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Fig. 1: Flow phenomena in a Delta Wing simulation, observed in co-moving vs. lab frame. (Top row) Snapshot in co-moving frame. We
visualize a semi-transparent isosurface of vorticity magnitude together with pathlines seeded near regions of high vorticity. With our
observer space framework, we can identify individual reference frames that co-move with certain features in the flow. (Bottom row) The
same isosurface and pathlines in the lab frame. In this frame, the pathlines advect collectively downstream (to the right), reflecting the
global translation of the flow. Thus, pathlines in the co-moving frame reveal the swirling behavior better than in the lab frame.

Abstract—Visualizing and analyzing 3D unsteady flow fields is a very challenging task. We approach this problem by leveraging the
mathematical foundations of 3D observer fields to explore and analyze 3D flows in reference frames that are more suitable to visual
analysis than the input reference frame. We design novel interactive tools for determining, filtering, and combining reference frames
for observer-aware 3D unsteady flow visualization. We represent the space of reference frame motions in a 3D spatial domain via
a 6D parameter space, in which every observer is a time-dependent curve. Our framework supports operations in this 6D observer
space by separately focusing on two 3D subspaces, for 3D translations, and 3D rotations, respectively. We show that this approach
facilitates a variety of interactions with 3D flow fields. Building on the interactive selection of observers, we furthermore introduce novel
techniques such as observer-aware streamline- and pathline-filtering as well as observer-aware isosurface animations of scalar fluid
properties for the enhanced visualization and analysis of 3D unsteady flows. We discuss the theoretical underpinnings as well as
practical implementation considerations of our approach, and demonstrate the benefits of its 6+1D observer-based methodology on
several 3D unsteady flow datasets.

Index Terms—Flow visualization, unsteady flow, reference frame optimization, interactive visualization, coherent structures

1 INTRODUCTION

The study of vortices and coherent structures is a cornerstone of fluid
dynamics, providing essential insights into the complexities of unsteady
flow fields. These patterns of fluid motion play a critical role in a
wide array of natural and technological phenomena, ranging from
aerodynamics to the mixing processes in the atmosphere and oceans,
and even the propulsion mechanisms of biological organisms. The
ability to accurately model these structures is therefore of paramount
importance across various scientific and engineering disciplines.

While two-dimensional models have proven useful for understand-
ing certain aspects of fluid flow, they inherently neglect the intricate
dynamics that arise in three dimensions. Many significant flow phenom-
ena, including vortex rings and helical vortices, possess an inherently
three-dimensional nature that cannot be adequately captured in 2D.
Phenomena that exhibit intricate fluid structures make it notoriously
difficult to choose effective visual representations for visualization.
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Common approaches include streamlines, pathlines, isosurfaces, and
the extraction and visualization of topological structures such as vortex
core lines [8, 20]. Because of the complexity of the intricate fluid mo-
tions, the resulting visualizations can become cluttered and ambiguous,
hampering the analyst’s ability to interpret subtle flow phenomena. In
this paper, we address the need for three-dimensional analytical tools
that help in understanding such complex flow structures.

A powerful countermeasure to this complexity is to exploit the idea
of observer-aware visualization, where the user can directly interact
with transformed versions of the 3D flow field by interactively changing
the current reference frame. Because motion is inherently relative, these
transformations do not alter the physics, but they can dramatically alter
how different aspects of the flow are revealed. In many cases, moving
to the right reference frame makes coherent structures, such as vortex
cores, appear more stationary, thus simplifying the visual representation
as well as analysis. However, the key question is which reference frame
to choose. Even if we only consider physically realizable (i.e., global
rigid-body) observers, the space of all possible rigid motions in three
dimensions spans six degrees of freedom plus time, i.e., a vast 6+1D
parameter space. Navigating this space effectively and finding frames
that highlight specific features remain open challenges.

