the Appendix B.

3.1.3. Unsteady Field and Pathline Generation

To achieve objectivity, we introduce arbitrary rigid observers de-
fined by six time-dependent parameters (a(t),b(t),c(t)), and their
time derivatives (ȧ(t), ḃ(t), ċ(t)) (we ignore higher order deriva-
tives). By defining e1 and e2 as two fixed, chosen basis vector
fields for translation and e3 as the basis vector field for rotation,
we map the time-dependent parameters (a(t),b(t),c(t)) to a time-
dependent Killing field [ZHTR22] and its time derivatives. This
mapping enables us to describe the observer’s motion, as illustrated
in Figure 4.

The Killing field represents infinitesimal isometry mapping on
any manifold, by integrating observer in the Killing field w(x, t) =
a(t)e1(x)+b(t)e2(x)+ c(t)e3(x), we get the observer’s motion φt
explicitly as:

φt(x) = P(t)+R(t)
(
x−P(t0)

)
(11)

Here, P(t) represents the observer’s position at time t, t0 is the in-
tegration starting time, and R(t) denotes the observer’s frame rota-
tion.

In 2D Cartesian coordinates, R(t) is given by

R(t) =
[

cosα(t) −sinα(t)
sinα(t) cosα(t)

]
. (12)

The observer’s pathline t 7→ P(t) and the integrated frame rota-
tion α(t) are the solutions of

d
dt

P(t) = w
(
P(t), t

)
,

d
dt

α(t) = c(t), (13)

We solve these two ODEs through numerical integration, enforcing
the conditions α(t0) = 0 and P(t0) = 0. This ensures that the vortex
segmentation for all observers is consistent at the initial time slice.

P(t) = P(t0)+
∫ t

t0
w
(
P(τ),τ

)
dτ, α(t) =

∫ t

t0
c(τ)dτ. (14)

The reference frame transformation brought by this observer is

φt
−1(x) = Q(t)x+T (t) (15)

where Q(t) = RT (t),T (t) = P(t0)−Q(t)P(t). We obtain the ob-
served unsteady field:

v∗(x∗, t) = Q(t) ·v(x, t)+ Q̇(t)x+ Ṫ (t) (16)

x = QT (t)(x∗−T(t))

After fitting the Vatistas parameter distribution, we generated a
synthetic dataset of steady fields defined on a 2D unit domain, i.e.,
X̃ × Ỹ = [−1,1]2, comprising three parts: 1500 patches derived
from fitting real data, 1400 randomly generated steady fields using
the fitted distribution, and 100 manually added Killing fields to the
steady field collection. For each steady field, we generated 20 rigid
body motion observers (i.e., Killing fields) by randomly sampling
(a,b,c, ȧ, ḃ, ċ) from a uniform distribution within the time domain
T̃ = [0,1], thereby transforming each steady field into 20 unsteady
variants. The ground-truth vortex segmentation for these unsteady
fields is derived directly from the Vatistas profile parameters and re-
mains consistent across all 20 variants. In total, we generated 3000
steady velocity fields, which were transformed into 60000 unsteady
vector fields. The dataset was split into training and validation sets
in a 9:1 ratio. Figure 3 shows an example of the steady mixture field
and its different observer transformations.

3.2. Vortex Transformer (VT)

Our vortex transformer comprises four primary components: the
Pathline Sampling Layer (PSL), the Pathline Transformer (PT)
block, the global pooling layer (GP) and the feature propagation
layer (FP). An illustration of our vortex transformer is given in Fig-
ure 5. Building upon the Point Transformer [ZJJ∗21], we have tai-
lored our vortex transformer to effectively process pathline cluster
structures, leveraging the unique invariances of pathline clusters.

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

6 of 15 X. Zhang & P. Rautek & M. Hadwiger / VortexTransformer: End-to-End Objective Vortex Detection in 2D Unsteady Flow

PT

Pos Embedding

GP

FP

PSL

Group Permute

Down Sampling

K/2 groups

Tn

.

.

.
T0

...

…
…
…

…
…
…

Cross sampling

Tn

.

.

.
T0

Pathline integration

KNN Query

LR

MLP

Output SegmentationOutput Segmentation

Tn

.

.

.
T0

K groups

…
…
…

…
…
…

...

Input

Figure 5: VortexTransformer architecture. We first sample K groups of pathlines using a "cross" sampling pattern. The pathlines are then
processed through a Pathline Sampling Layer (PSL), which performs group permutation as well as spatial and temporal downsampling op-
erations. A linear layer is applied for positional embedding, and the input is subsequently treated as a point cloud, which is passed through
a series of Pathline Transformer (PT) blocks. Each PT block consists of KNN queries, relative position embeddings, and attention mecha-
nisms. Following this, a Global Pooling (GP) operation is performed along the time-sequence dimension, after which Feature Propagation
is applied to transfer features from the downsampled pathlines back to the original pathlines. The final segmentation is produced by passing
the features through a Multi-Layer Perceptron (MLP) with a sigmoid activation function.

3.2.1. Pathline Cluster Representation

Cross sampling. Recognizing that individual pathlines are insuf-
ficient to capture the local fluid behavior, we always gather seed-
ing points in groups. We sample candidate central positions (blue
points in Fig. 5) in a regular grid format. For a given candidate cen-
tral position (x,y), we seed four points at (x±∆,y±∆) around it
(black points in Fig. 5). Pathlines are then integrated from these
four points, forming a local group and resulting in four pathlines
that encode a discrete local flow map.

We seed 64 groups within each velocity patch, resulting in a total
of 256 pathlines, which together form a pathline cluster. This rep-
resentation can be interpreted as a specialized point cloud, where
each point in 2D is now represented by (x,y, t).

Given an input pathline cluster of k groups, represented as

M(t) = {{c1
0(t),c

1
1(t),c

1
2(t),c

1
3(t)}, . . . ,

{ck
0(t),c

k
1(t),c

k
2(t),c

k
3(t)}},

(17)

where c j
i (t) is the i-th pathline in group j, consisting of L

steps:c j
i (t) = (c j

i (0),c
j
i (1), ...,c

j
i (L−1)). Pathline cluster is a kind

of Lagrangian representation of an unsteady flow map and exhibits
several key invariances:

• Permutation Invariance: The flow map encoded in the pathline
cluster must remain invariant under any reordering of the path-
lines. Therefore, our network must act as a symmetry function,
ensuring that S(M(t)) remains unchanged by permutations of the
pathlines, here S(c1,c2, . . . ,cn) represents a symmetry function.

