A ADDTIONAL RESULTS
A.1

In our framework, spatial filtering methods include, but are not limited
to, filtering based on proximity to isosurfaces (inside, outside, or close
to isosurface boundaries) and using a dynamically moving bounding
box defined by clusters of pathlines.

Local observer extraction can be achieved by first performing global
optimization, followed by spatial filtering to identify the area of interest.
However, a more efficient and practical alternative is to apply spatial
filtering first, thus restricting numerical optimization exclusively to
regions of interest when computing the local observer field.

After obtaining the local observer field, additional attribute-based
filters can be applied to exclude pathlines exhibiting numerical in-
stability or lacking smoothness. Users can then interactively select
specific observer trajectories from the local observer field and fine-tune
these trajectories to further enhance the visualization of targeted flow
features.

In Fig. 11, we demonstrate the selection of local regions of interest
using moving bounding boxes (see Sec. 6.3), along with the correspond-
ing locally optimized observer field represented by vector glyphs.

Local Observer Extraction

(b)

Fig. 11: Visualization of grid cells selected for the local optimization of
reference frame transformations (timings reported in Table 3). We illus-
trate the pathline clusters along with their constructed time-dependent
bounding boxes. The resulting observer field obtained from this local
optimization is depicted using vector glyphs.

Case Study - Smoke Buoyancy. This dataset showcases multiple
vortex ring structures that display deformation and irregular motion.
The dataset spans a spatial extent of ([0, 5.88] x [0, 11.88] x [0, 5.88])
with a grid resolution of ([47, 95, 47]). Its time domain is ([0, 5.33]),
comprising 160 timesteps. Fig. 12 effectively illustrates our method’s
ability to focus on a localized region within this dataset.

In Fig. 12(a), we define two sets of pathlines of interest in the lab-
frame, highlighted by blue and yellow bounding boxes. We concentrate
on the pathlines within the blue-highlighted region. For these, we
construct a moving bounding box and then perform local optimization
inside this box to derive an observer field that is defined exclusively
within this moving domain. Fig. 12(b) visualizes the resulting local
observer as a curve, along with its moving frame’s X, Y, and Z axes.
These axes are rendered as pink, light green, and light blue segments,
respectively, which, when propagated along the worldline, define three
corresponding surfaces of the same colors. In Fig. 12(c), applying
this local observer to the pathlines reveals well-defined vertical motion
for the blue-highlighted region. Conversely, this observer is entirely
unsuitable for the yellow-highlighted pathlines, transforming them into
a collection of chaotically behaving pathlines. This behavior of our
method is expected as different regions of the dataset are best visual-
ized relative to different observers. Finally, in Fig. 12(d), we directly

apply our proposed "streamline-like" pathline filtering technique to the
observed pathlines from (c). This process effectively filters out the
pathlines within the yellow-highlighted box and the more peripheral
pathlines within the blue-highlighted box. As a result, we obtain a visu-
ally clear depiction of particle trajectories that distinctly revolve around
the vortex coreline in an appropriate local reference frame. By con-
tinuously adapting our focus to different segments of the coreline, we
can consistently observe pathlines exhibiting localized vortical motion
around the corresponding vortex ring segment.

(©)

pathline-time I
coreline

Fig. 12: Visualizing the Smoke Buoyancy dataset. We visualize a semi-
transparent isosurface of vorticity magnitude together with corelines
as yellow curves. (a) illustrates two sets of pathlines in the lab frame
(highlighted in blue and yellow boxes). (b) shows the optimized local
observer within a moving bounding box (light blue and pink frames) for the
blue-highlighted pathlines. (c) presents the observed pathlines relative
to the observer from (b). (d) shows the result of our "streamline-like"
pathline filtering applied to (c).

A.2 Observed Streamlines and Streamline Filtering

In Figure 13 we show an example of observed streamlines. Observed
streamlines are an example of the class of visual representations that
need to be re-computed when we change the reference frame (see
Section 6 - Spatial primitives that experience general transformations).
Figure 13 shows different frames from the animation with streamlines
in the lab-reference frame (Fig. 13 (bottom row)) as well as relative
to a co-moving reference frame (Fig. 13 (top row)). The observer-
relative streamlines reveal the features in the flow and align with the



frame 1

frame 1

frame 120

frame 120

t vorticity magnitude isovalue: 10.1
frame 180

frame 180

Fig. 13: Comparison of observed and lab-frame streamlines in the Boeing 747 dataset. Bottom row: Frames of an animation of streamlines in
the lab frame using identical seeding positions and integration parameters. Top row: Frames of an animation of observer-relative streamlines. The
observer-relative streamlines significantly reduce visual clutter and reveal features in the fluid flow more clearly at each timestep.

(b) threshold=0.5

Fig. 14: Observed streamlines in the Boeing 747 dataset with "steadi-
ness" filter. (a) Observed streamlines without filtering. (b) Observed
streamlines with filter. Filtered streamlines further reduce visual clutter
and reveal features in the fluid flow that are near steady over a local
temporal neighborhood.

iso-surfaces of vorticity magnitude also shown in the animation.

In Figure 14 we show the effect of our "steadiness" filter applied
to streamlines. In Figure 14 (a) we show observed streamlines, while
in Figure 14 (b) we show the result of filtering streamlines by their
similarity to pathlines. The streamlines that are similar to pathlines in
the co-moving reference frame are part of regions that stay coherent
over time.