In this paper, we address these challenges with a set of guiding prin-
ciples and interactive tools for working with 6D observer space. First,
we emphasize interpretability: Subspaces that are straightforward to
navigate and directly tied to physical intuition, such as 3D translations
and 3D rotations. Second, we aim for a good feature fit: Co-moving
with flow elements of interest, such as a particular vortex, so that these
features become “as steady as possible” relative to the chosen observer.
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Fig. 2: Workflow overview. Our framework for 3D observer-aware visualization takes a time-dependent 3D vector field as input. We use optimization
methods to attempt the extraction of observer fields that contain reference frames that co-move with features in the input flow. In our interaction
framework, we split the 6D parameter space of reference frame transformations into a 3D translational and a 3D rotational subspace, respectively.
Additionally, we compute properties of the reference frames including velocity magnitude and angular velocity. Each time-dependent reference frame
transformation corresponds to one curve in each of these visualizations. The user can filter, combine, and smooth reference frame candidates using
these plots, driving an interactive feedback loop that visualizes the input data with several observer-aware visualization methods.

Finally, we allow for smoothing to avoid abrupt, distracting changes
in the reference frame’s motion. Building on these principles, we
propose an interactive visualization framework that enables users to
derive, inspect, and refine candidate reference frames, i.e., specific
time-dependent curves in 6D observer space, and then apply them in
observer-aware flow visualization and analysis.

Fig. 2 illustrates this workflow. On the left side, we depict auto-
mated methods that extract entire fields of potentially useful observer
motions [7, 10]. The user can choose any pathline in an observer field
to serve as the world line [10] of a suitable 3D observer motion. Addi-
tionally, we allow users to directly trace world lines in the input flow
field. By tracing pathlines from user-defined seeds or neighborhoods,
we create local reference frames co-moving with those trajectories.

In the center of Fig. 2, we show methods for interactively modify-
ing, combining, and filtering the candidate reference frames with our
framework. Choosing a single curve or merging multiple candidates
is made straightforward by our framework, and is guided by the user’s
current task, such as focusing on one specific vortex.

Finally, Fig. 2 (right) highlights three visualization methods enabled
by reference frame-awareness. First, stream- and path-lines shown rela-
tive to a moving reference frame remove unnecessary global motion;
swirling trajectories thus appear simpler. We propose an interactive
streamline- and pathline-filtering strategy computing flow “steadiness”
within the moving reference frame. Visualizing lines that become
“almost” steady in the current reference frame can reveal coherent struc-
tures of interest in the flow field. While streamlines represent instan-
taneous phenomena, pathlines also provide temporal context. Second,
we employ observer-aware isosurface animation. By co-moving with
a target isosurface, we reduce aliasing and artifacts: We temporally
up-sample the scalar field in the co-moving frame and visualize the
isosurface animation as seen from a co-moving camera. Together, these
elements (derivation and selection of candidate observers, interactive
observer refinement, and observer-aware visualization) form a coherent
and novel pipeline for interactive observer-aware 3D unsteady flow
exploration and analysis. Leveraging suitable subspaces of the 6D
observer space reveals important yet otherwise obscured fluid struc-
tures, supporting exploration with physically correct and interpretable
visualizations.

This paper is organized as follows. Sec. 2 reviews prior work. Sec. 3
introduces the mathematical framework for physically realizable frame
transformations. Sec. 4 outlines automatic and interactive methods for
extracting reference frame from input vector fields. Sec. 5 discusses
interactive observer visualization techniques for selecting, filtering, and
refining candidate observers. Sec. 6 presents observer-aware visual-
ization methods. Sec. 7 demonstrates results and advantages of our
observer-based framework on various 3D unsteady fluid datasets.

2 RELATED WORK

Flow visualization in time-dependent settings inherently depends on the
notion of an observer, i.e., a reference frame relative to which a velocity
field is measured [10,33,36]. Different observers can perceive the same
unsteady flow field in ways that substantially impact the extraction
and visualization of characteristic features such as material boundaries
or vortices. Early approaches in continuum mechanics emphasized
the objectivity (frame-indifference) of physical quantities, ensuring
that essential properties such as material surfaces or vortex boundaries
remain consistent under arbitrary rigid motions [10, 15, 21, 33, 38].
While Galilean invariance addresses pure translations [4,26], objectivity
generalizes this to all rigid-body transformations [7, 13, 33].