• Temporal Down-sampling Invariance: The flow map encoding
should remain consistent under temporal down-sampling or re-
sampling, assuming negligible discretization effects.

• Observer Invariance: Rigid body transformations of the path-
line cluster will not affect the intrinsic spiral motion, adhering
to the principle of vortex objectivity. A key observation is that,
while different observers affect fluid velocity, making feature ex-
traction difficult, a rigid observer does not change the relative
positions between Lagrangian points.

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

X. Zhang & P. Rautek & M. Hadwiger / VortexTransformer: End-to-End Objective Vortex Detection in 2D Unsteady Flow 7 of 15

3.2.2. Pathline Sampling Layer (PSL)

The Pathline Sampling Layer (PSL) performs temporal and spa-
tial down sampling, followed by group permutation. This design
preserves local structure while enhancing generalization to varied
sampling patterns. A PSL layer down-sample input X as:

X′ = F(Dt(Ds(X))) (18)

Ds is the spatial down-sampling operation that randomly picks
50% spatial groups from input pathline cluster. Dt is the temporal
down-sampling operation where we randomly pick 50% discrete
time steps from the input pathline cluster, note we always keep
the first and the last time step. After spatial and temporal down-
sampling, a tensor X with shape (K,L,C) reprents K pathlines, L
steps,C features, become a new tensor X ′ with (K×0.5,L×0.5,C).
F is the group permutation function:

M′(t) = F(M(t))

= {{cp1
0 (t),cp1

1 (t),cp1
2 (t),cp1

3 (t)}, . . . ,
{cpk

0 (t),cpk
1 (t),cpk

2 (t),cpk
3 (t)}}

(19)

where {p1, p2, . . . pk} represent a random permutation of group in-
dices.

Before feeding the sampled pathline into the next stage, there are
two linear layers. One is a raw position embedding, which maps the
position and time t into the transformer’s hidden dimension h/2.
The other is a feature embedding, which maps the point’s feature
(IVD) into the transformer’s hidden dimension h/2.

3.2.3. Pathline Transformer (PT) Block

The Pathline Transformer (PT) block operates in the following
steps:

KNN Query. The input pathline cluster is first reshaped from
(K,L,C) to (K ×L,C), treating it as a point cloud of K ×L points.
For each point, we compute its k-nearest neighbors and collect their
features and positions xq, pq. Notably, when computing distances,
we utilize space-time coordinates (x,y,t) for each material point,
implicitly imposing a space-time metric defined by time and space
grid resolution and our domain X̃ × Ỹ × T̃ = [−1,1]2 × [0,1].

Relative Position Embedding. For each point and its k-nearest
neighbors, we compute relative positions and generate position em-
bedding using a multi-layer perceptron δ to get learnable relative
position embedding:

δ̃ = δ(pi − p j) (20)

Attention Mechanism. The self-attention mechanism transforms
the input pair (x, p) into an output pair (y, p), where x and y rep-
resent features, and p denotes position. This transformation lever-
ages three distinct linear layers (η, φ, and ψ) to map the input fea-
ture x and its KNN features xq into query (q), key (k), and value
(v) tensors, respectively, see Figure 5. We incorporate a subtrac-
tion relation and augment both the attention vector and the trans-
formed features with a relative position encoding δ̃. The attention
is ρ(γ(q− k+ δ̃)), where γ represents another MLP, ρ denotes soft-
max function. Note that we use green to highlight learnable layer.
Given the input of the PT layer as a set of points X (i), this process

can be formally expressed as:

q,k,v = η(xi),φ(x
q
i),ψ(x

q
i)

yi = ∑
x j∈X (i)

ρ(γ(q− k+ δ̃))⊙ (v+ δ̃) (3) (21)

Similar to the Point Transformer, after the attention layer, a linear
layer followed by a ReLU nonlinearity (LR) is applied at the end
of this PT block. And residual connection is applied for every PT
block as always.

3.2.4. Feature Pooling and Propagation

Our model stacks multiple PT blocks, followed by a global pooling
layer. The global pooling layer (GP) reshapes the tensor from (K×
L,F) back to (K,L,F) and applies a symmetry function combining
average and max operations along the time-sequence dimension,
i.e.

yi = mean(xi)+max(xi) (22)

To conclude the processing pipeline, a non-learnable feature propa-
gation layer (FP) propagates features from spatially down-sampled
pathlines to the original input pathlines by spatial interpolation. A
final MLP produces the predicted segmentation for each pathline.
All activation functions used in our network are ReLU, except for
the last one of our last MLP, which is a sigmoid function. Imple-
mentation details are given in Appendix. C.

3.2.5. Pathline Jittering

As a data augmentation technique, we apply a jittering process to
each discretized pathline c(t) in the training set before feeding it
into the network. This process enhances the robustness and gener-
alization capabilities of our model by introducing controlled vari-
ability to the input data. The jittering procedure is as follows: We
iterate through all points Pi, excluding the first and last points (i.e.,
i ∈ [2,n− 1]), for each point Pi, we compute its tangent vector T
using the preceding points:T = Pi −Pi−1. Then we normalize the
tangent vector T to obtain a unit direction vector Tnorm = T

∥T∥ , dis-
turb the position of Pi by generating a random coefficient ϵ and ap-
plying it along the normalized tangent direction:P′

i = Pi + ϵ ·Tnorm.
Here, ϵ is a small random value drawn from a Gaussian distribution
with a predefined range (1%) to control the magnitude of the jitter.

4. Evaluation

We evaluate the correctness of our proposed VT using Precision,
Recall, and F1. Precision is defined as:

Precision =
TP

TP+FP
(23)

where TP denotes True Positives and FP denotes False Positives.
Recall is defined as:

Recall =
TP

TP+FN
(24)

where FN denotes False Negatives. The F1 metic is the harmonic
mean of Precision and Recall, defined as:

F1 = 2 · Precision ·Recall
Precision+Recall

(25)

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

8 of 15 X. Zhang & P. Rautek & M. Hadwiger / VortexTransformer: End-to-End Objective Vortex Detection in 2D Unsteady Flow

2D Unsteady Cylinder Flow with von Karman Vortex SheetRFC64
2D Unsteady
DoubleGyre

2D Unsteady Cylinder
Flow Around Corners

VortexUnet

VortexViz

Ours

Q

IVD

MVUnet

min max

Figure 6: Visual comparison of different flow scenarios. The first column shows results for the 2D unsteady cylinder flow around corners,
followed by the 2D unsteady double gyre in the second column. Subsequent columns display results from RFC64 and the 2D unsteady
cylinder flow with von Karman vortex street. Each row represents different techniques: IVD, Q-criterion, ∆-criterion, VortexViz [dTG∗24],
VortexUnet [BCG20], MVUnet [DCW∗22], and our proposed method, highlighting the effectiveness of our approach in capturing complex
flow patterns.