B IMPLEMENTATION DETAILS

Our experiments were conducted on a machine equipped with two
Intel(R) Xeon(R) Gold 6230R CPUs running at 2.10GHz. Our frame-

work is implemented in C++20 with OpenGL for rendering. We lever-
age OpenMP for CPU-side parallelism. We include pseudocode for
our observer-relative pathline filtering algorithm in Algorithm 1, and
present the pseudocode for the observer-aware iso-surface animation
in Algorithm 2. Code for Observer-Relative Scalar Field Transfor-
mation, Observer-Relative Pathline Filtering and Observer-Relative
Isosurface Animation is available at GitHub: https://github.com/Cindy-
xdZhang/Pyflow Vis.

C OBSERVER COMPARISON

We define an inner product of vector fields

(w1, wa)) = /U (w1 (x), wa(x)) dV, @)

where U C R3 is a chosen region and (-,-) denotes the usual Eu-
clidean dot product at each point x. However, because se(3) is a
finite-dimensional vector space of dimension six, and therefore each w;
can be expanded in the {e;} basis, we can compute the inner product
above simply via a 6 x 6 matrix multiplication of coefficient vectors.

Observer Similarity. Given two time-dependent observers w; and
Wy, we can measure their difference over a time interval [fp,#;] via

d(wy,wy) = /tt1 VWi(t) = wa(1), wi(1) — wa(-,1))) dt.
(22)

D RECONSTRUCTING A KILLING OBSERVER FIELD

We can reconstruct an entire 3D Killing field w by knowing only two
pieces of information at each point p(¢) along a trajectory t — p(z):

1. A single vector w(p(t),t).

2. A 3 x 3 skew-symmetric matrix (Vw)(p(t),t), which inherently
possesses only three degrees of freedom.

This reconstructive capability stems from the fundamental nature of
Killing fields in Euclidean space. For such fields, the gradient Vw is not
only skew-symmetric but also constant throughout the entire space.
This means that if we know (Vw) at one point, we effectively know
it everywhere. Following Eq. 6, we decompose the 3D Killing field
w(x,?) into a combination of translational and rotational components.
An important observation is that the coefficients g (¢), .. .,g¢(¢) (which
represent the magnitudes of the translational and rotational components)
do not depend on the position p. Similarly, the gradient Vw(t) is
formed from ey, e5,€¢) and also does not depend on position p.

At a given point p and time 7, the Killing field w(p,) can be ex-
pressed as:

w(p,t) =qi1(t)e; +qa2(t)ex +g3(t)es + (Vw(r))p



Algorithm 1 Observer Relative Pathline Filtering

Input:
o Y = {pre-integrated pathlines using RK4}

* Observer ¢ (¢): time-dependent transformation stored as sequence
of matrices

Input vector field v(x,t) and observer field w(x, )

* Parameters: step size 0, segment length L, skip interval &, thresh-
olds 7,€
Begin:
Set maxlIterations My <— L/8
1: // Step 1: Compute observer-relative pathlines
2: for each pathline pr,y € .7 do
3: Initialize p,py <— empty list

4 for each point (x,7) € praw do

5: Xobs <= (1) - X

6: Append (Xobs,) t0 Pops

7 end for

8 Add pyps to S > .| stores observer-relative pathlines
9: end for

10: // Step 2: Filtering via streamline comparison
11: for each pathline pray € .7 do

12: Dobs < corresponding pathline in .7}

13: for every k™ point (Xg,%) € praw do

14: Perform RK4 streamline integration (both directions My
steps) from (X, %) in relative field v(x,r) — w(x,t)

15: Let sy ¢ resulting streamline

16: Let sobs <= ¢ (10)Srel , v _

17: Compute difference: d + L vare 3ot = o |

18: Compute time-derivative: % at (xo, 1)

19: ifd>ror‘% < & then

20: Discard point (Xg,7y) from praw

21: end if

22: end for

23: end for

24: return updated .7

Algorithm 2 Observer-Aware Iso-Surface Animation

Input:

* Observer ¢ (r): time-dependent transformation stored as sequence
of matrices

* Scalar field S(x,1)

* Isovalue ¢, number of frames N, time range [fin, fmax]

Begin:
Set At <+ (tmax — tmin) /(N — 1)

1: // Step 1: Transform scalar field into observer frame
: for each timestep index i in S do
t < time corresponding to index i
Compute Sgps(X,7) < S(¢0 (1) - x,1)
: end for

: // Step 2: Marching cubes on observer-relative scalar field
: for frame index j=0to N—1 do
fe < tmin + j - A
9: Sobs (X, ). < temporal interpolation Sops (X,?)
10: Run marching cubes on Sops (X, )|, with isovalue &
11: Let .#; be the resulting iso-surface
12: Optionally apply inverse transform: .7¢ <= ¢(zc) - .7 >
transform iso-surface back to lab frame
13: end for
14: return Observed Iso-surface sequence {.# j}[;/;ol or Iso-surface

SR I-N

sequence in lab frame {.# J?}ijz’ol

From this, we can isolate the translational component:

qi()er +q2(t)ex +q3(1)es = w(p,1) — (Vw(2))p

Now, to reconstruct the Killing field w(x,¢) at any arbitrary point x at
time #, we can substitute this expression back into the general form:

w(x1) = (qi(t)er +q2(r)e2 +q3(t)e3) + (Vw(r))x
Replacing the bracketed translational terms:
w(x,1) = (w(p,1) = (Vw())p) + (Vw(1))x
This simplifies to the concise reconstruction formula:
w(x,1) = w(p,1) + (Vw(t))(x—p)

This equation demonstrates how the entire 3D Killing field w at any
point x can be reconstructed given its value and gradient at a single
observed point p. This property is fundamental to our Killing field
model observer, enabling subsequent filtering, and interpolation of
observers.



	Addtional Results
	Local Observer Extraction
	Observed Streamlines and Streamline Filtering

	Implementation Details
	Observer Comparison
	Reconstructing a Killing Observer Field