Flow Feature Extraction. A large class of work has focused on
detecting and analyzing coherent features such as vortex cores or sepa-
rating material boundaries in time-dependent flows [5, 16, 17, 30, 34].
Region-based methods commonly rely on scalar invariants like the
Q-criterion, the λ2-criterion, or the Okubo–Weiss approach [16,17,34],
while line-based methods identify feature cores by tracking critical
points or swirling streamlines [22, 30, 32]. In unsteady flow settings,
Lagrangian perspectives become more appropriate to capture the mo-
tion of material surfaces [13, 27]. This includes finite-time Lyapunov
exponent (FTLE) fields [12, 19, 27], and Lagrangian-averaged vorticity
deviation (LAVD) [14], each providing objective characterizations of
coherent structures. Ebling et al. [6] analyzed the situation where the
flow is a superposition of different components (e.g., background flow
and local vortical motion) and showed that simply adding a constant
background flow can create or annihilate critical points, fundamentally
altering the resulting topology. Wiebel et al. [35] introduced localized
flow analysis, in which a divergence- and curl-free potential flow is
subtracted from the velocity to reveal the region-specific component of
the motion in both steady and time-dependent CFD data. Our observer-
space formulation generalizes this idea: rather than canceling only
boundary-induced laminar components, we remove (6+1D) inertial
observer motion.

Reference Frames and Objectivity. Bhatia et al. [3] introduced
internal reference frames that are extracted directly from the data by
subtracting a space- and time-varying harmonic background flow. Re-
moving this component yields a frame in which formerly unsteady
vector fields become nearly steady improving flow analysis methods.
Recent research has established that many feature-extraction techniques
can be objectivized by explicitly formulating or transforming them to
objectively determined moving reference frames [7, 10, 31]. Global
optimizations for finding reference frames that minimize unsteadi-
ness have been proposed, enabling domain-wide observer velocity
fields [10, 24]. Locally optimal observers, on the other hand, adapt the
transformation to the flow only in a small spatial or spatio-temporal
neighborhood [7, 25]. Such approaches facilitate the visualization and
detection of features (e.g., vortex cores) in observed flow fields that



Fig. 3: (Top row) Six linearly-independent Killing vector fields {e1, . . . ,e6} form a basis of the vector space of all Killing vector fields in R3. (Bottom
row) Any time-dependent rigid motion w(t) in R3 can therefore be expressed as a linear combination of these basis fields using six time-dependent
coefficients (q1, . . . ,q6)(t), i.e., any w(t) = ∑i qi(t)ei. In our framework, we visualize the parameters qi(t) in two separate sets {q1,q2,q3} (for all
“translational” Killing fields) and {q4,q5,q6} (for all “rotational” Killing fields), respectively, each forming a 3D subspace of the space of all Killing fields.

locally become steady, or at least less unsteady, as seen by the optimally
co-moving observer. Recent works also focus on the property that ob-
jective measures should be physically observable [18] or realizable,
which our entire framework also fulfills.

Killing Vector Fields. A key mathematical tool for physically
realizable observers is the notion of Killing vector fields, as the in-
finitesimal generators of rigid motions [23]. Approximate Killing
fields have been employed in geometry processing and computer graph-
ics (e.g., [2, 28]), and more recently in fluid flow exploration to de-
fine observer fields [10, 24]. Because they give isometric transforma-
tions, these fields ensure that fundamental physical properties, such
as material boundaries and vortex shape, remain consistent for any
observer [36].

Observer-based Visualization and Interaction Methods.
Observer-based visualization methods have been proposed for vortex
cores [9] in 2D and 3D fluid flow. Local observer-based techniques
have been used in interactive systems [25], which enables real-time
selection and visualization of locally optimal reference frames in
user-defined lens regions. Similarly, observer extraction can be
performed interactively from an optimally computed observer velocity
field [36], letting users adapt the viewpoint to specific flow features
on the fly. Such interactive reference frame transformations unify
objective feature extraction with guided exploration, revealing coherent
structures more clearly and enabling advanced tasks such as boundary
tracking or local flow feature analysis [37].