The F1 provides a balance between precision and recall, making
it a suitable metric for our evaluation.

4.1. Testing on Synthetic Data

4.1.1. Benckmark

Given the inherent ambiguity in vortex definitions and the absence
of ground truth in real-world scenarios, evaluating vortex detec-
tion methods poses a significant challenge. While the IVD metric
is often employed as a proxy for ground truth, it has notable limi-
tations. IVD can fail in certain scenarios and is highly sensitive to
threshold selection. Consequently, segmentation metrics computed
on real data using IVD as ground truth become a transform func-
tion of human-selected thresholds, rather than a true measure of a
vortex detector efficiency.

To provide a place for evaluation, we conduct our quantita-
tive benchmark tests on our synthetic dataset. Specifically, we
used the validation split of this dataset, where the ground truth is
well-defined and unambiguous. For evaluation, we didn’t make a
distinction between the validation and test sets. And to compare
with other methods, we also train them on our synthetic dataset.
We use the best architecture (Unet) from [BCG20] (VortexUnet),
MVUnet [DCW∗22], and VortexViz [dTG∗24] as our baselines for
comparison. The code and network details of VortexViz [dTG∗24]
have not yet been published. We implemented following their de-
scription, using three layers of 2D convolution for the flowline im-
ages, combined with a two-layer MLP for the associated informa-

tion vector. After concatenating these two features, another two-
layer MLP is applied to generate the final prediction.

We do not provide results for VortexNet [DWL∗19] as it em-
ploys a simple 2D convolutional networks to learn from veloc-
ity grids, essentially a sub-model of VortexUnet [BCG20] and
MVUnet [DCW∗22].

Since [DCW∗22], [BCG20] cannot handle unsteady fields di-
rectly, we provided them with slices of the unsteady field. For each
slice, before feeding the data into their networks, we subtracted the
average flow to help mitigate the influence of the observer’s motion.
The results are presented in Table 2.

Table 2: Vortex Detection Performance on Synthetic Data

Method Precision Recall F1
VortexUNet [BCG20] 0.401 0.507 0.448
MVUnet [DCW∗22] 0.652 0.88 0.749
VortexViz [dTG∗24] 0.788 0.753 0.770
Ours 0.927 0.885 0.904

4.1.2. Beads flow

Beads flow. We use the analytic beads flow defined by Weinkauf
and Theisel [WT10]. The beads flow contains rotational as well
as contracting motion (negative divergence), see sub-figure (a) of
Fig. 7. The rotational component of the Beads flow can be removed
by a co-rotating observer, leaving only the remaining contracting

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

X. Zhang & P. Rautek & M. Hadwiger / VortexTransformer: End-to-End Objective Vortex Detection in 2D Unsteady Flow 9 of 15

part, see Fig. 7(b). Therefore, the Beads flow should not be classi-
fied as a vortex.

Divergence-free beads flow. This vector field is a divergence-
free adaptation of the original Beads flow data [GST16], commonly
used as a benchmark for rotation-invariant vortex detection. It rep-
resents a zero field observed by a rotating camera, thus it should
not be classified as an objective vortex.

Figure. 7 presents a comparison between our approach, existing
deep learning methods, and traditional threshold-based techniques.
Velocity grid-based methods like VortexUnet [BCG20] predomi-
nantly focus on edge patterns that ensemble rotational features. Al-
though MVUnet [DCW∗22] incorporates IVD into its inputs, it still
struggles to determine the presence of vortices within the beads
dataset. VortexViz [dTG∗24] converts the flow into binary pathline
images but relies on single pathlines for prediction, lacking infor-
mation to remove the observer’s motion and understand the flow’s
true structure. Figure 7 demonstrates that previous deep learning
vortex extractors are not objective.

In contrast, our proposed VortexTransformer successfully distin-
guishes between true vortices and rotational artifacts. It determines
that all rotational components in this field can be fully described
by a rotating reference frame, whereas conventional deep learning
methods based on velocity grids are misled by rotational edge pat-
terns. This highlights the objectivity of our approach in avoiding
such false positives.

VortexViz MVUnet VorexUnet IVD

Ours Prediction in Lab frame Verify prediction in suitable frame

/Q-criterion

Beads Flow

Divergence-free
beads flow

Beads Flow

Divergence-free
beads flow

 vortex
possibility

0

1

(a) (b)

(c) (d)

Figure 7: Comparison of results on the Beads flow and
Divergence-free beads flow data. The first two rows display results
from existing techniques: VortexViz, MVUnet, VortexUnet, ∆/Q-
criterion, and IVD. (a) and (c) present the outcomes of our ap-
proach, showcasing the network’s predictions directly in the input
flow’s lab frame. In contrast, (b) and (d) verify these predictions
by transforming them into a suitable reference frame, where the ro-
tational velocity component is removed. In this frame, the Beads
flow is a pure contraction, and the Divergence-free beads flow is
a zero field. Our model accurately predicts a zero probability for
each pathline belonging to a vortex.

4.1.3. RFC flow

The RFC flow [GST16] is an analytical 2D vector field containing
four vortices swirling around four vortex centers. It is constructed
from a steady flow field given by,

v(x,y) =

(
−x(2y2 −1)e(−(x2+y2))

y(2x2 −1)e(−(x2+y2))

)
. (26)

The steady vector field is defined in domain D = [−2,2]× [−2,2].
The final unsteady flow data is generated from an observer rotating
with unit speed around an axis that passes through the origin and
is orthogonal to the 2D plane. We discretized the flow field into a
64× 64× 64 velocity field, with the results presented in the third
column of Figure 6. For this flow field, IVD can serve as a reference
for proximal ground truth.

4.2. Testing on Numerical Data

We used four unsteady 2D numerical datasets, namely 2D Un-
steady Cylinder Flow Around Corners [RG19], 2D Unsteady
DoubleGyre [SLM05], 2D Unsteady Cylinder Flow with von
Karman Vortex Street [Pop04] and a Boussinesq Flow for vi-
sual comparison. Figure 6 presents a comparison of our method
with baseline methods and threshold-based approaches. We care-
fully set an appropriate threshold for the IVD metric (rendering as
white iso-contour), allowing it to serve as a proximate ground truth
in the displayed time slices across the various fluid datasets.