Taken together, these methods demonstrate that observer fields and
Killing vector fields can significantly aid feature detection, material
boundary extraction, and visualization for unsteady flows. By lever-
aging objective transformations and local reference frames, modern
techniques provide robust and physically meaningful insights into
time-dependent flow phenomena. Prior work on observer-relative
methods either focused on the computation of observers in 2D and
3D (e.g., [7, 10, 24]), on visualization aspects of 2D and 3D fluids
(e.g., [9]), or interaction methods for 2D fluid flow only (e.g., [25, 36]).
In contrast, in this paper, we address the additional challenges that arise
from the complexity of 3D unsteady flow, with the first interactive 3D
observer-relative visualization framework.

3 OBSERVERS IN R3

We give the mathematical background for observer-based visualiza-
tion in three-dimensional Euclidean space R3. We make use of time-
dependent Killing vector fields in R3, the SE(3) Lie group structure of
rigid motions, and, most importantly, the se(3) Lie algebra structure
of infinitesimal rigid motions. Stillwell [29] provides an approachable
introduction to Lie groups and Lie algebras, including an extensive dis-
cussion of their application to model rigid motions. A concise summary
and a discussion of how Lie algebras can be used to model observer
motions is given in the tutorial notes by Hadwiger et al. [11].

Although SE(3) is a matrix Lie group, and se(3) the corresponding
matrix Lie algebra, meaning that the elements of the group and algebra,
respectively, are matrices, se(3) is in one-to-one correspondence with
(and even isomorphic to) the algebra1 of all Killing vector fields on R3.
This space comprises all infinitesimal rigid motions in R3.

Moreover, we define observer-relative quantities, such as observed
velocity, observed velocity gradient, and observed time derivative.

3.1 Physically Realizable Observers in R3

A physically realizable observer in R3 is a reference frame that under-
goes a time-dependent rigid motion relative to a fixed frame, e.g., the
laboratory or lab frame. Rigid motions preserve distances and angles,
and they are therefore exactly the transformations forming the special
Euclidean group SE(3), which is the six-dimensional Lie group of
translations and rotations in 3D Euclidean space.

Rigid Motions in R3 (Lie group SE(3), Lie algebra se(3)). The
way in which any element of the special Euclidean group SE(3) acts
on Euclidean space R3 can be expressed as a rigid transformation

φ(y) = Qy + b, y ∈ R3. (1)

The 3×3 matrix Q ∈ SO(3) specifies a rotation in 3D, as an element
of the special orthogonal Lie group SO(3), and b ∈ R3 is a translation
vector. In a time-dependent scenario, Q(t) and b(t) vary smoothly
with time t. We can use a time-dependent rigid transformation φt(y) to
describe a Euclidean observer or reference frame via the transformation
from one frame (e.g., the lab frame) to another frame, as given by

x = φt(y), with φt(y) = Q(t)y + b(t). (2)

Time-Dependent Killing Fields in R3. From a differential-geometric
viewpoint, rigid motions in R3 are exactly those flows generated by
Killing vector fields w, isomorphic to elements of se(3). They satisfy

∇w(x)T = −∇w(x).

That is, ∇w is skew-symmetric at every point x∈R3. A time-dependent
Killing field in R3 is any w(x, t) such that, for each fixed t, w(x, t) is a
Killing vector field. By taking the time derivative of Eq. 2, we obtain
the corresponding infinitesimal rigid motion as the Killing field

w(x, t) = ΩΩΩ(t)x + ḃ(t), with ΩΩΩ(t) = Q̇QT (t). (3)

Here, the condition ∇wT =−∇w is fulfilled, because ∇w = ΩΩΩ, and

ΩΩΩ(t)T =−ΩΩΩ(t). (4)
1An algebra is a vector space with an additional product operation. For the

Lie algebra se(3), this product is the matrix commutator [X ,Y ] = XY −Y X , and
in the case of Killing fields it is the Lie bracket [X,Y] between vector fields X,Y.



The spin tensor ΩΩΩ(t) corresponds to the angular velocity of the refer-
ence frame motion, i.e., to the derivative of its time-varying rotation,
and the time-dependent vector ḃ(t) determines a time-varying velocity
vector, i.e., the derivative of the time-dependent translation vector b(t).

All physically realizable observers in R3, corresponding to all (in-
finitesimal) rigid motions in R3, can be represented in this manner.

3.2 Lie Algebra of 3D Observer Motions
The set of all Killing fields in R3 forms a six-dimensional Lie algebra,
commonly denoted se(3). It comprises three translational degrees of
freedom (the three components of ḃ) and three rotational degrees of
freedom (the three degrees of freedom of the skew-symmetric ΩΩΩ).

Basis Killing Fields in R3. A basis for the vector space of all Killing
fields in R3, corresponding to the Lie algebra se(3), is given by any
linearly-independent set of Killing fields {ei}, i ∈ {1, . . . ,6}. We use

e1(x) =
(
1, 0, 0

)T
, e2(x) =

(
0, 1, 0

)T
, e3(x) =

(
0, 0, 1

)T
,

e4(x) =
0 0 0

0 0 −1
0 1 0

 x, e5(x) =
 0 0 1

0 0 0
−1 0 0

 x, e6(x) =
0 −1 0

1 0 0
0 0 0

 x.

(5)

Here, e1,e2,e3 represent translation velocities parallel to the x,y,z axes,
respectively, while e4,e5,e6 represent infinitesimal rotations around the
x,y,z axes, respectively. Fig. 3 depicts visualizations of these six basis
Killing fields ei used throughout this paper.

Time-Dependent Observer Representation. Any time-dependent
Killing field w(x, t) can be written in terms of these basis fields, where

w(x, t) = ∑
i=1..6

qi(t)ei(x). (6)

The qi(t) are six real coefficient functions that capture how translation
and angular velocities, respectively, of the observer evolve over time.
Using these coefficient functions qi(t) makes it straightforward to (1)
Visualize time-dependent reference frame transformations as curves in
different meaningful parameter spaces, (2) Interpolate or average mul-
tiple observers simply by interpolating or averaging their coefficients
qi(t), and (3) Compute differences between observers by defining an
inner product on the space of Killing fields corresponding to se(3).

3.3 Reference Frame Transformations in 3D
Given the lab frame (or really any reference frame, but for easier
understanding we will use the term lab frame here), and a description
of another (e.g., observer) reference frame via a Killing field w(x, t),
we can compute the time-dependent rigid (i.e., distance-preserving)
map φt transforming any point into the new frame. Corresponding to
Eq. 2, we compute the function b(t) ∈ R3 such that

ḃ(t) = w(b(t), t) , (7)

where ḃ(t) = (d/dt)b(t). We also compute Q(t) ∈ SO(3) such that

Q̇(t) = ∇w(t)Q(t), (8)

where ∇w = ΩΩΩ is the skew-symmetric tensor encoding the instanta-
neous rotation of the new frame, as measured by the lab frame.

Given the map φt (Eq. 2), the corresponding pullback φ∗t then trans-
fers objective vector and tensor fields from the lab frame to the new
observer’s frame. In Euclidean space R3, we simply have

φ
∗
t = QT . (9)

Objective vector fields s, or tensor fields S, transform, respectively, as

s∗ = QT s, S∗ = QT SQ. (10)

3.4 Observer-Relative Quantities in R3

An important step is computing the flow field and its derivatives as seen
by the observer. Let v(x, t) be an unsteady velocity field. Then we can
define Observed Velocity as

v∗(y, t) = φ
∗
t ((v−w)(x, t)) . (11)

Here, v−w is the relative velocity of fluid parcels w.r.t. the observer,
and φ∗t = QT accounts for the rotation between the two observers.
The Observed Velocity Gradient is defined as

∇v∗(y, t) = φ
∗
t ((∇v−∇w)(x, t)) . (12)

Because ∇w is skew-symmetric, apart from rotation by QT only the
skew-symmetric part of ∇v is affected by the frame transformation.
The Observed Time Derivative is defined as

∂v∗

∂ t
(y, t) = φ

∗
t

((
∂v
∂ t
− ∂w

∂ t
+ ∇v ·w − ∇w ·v

)
(x, t)

)
. (13)

This is the rate of change of the field v as measured by the moving
observer, in terms of quantities measured in the lab frame. Transformed
into the observer’s reference frame, it is simply the time partial of
the observed velocity v∗. Here, the terms ∇v ·w = ∇wv denote the
directional derivative of the vector field v in direction w, and vice versa
for ∇w ·v = ∇vw, respectively.