It is important to highlight that both VortexUnet and our method
were trained on our synthetic data and have not been exposed to
the real fluid test data. In contrast, VortexViz and MVUnet were
trained using real fluid data, as described in their respective publi-
cations. From the visual comparisons, despite our network not be-
ing trained on real data, it successfully segments boundaries that
closely align with the IVD, demonstrating superior performance
compared to networks trained on real datasets.

4.3. Robustness Against Noise

In many fluid scenarios, the objective IVD metric serves as a solid
foundation for vortex detection. However, the need for neural net-
works arises for several reasons. One compelling reason for em-
ploying neural networks is their superior robustness. Figure. 8, the
first and second rows present the results of adding noise to our
RFC64 dataset. The second column illustrates that 10% noise (to
magnitude) has a minimal impact on our neural network model. In
the third column, the results for the Q-criterion (first row) and IVD
(second row) show that the introduction of 10% noise significantly
deteriorates the performance of both metrics. The fourth and fifth
columns demonstrate aggressive testing with noise magnitudes of
20% and 50%, respectively, yet our neural network still manages to
extract some accurate pathline segmentation. In each column (ex-
cept the third column), the first row displays the predictions made
by our network in the lab frame, while the second row verifies the
network’s pathline segmentation in a reference frame that removes
the observer’s rotation. We employ color coding for the pathlines
based on the probability of their belonging to a vortex or not.

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

10 of 15 X. Zhang & P. Rautek & M. Hadwiger / VortexTransformer: End-to-End Objective Vortex Detection in 2D Unsteady Flow

noise - 50%noise - 20%noise - 10%noise - 0% VT256 - 32 VT32 - 8

noise - 10%noise - 0% noise - 50%

p 0

1

0

max
Q-criterion

IVD

Figure 8: Impact of noise and down-sampling. Rows 1 and 2 display our VortexTransformer (VT) model’s predictions on the RFC64 dataset
with increasing noise levels (0%, 10%, 20%, and 50%). Row 1 presents the predictions in the lab frame, while Row 2 showcases predictions in
a suitable rotating reference frame. Row 3 illustrates the 2D unsteady cylinder flow around corners with added noise, and Row 4 depicts the
Boussinesq flow under similar conditions. Pathline color coding indicates vortex probability, while the color coding of the plane represents
velocity magnitude.

The third row presents results from adding noise to the 2D Un-
steady Cylinder Flow Around Corners, while the fourth row dis-
plays results from adding noise to a Boussinesq flow. Overall, our
network demonstrates strong robustness to noise, underscoring its
efficacy as a vortex detection method.

4.4. Pathline Down-Sampling

We represent the flow field using a pathline cluster M(t) = {Ck(t)},
which describes the discrete flow map. During training, we sample
256 pathlines (64 cross groups). However, this raises the question:
Is this sampling rate optimal? To investigate this, we conducted
experiments by progressively reducing the sampling rate and ob-
served its effects on segmentation performance in unsteady fields.
Table 5 presents the results, showing the segmentation metrics for
pathlines (without propagation to the input patch grid). Surpris-
ingly, our VT model demonstrates resilience to pathline down-
sampling. However, the mismatch between training and testing
conditions has a more significant impact when the model is trained
with fewer than 64 pathlines. A visual example of a model trained
with 256 pathlines but tested with 32 pathlines (VT256-32), as well
as a model trained with 32 pathlines and tested with 8 pathlines
(VT32-8), is presented in the fifth and sixth columns of Figure 8.

To achieve a clear vortex boundary segmentation on the input
patch grid, we must propagate the pathline segmentation back to

the grid. This process can be computationally intensive for a large
number of pathlines. If an insufficient number of pathlines is used,
the resulting grid segmentation may suffer from inadequate sam-
pling, potentially leading to ambiguities or inaccuracies in the vor-
tex boundary definition.

4.5. Point Feature

Table 3: VortexTransformer with different point features. v rep-
resents velocity, dis is the distance to the pathline origin, and pos, t
indicates the spatial 2D coordinates and time of a point. Number
highlighted in green show performance improvements compared to
using only pos, t. Rows shaded in gray is our final model.

Features Precision F1

pos,t 0.718 0.683

pos,t + v 0.772 (+0) 0.696 (+0.013)

pos,t + dis 0.772 (+0.054) 0.699 (+0.016)

pos,t + IVD 0.927 (+0.209) 0.904 (+0.221)

pos,t + IVD+dis 0.921 (+0.203) 0.904 (+0.221)

pos,t + IVD+dis+v 0.921 (+0.203) 0.904 (+0.221)

Our VortexTransformer accepts point coordinates from pathlines

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

X. Zhang & P. Rautek & M. Hadwiger / VortexTransformer: End-to-End Objective Vortex Detection in 2D Unsteady Flow 11 of 15

and can also incorporate other features. In Table 3, we compared
the validation F1 and Precision metrics by adding different features
(velocity, distance to pathline origin, IVD). Through this experi-
ment, we found that when the network has access to IVD informa-
tion, the velocity and distance to origin features do not contribute
significantly. Conversely, when IVD is not included, the distance
to origin provides a modest performance improvement, while ve-
locity along the pathline proves to be unimportant. Ultimately, our
VT Transformer model takes the coordinates of points along the
pathline (including time) as input, with IVD used as an additional
feature.

4.6. Impact of KNN Neighborhood Size

Table 4: Performance comparison of different KNN neighbor
size on various datasets.

Neighborsize(k) Precision Recall F1
2 0.899 0.759 0.823
4 0.896 0.787 0.838
8 0.901 0.810 0.853
16 0.927 0.885 0.904
32 0.873 0.898 0.885
64 0.527 0.829 0.644

The Pathline Transformer (PT) layer incorporates a KNN mech-
anism. We investigated the effect of the neighborhood size param-
eter k, which defines the number of nearest neighbors considered
for each point, thereby influencing the receptive field size. Table 4
summarizes the results across different k values. We observed a in-
crease in the false positive rate as K grows, leading to a decline in
both precision and F1 score.

5. Ablation Study

5.1. Pathline Sampling Layer (PSL)

We conducted a comparison between our Pathline Sampling Layer
(PSL) and the commonly used Farthest Point Sampling (FPS) tech-
nique. In Figure 9, the cyan curve labeled "VT" represents our pro-
posed model, which integrates PSL, Relative Position Embedding
(RPE), and jittering of the pathlines. The red curve ("xPSL") illus-
trates the training and validation loss when PSL is replaced by FPS
(essentially making the network operate similarly to Point Trans-
former [ZJJ∗21], while we keep the final pooling layer executed
along the pathline sequence dimension). Our results, averaged over
three runs, indicate that PSL consistently outperforms FPS, which
behaves similarly to random sampling. We attribute this to the fact
that individual pathlines alone fail to capture sufficient information
about the overall flow map.

5.2. Relative Position Embedding

The black curve ("xRPE") in Figure 9 shows the effect of replacing
the relative position embedding described in Eq. 20 with:

δ̃ = δ(pi)

Table 5: Impact of downsampling pathlines on F1 score for vor-
tex detection. We investigate the effect of pathline quantity in our
synthetic test dataset. The table presents the performance results of
testing with varying numbers of pathlines after training with differ-
ent quantities.

model trained pathlines model test pathlines
256 128 64 32 16 8

256 0.904 0.915 0.906 0.919 0.920 0.915
128 0.921 0.921 0.928 0.903 0.877 0.895
64 0.831 0.825 0.871 0.848 0.833 0.782
32 0.760 0.814 0.905 0.756 0.810 0.766
16 0.832 0.794 0.824 0.840 0.860 0.762
8 0.609 0.631 0.631 0.725 0.755 0.855

This modification removes relative position information from the
network, resulting in a significant increase in both training and val-
idation loss. The curve represents the average of three runs, and the
outcome reinforces our intuition that learning directly from abso-
lute positions is inadequate, as the relative positional relationships
between points are crucial for objective feature extraction.

In the Eulerian perspective, fluid dynamics are represented as
a velocity field, making the extraction of objective features chal-
lenging when subjected to arbitrary observer transformations. Tra-
ditional approaches generally address this challenge by either: (1)
employing optimization techniques to identify an appropriate ob-
server that stabilizes the flow as much as possible, followed by fea-
ture extraction in the stabilized field, or (2) directly computing ob-
jective measures, such as Instantaneous Vorticity Deviation (IVD).
However, vortex extraction based on IVD often requires human in-
tervention, since vector fields can exhibit varying dynamic scales
and ranges.

From the Lagrangian perspective, arbitrary rigid observer trans-
formations alter the observed pathlines but preserve the relative
positions between pathlines. Rigid observer motion is, in fact,
the integral of a Killing vector field, where the Killing field rep-
resents an infinitesimal isometry. Thus, observer transformations
can be understood as the integration (or composition) of time-
dependent isometry mappings. Crucially, throughout these isom-
etry mappings, the relative positions between pathlines remain in-
variant.

5.3. Jittering

The blue curve ("xjittering") in Figure 9, also averaged over three
runs, demonstrates the impact of removing jittering from the train-
ing process. While the training loss decreases more rapidly without
jittering, the validation loss converges to a higher value. This sug-
gests that jittering aids in reducing validation loss, enhancing the
model’s generalization capability and robustness to variations in
the data.

6. Conclusion

In this work, we introduced VortexTransformer (VT), a novel deep
learning approach that leverages a Lagrangian perspective to per-
form end-to-end vortex detection using pathlines. Unlike tradi-

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

12 of 15 X. Zhang & P. Rautek & M. Hadwiger / VortexTransformer: End-to-End Objective Vortex Detection in 2D Unsteady Flow

Figure 9: Training (left) and validation (right) loss curves from the ablation study. The cyan curve represents our proposed VT model. The
red curve corresponds to the model with the Pathline Sampling Layer (PSL) removed. The blue curve shows the model without the jittering
process. The black curve illustrates the results when the relative position encoding (RPE) is replaced by absolute position embedding in the
MLP.

tional methods that rely on grid-based velocity fields and subjec-
tive thresholds, VT operates directly on material trajectories, learn-
ing from the relative positions of pathlines. This allows the model
to objectively extract both strong and weak vortex structures, inde-
pendent of arbitrary reference frame transformations.

Our Pathline Sampling Layer (PSL) was shown to improve per-
formance over standard farthest point sampling (FPS) techniques,
as demonstrated in the ablation study. Moreover, by incorporating
relative position embedding (RPE) and jittering techniques, we fur-
ther enhanced the model’s generalization and robustness, particu-
larly in dynamic flow conditions.

To address the lack of reliable ground truth data for objec-
tive vortex detection, we extended the dataset generation method
of [BCG20, KG19] by applying multiple observer transformations
to synthetic vortex configurations. This approach provides the nec-
essary labeled data of an unsteady vector field to train for objectiv-
ity, filling a critical gap in the field.

Through extensive experimentation, we demonstrated that exist-
ing deep-learning vortex extractors lack objectivity, while Vortex-
Transformer successfully overcomes these limitations, making it a
robust tool for vortex detection in various flow scenarios. We be-
lieve that this method offers a significant step forward in the ac-
curate, objective extraction of vortex structures and can be applied
to a wide range of real-world fluid dynamics problems. The code
and trained models will be provided in the supplementary materials
upon acceptance of the paper for publication.

Acknowledgments

This work was supported by King Abdullah University of Science
and Technology (KAUST) baseline funding.

Appendix A: Instantaneous Vorticity Deviation (IVD)

The vorticity ω of the fluid is defined as ω =∇×v, and the instan-
taneous spatial mean vorticity ω̄(t) over a domain U(t) is given by:

ω̄(t) =

∫
U(t) ω(x, t)dV

vol(U(t))
,

where vol(·) represents the volume for three-dimensional flows and
the area for two-dimensional flows. The element dV corresponds to
the volume or area element within U(t). The instantaneous vortic-
ity deviation (IVD) is defined as the absolute difference between
the vorticity at a point and the average vorticity of its local neigh-
borhood:

IVD(x, t) = |ω(x, t)−ωavg(t)| .

Appendix B: Vatistas Parameters for Data Synthesis

Parameters Fitting

We split the real flow data into spatial 32x32 patches, the patch
is sliding in the real flow dataset like a convolution kernel. And
we take the result patches from time step 600-1000 of 2D Un-
steady Cylinder Flow with von Karman Vortex Street [Pop04],
time step 500-800 of Boussinesq Flow and all time slice of
RFC64 [GST16]). Following [KG19], we employ 200 iterations
of simulated annealing, followed by an additional 200 iterations
of gradient descent, using the same distance metric to fit the real
flow. We statistically recording fitting result parameters as gaussian
distribution, and list in Table 6.

Data Generation

For each steady field, we generated 20 rigid Killing observers
by randomly sampling (a,b,c, ȧ, ḃ, ċ) from a uniform distribution
within the time domain T̃ = [0,1], thereby deforming each steady
field into 20 unsteady variants. The unsteady field is first generated

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

X. Zhang & P. Rautek & M. Hadwiger / VortexTransformer: End-to-End Objective Vortex Detection in 2D Unsteady Flow 13 of 15

in analytical way, defined in physical domainX̃ × Ỹ = [−1,1]2 ×
T̃ = [0,1], and then we resample it to resolution 5×32×32. Table
7 presents the parameters used in our unsteady data generation. Fi-
nally, we introduce ±1% noise to the magnitude of the fields. This
choice balances computational efficiency with the local nature of
objective reference frame transformations. Notably, the temporal
derivative to be minimized depends only on up to second-order
derivatives [GGT17]. Given the unit domain and its resolution, we
have calibrated the transformation parameters to appropriate levels.

Table 6: Distribution of Individual Vatistas Parameters.

Parameter Mean (µ) Standard Deviation (σ)
θ 0.00 0.80
sx 0.00 0.26
sy 0.00 0.25
rc 1.25 0.93
n 2.06 0.75
tx 0.00 0.61
ty 0.00 0.62

Table 7: Parameters for data synthesis and analysis.

Param. Description Value
Ω Domain [−1,1]2 × [0−1]
L Pathline steps 16×16
c angular velocity [−0.11,0.11]
a,b translation velocity [−0.15,0.15]
ȧ, ḃ, ċ deriv. of a,b [−0.01,0.01]
ϵ Pathline jittering range [−0.01,0.01]
∆ corss sampling distance [−0.005,0.005]

Data Normalization

Our training dataset is defined in the 2D unit domainX̃ × Ỹ =
[−1,1]2 following a time domain T̃ = [0,1]. When testing on real
flow data, we need to transform the input pathline cluster (point
cloud) from the patch’s physical domain to this domain. For a
patch slices vp : X ×Y × T → X ×Y , defined in the domain
X ×Y×T = [xmin,xmax]× [ymin,ymax]× [tmin, tmax], we transform
the original point (x,y, t) to (x̄p, x̄p, x̄p) in the unit domain via:

x̄p = 2 · x− xmin
xmax − xmin

−1

ȳp = 2 · y− ymin
ymax − ymin

−1

t̄p =
t− tmin

tmax − tmin

(27)

This normalization ensures consistency across all input data, fa-
cilitating improved network training and generalization.

Appendix C: Training Details

Our baseline vortex transformer consists of n = 3 PT blocks, the
hidden dimension h of the transformer is 144, with one pathline
sampling layer (PSL) positioned before the first PT block. We use
AdamW [Kin14] optimizer with a weight decay of 1× 10−6 and

implemented a cosine learning rate scheduler. The training batch
size was set to 100, featuring a warm-up period of 5 epochs, fol-
lowed by 195 epochs, in total 200 epochs. The generated pathline
within a patch has 64 groups, 4 pathlines per group, and pathline
has L= 16 steps. We employ the ReLU activation function through-
out the network, except in the final layer where we utilize a sigmoid
activation to output the vortex probability. For training, we apply a
binary classification loss, defined as:

Lbinary =− 1
N

N

∑
i=1

[yi log(ŷi)+(1− yi) log(1− ŷi)] , (28)

where yi represents the ground truth label, ŷi is the predicted prob-
ability of the pathline belonging to a vortex, and N is the total num-
ber of samples.

Performance

The training was conducted on an Intel(R) Xeon(R) Gold 6230R
CPU @ 2.10GHz (2 processors) and an NVIDIA A-100 GPU. The
training process for 200 epochs took approximately 14 hours.

Table 8: Batch inference Time of different methods.

Method Range([s]) Average([s])
VortexUNet [BCG20] 2.7 ∼ 4.2 2.8
MVUnet [DCW∗22] 2.5 ∼ 4.8 2.5
VortexViz [dTG∗24] 0.5 ∼ 1.8 0.6
Ours 0.8 ∼ 2.4 1.2

During testing, we split real flow data into 32 × 32patch and
seeding 256 pathlins within it, and the position of pathlines has
been normalized, see Appendix. B.

For visualization, we load the model using libtorch. Table 8
presents the inference time of our method compared to various
baselines. The reported metric represents the time (in seconds) re-
quired for a single forward pass of a 32×32 patch with a batch size
of 8.

References
[BCG20] BERENJKOUB M., CHEN G., GÜNTHER T.: Vortex boundary

identification using convolutional neural network. In 2020 IEEE Visual-
ization Conference (VIS) (Oct. 2020), pp. 261–265. doi:10.1109/
VIS47514.2020.00059. 2, 3, 4, 8, 9, 12, 13

[BWL19] BAI X., WANG C., LI C.: A streampath-based rcnn approach
to ocean eddy detection. IEEE Access 7 (2019), 106336–106345. 3

[BYH∗20] BUJACK R., YAN L., HOTZ I., GARTH C., WANG B.: State
of the art in time-dependent flow topology: Interpreting physical mean-
ingfulness through mathematical properties. Computer Graphics Fo-
rum 39, 3 (June 2020), 811–835. doi:10.1111/cgf.14037. 2

[CL93] CABRAL B., LEEDOM L. C.: Imaging vector fields using line
integral convolution. In Proceedings of the 20th annual conference on
Computer graphics and interactive techniques (1993), pp. 263–270. 2

[CPC90] CHONG M. S., PERRY A. E., CANTWELL B. J.: A general
classification of three-dimensional flow fields. Physics of Fluids A:
Fluid Dynamics 2, 5 (1990), 765–777. 2

[Dai19] DAI Z.: Transformer-xl: Attentive language models beyond a
fixed-length context. arXiv preprint arXiv:1901.02860 (2019). 4

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://doi.org/10.1109/VIS47514.2020.00059
https://doi.org/10.1109/VIS47514.2020.00059
https://doi.org/10.1111/cgf.14037

14 of 15 X. Zhang & P. Rautek & M. Hadwiger / VortexTransformer: End-to-End Objective Vortex Detection in 2D Unsteady Flow

[DBW∗22] DENG L., BAO W., WANG Y., YANG Z., ZHAO D., WANG
F., BI C., GUO Y.: Vortex-u-net: An efficient and effective vortex de-
tection approach based on u-net structure. Applied Soft Computing 115
(Jan. 2022), 108229. doi:10.1016/j.asoc.2021.108229. 3

[DCW∗22] DENG L., CHEN J., WANG Y., CHEN X., WANG F., LIU
J.: Mvu-net: A multi-view u-net architecture for weakly supervised vor-
tex detection. Engineering Applications of Computational Fluid Me-
chanics 16, 1 (Dec. 2022), 1567–1586. doi:10.1080/19942060.
2022.2104930. 2, 3, 4, 8, 9, 13

[Dev18] DEVLIN J.: Bert: Pre-training of deep bidirectional transformers
for language understanding. arXiv preprint arXiv:1810.04805 (2018).
4

[dSZS∗23] DE SILVA A., ZHAO M., STEWART D., HASAN F., DUSEK
G., DAVIS J., PANG A.: Ripviz: Finding rip currents by learning pathline
behavior. IEEE Transactions on Visualization and Computer Graph-
ics (2023). 3

[dTG∗24] DE SILVA A., TEE N., GHANEKAR O., KHAN F. H., DUSEK
G., DAVIS J., PANG A.: Vortexviz: Finding vortex boundaries by
learning from particle trajectories, Apr. 2024. arXiv:2404.01352,
doi:10.48550/arXiv.2404.01352. 2, 3, 4, 8, 9, 13

[DWL∗19] DENG L., WANG Y., LIU Y., WANG F., LI S., LIU J.: A
cnn-based vortex identification method. Journal of Visualization 22, 1
(Feb. 2019), 65–78. doi:10.1007/s12650-018-0523-1. 2, 3, 4,
8

[FPS∗08] FUCHS R., PEIKERT R., SADLO F., ALSALLAKH B.,
GRÖLLER M. E.: Delocalized unsteady vortex region detectors. In VMV
(2008), vol. 8, pp. 81–90. 3

[FRM∗18] FRANZ K., ROSCHER R., MILIOTO A., WENZEL S.,
KUSCHE J.: Ocean eddy identification and tracking using neural net-
works. In Igarss 2018-2018 IEEE international geoscience and remote
sensing symposium (2018), IEEE, pp. 6887–6890. 3

[GCL∗21] GUO M.-H., CAI J.-X., LIU Z.-N., MU T.-J., MARTIN
R. R., HU S.-M.: Pct: Point cloud transformer. Computational Visual
Media 7 (2021), 187–199. 4

[GGT17] GÜNTHER T., GROSS M., THEISEL H.: Generic objective vor-
tices for flow visualization. ACM Transactions on Graphics (2017).
doi:10.1145/3072959.3073684. 2, 3, 13

[GST16] GÜNTHER T., SCHULZE M., THEISEL H.: Rotation invariant
vortices for flow visualization. IEEE TVCG 22, 1 (2016), 817–826. 5,
9, 12

[GT18] GÜNTHER T., THEISEL H.: The State of the Art in Vortex Ex-
traction. Computer Graphics Forum 37, 6 (2018), 149–173. 2

[GT24] GÜNTHER T., THEISEL H.: Objective lagrangian vortex cores
and their visual representation. IEEE Transactions on Visualization
and Computer Graphics (2024), to appear. 3

[Hal05] HALLER G.: An objective definition of a vortex. Jour-
nal of Fluid Mechanics 525 (2005), 1–26. doi:10.1017/
S0022112004002526. 2, 3

[HHFH16] HALLER G., HADJIGHASEM A., FARAZMAND M., HUHN
F.: Defining coherent vortices objectively from the vorticity. Journal of
Fluid Mechanics 795 (2016), 136–173. 3

[HMTR] HADWIGER M., MLEJNEK M., THEUSSL T., RAUTEK P.:
Time-dependent flow seen through approximate observer killing fields.
1257–1266. 2, 3

[HTW18] HAN J., TAO J., WANG C.: Flownet: A deep learning frame-
work for clustering and selection of streamlines and stream surfaces.
IEEE transactions on visualization and computer graphics 26, 4
(2018), 1732–1744. 3

[Hun87] HUNT J.: Vorticity and vortex dynamics in complex turbulent
flows. Transactions of the Canadian Society for Mechanical Engi-
neering 11, 1 (1987), 21–35. 2

[JH95] JEONG J., HUSSAIN F.: On the identification of a vortex. Journal
of Fluid Mechanics 285 (1995), 69–94. 2

[KG19] KIM B., GÜNTHER T.: Robust reference frame extraction from
unsteady 2d vector fields with convolutional neural networks. Com-
puter Graphics Forum 38, 3 (2019), 285–295. doi:10.1111/cgf.
13689. 3, 4, 5, 12

[Kin14] KINGMA D. P.: Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 (2014). 13

[KPH22] KASZÁS B., PEDERGNANA T., HALLER G.: The objective
deformation component of a velocity field. European Journal of Me-
chanics - B/Fluids (2022). URL: https://www.sciencedirect.
com/science/article/pii/S0997754622001571,
doi:10.1016/j.euromechflu.2022.12.007. 3

[LLW∗19] LIU Y., LU Y., WANG Y., SUN D., DENG L., WANG F., LEI
Y.: A cnn-based shock detection method in flow visualization. Comput-
ers & Fluids 184 (2019), 1–9. 3

[LMTG19] LI G., MULLER M., THABET A., GHANEM B.: Deepgcns:
Can gcns go as deep as cnns? In Proceedings of the IEEE/CVF inter-
national conference on computer vision (2019), pp. 9267–9276. 4

[LS18] LANDRIEU L., SIMONOVSKY M.: Large-scale point cloud se-
mantic segmentation with superpoint graphs. In Proceedings of the
IEEE conference on computer vision and pattern recognition (2018),
pp. 4558–4567. 3

[LSF∗18] LGUENSAT R., SUN M., FABLET R., TANDEO P., MASON
E., CHEN G.: Eddynet: A deep neural network for pixel-wise classifi-
cation of oceanic eddies. In IGARSS 2018-2018 IEEE International
Geoscience and Remote Sensing Symposium (2018), IEEE, pp. 1764–
1767. 3

[Pop04] POPINET S.: Free computational fluid dynamics. ClusterWorld
2, 6 (2004), 7. 5, 9, 12

[QSMG17] QI C. R., SU H., MO K., GUIBAS L. J.: Pointnet: Deep
learning on point sets for 3d classification and segmentation. In Proceed-
ings of the IEEE conference on computer vision and pattern recog-
nition (2017), pp. 652–660. 3

[QYSG17] QI C. R., YI L., SU H., GUIBAS L. J.: Pointnet++: Deep
hierarchical feature learning on point sets in a metric space. Advances
in neural information processing systems 30 (2017). 3

[RG19] ROJO I. B., GÜNTHER T.: Vector field topology of time-
dependent flows in a steady reference frame. IEEE Transactions on
Visualization and Computer Graphics 26, 1 (2019), 280–290. 9

[RMB∗21] RAUTEK P., MLEJNEK M., BEYER J., TROIDL J., PFIS-
TER H., THEUSSL T., HADWIGER M.: Objective observer-relative
flow visualization in curved spaces for unsteady 2D geophysical flows.
IEEE Transactions on Visualization and Computer Graphics (Pro-
ceedings IEEE Scientific Visualization 2020) 27, 2 (2021), 283–293.
doi:10.1109/TVCG.2020.3030454. 3

[RRL23] ROBERT D., RAGUET H., LANDRIEU L.: Efficient 3d seman-
tic segmentation with superpoint transformer. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (2023),
pp. 17195–17204. 4

[RZW∗23] RAUTEK P., ZHANG X., WOSCHIZKA B., THEUSSL T.,
HADWIGER M.: Vortex lens: Interactive vortex core line extraction using
observed line integral convolution. IEEE Transactions on Visualization
and Computer Graphics (2023). 2, 3

[SFYT18] SHEN Y., FENG C., YANG Y., TIAN D.: Mining point cloud
local structures by kernel correlation and graph pooling. In Proceedings
of the IEEE conference on computer vision and pattern recognition
(2018), pp. 4548–4557. 3

[SH95] SUJUDI D., HAIMES R.: Identification of swirling flow in 3-d
vector fields. In Proceedings of the 12th Computational Fluid Dy-
namics Conference (1995), pp. 792–799. doi:https://doi.org/
10.2514/6.1995-1715. 3

[SLM05] SHADDEN S. C., LEKIEN F., MARSDEN J. E.: Definition and
properties of lagrangian coherent structures from finite-time lyapunov
exponents in two-dimensional aperiodic flows. Physica D: Nonlinear
Phenomena 212, 3-4 (2005), 271–304. 9

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://doi.org/10.1016/j.asoc.2021.108229
https://doi.org/10.1080/19942060.2022.2104930
https://doi.org/10.1080/19942060.2022.2104930
http://arxiv.org/abs/2404.01352
https://doi.org/10.48550/arXiv.2404.01352
https://doi.org/10.1007/s12650-018-0523-1
https://doi.org/10.1145/3072959.3073684
https://doi.org/10.1017/S0022112004002526
https://doi.org/10.1017/S0022112004002526
https://doi.org/10.1111/cgf.13689
https://doi.org/10.1111/cgf.13689
https://www.sciencedirect.com/science/article/pii/S0997754622001571
https://www.sciencedirect.com/science/article/pii/S0997754622001571
https://doi.org/10.1016/j.euromechflu.2022.12.007
https://doi.org/10.1109/TVCG.2020.3030454
https://doi.org/https://doi.org/10.2514/6.1995-1715
https://doi.org/https://doi.org/10.2514/6.1995-1715

X. Zhang & P. Rautek & M. Hadwiger / VortexTransformer: End-to-End Objective Vortex Detection in 2D Unsteady Flow 15 of 15

[Vas17] VASWANI A.: Attention is all you need. Advances in Neural
Information Processing Systems (2017). 4

[VKM91] VATISTAS G. H., KOZEL V., MIH W.: A simpler model for
concentrated vortices. Experiments in Fluids 11 (1991), 73–76. 4

[WDY∗21] WANG Y., DENG L., YANG Z., ZHAO D., WANG F.: A
rapid vortex identification method using fully convolutional segmentation
network. The Visual Computer 37, 2 (2021), 261–273. 3

[WFB∗19] WU F., FAN A., BAEVSKI A., DAUPHIN Y. N., AULI M.:
Pay less attention with lightweight and dynamic convolutions. arXiv
preprint arXiv:1901.10430 (2019). 4

[WJW∗24] WU X., JIANG L., WANG P.-S., LIU Z., LIU X., QIAO Y.,
OUYANG W., HE T., ZHAO H.: Point transformer v3: Simpler faster
stronger. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (2024), pp. 4840–4851. 4

[WLJ∗22] WU X., LAO Y., JIANG L., LIU X., ZHAO H.: Point trans-
former v2: Grouped vector attention and partition-based pooling. Ad-
vances in Neural Information Processing Systems 35 (2022), 33330–
33342. 4

[WSL∗19] WANG Y., SUN Y., LIU Z., SARMA S. E., BRONSTEIN
M. M., SOLOMON J. M.: Dynamic graph cnn for learning on point
clouds. ACM Transactions on Graphics (tog) 38, 5 (2019), 1–12. 4

[WSTH07] WEINKAUF T., SAHNER J., THEISEL H., HEGE H.-C.:
Cores of swirling particle motion in unsteady flows. IEEE Transactions
on Visualization and Computer Graphics 13, 6 (2007), 1759–1766. 3

[WT10] WEINKAUF T., THEISEL H.: Streak lines as tangent curves of a
derived vector field. IEEE TVCG 16, 6 (2010), 1225–1234. 8

[YGX∗23] YANG Y.-Q., GUO Y.-X., XIONG J.-Y., LIU Y., PAN H.,
WANG P.-S., TONG X., GUO B.: Swin3d: A pretrained trans-
former backbone for 3d indoor scene understanding. arXiv preprint
arXiv:2304.06906 (2023). 4

[ZDM∗14] ZHANG L., DENG Q., MACHIRAJU R., RANGARAJAN A.,
THOMPSON D., WALTERS D. K., SHEN H.-W.: Boosting techniques
for physics-based vortex detection. Computer Graphics Forum 33, 1
(2014), 282–293. doi:10.1111/cgf.12275. 2, 3

[ZHTR22] ZHANG X., HADWIGER M., THEUSSL T., RAUTEK P.: Inter-
active exploration of physically-observable objective vortices in unsteady
2d flow. IEEE Transactions on Visualization and Computer Graph-
ics 28, 1 (2022), 281–290. doi:10.1109/TVCG.2021.3115565.
3, 5

[ZJFJ19] ZHAO H., JIANG L., FU C.-W., JIA J.: Pointweb: Enhancing
local neighborhood features for point cloud processing. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recog-
nition (2019), pp. 5565–5573. 4

[ZJJ∗21] ZHAO H., JIANG L., JIA J., TORR P. H., KOLTUN V.: Point
transformer. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision (2021), pp. 16259–16268. 2, 4, 5, 11

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://doi.org/10.1111/cgf.12275
https://doi.org/10.1109/TVCG.2021.3115565