4 DETERMINING OBSERVERS FOR 3D UNSTEADY FLOW

A fundamental property of our 3D framework is that we determine new
observers in ways that are indifferent to the reference frame of the input
data. As in our prior work on 2D flow [36], this implies that properties
of the input velocity field computed relative to any such 3D observer are
objective. Because we also restrict observers to be physically realizable,
i.e., to rigid transformations in R3, these properties are also physically
meaningful and measurable in reality [18]. Interpolation or averaging
of physically realizable observers as 3D Killing fields remains objective
as well, preserving the same fundamental principles.

4.1 Determining Observers in 3D
From a fundamental property of Killing vector fields on smooth mani-
folds, any Killing field w is uniquely identified by a pair

(
w,∇w

)
(p)

at a given point p. For a time-dependent Killing field, this means that
the field is fully specified by

(
w,∇w

)
(p(t), t), at a given point p(t), for

each time t. In our context, this means that we can uniquely specify an
observer by a time-dependent function

t 7→
(

p(t), w
(

p(t), t
)
,
(
∇w

)(
p(t), t

))
. (14)

We refer to the time-dependent curve t 7→ p(t)∈R3 as a world line [10].
By definition, the world line t 7→ p(t) must be a solution of the ODE

d
dt

p(t) = w
(

p(t), t
)
, p(0) = p0. (15)

By knowing one vector w(p(t), t) and one 3×3 skew-symmetric matrix
(∇w)(p(t), t) (with only three degrees of freedom) for each point p(t)
along t 7→ p(t), we can reconstruct the entire 3D Killing field w by

w
(
x, t

)
= w

(
p(t), t

)
+

(
∇w

)(
p(t), t

)
·
(
x− p(t)

)
. (16)

For more details see Appendix D.

4.2 Extracting Observers in 3D Euclidean Space
We can extract any number of 3D observers from a given 3D observer
velocity field u(x, t) [10], which is, in general, not a Killing field. To
do this, we define a world line t 7→ p(t) to be a pathline of the field u.
That is, from an initial position p0, we solve the ODE

d
dt

p(t) = u
(

p(t), t
)
, p(0) = p0. (17)

The observer field u itself may either be set to the input velocity field v,
i.e., u := v, or result from another objective procedure or optimiza-
tion [10, 24, 36]. Each world line obtained in this way is Lagrangian,
and thus objective [14]. Thus, the corresponding observer is obtained
in a reference frame-indifferent way. Additionally, any observer world
line will provide us with a physically realizable rigid motion observer.

Given a 3D observer field u(x, t), we can obtain observers by



1. Picking an initial point p0 at any t = t0,

2. Solving the path-line ODE (Eq. 17) from p0 to obtain t 7→ p(t),

3. Determining the observer spin tensor ∇w at each point p(t).
We determine the spin tensor ∇w to identically match the skew-
symmetric part of ∇u at the point (p(t), t). That is, we define

(
∇w

)
(p(t), t) :=

1
2

((
∇u

)
−
(
∇u

)T
)
(p(t), t). (18)

5 REPRESENTATION, VISUALIZATION, AND INTERACTION IN
6D OBSERVER SPACE

In our framework, observers for a 3D flow domain correspond
to curves t 7→ (qi)(t) (i = 1, . . . ,6) in a six-dimensional parameter
space R6, with three parameters encoding the infinitesimal translation,
and three parameters encoding the infinitesimal rotation, at each time t.

5.1 Representation in Two 3D Parameter Subspaces
By splitting each observer’s coefficient vector (qi)(t) into (q1,q2,q3)
and (q4,q5,q6), we obtain two 3-dimensional parameter subspaces:

(q1(t), q2(t), q3(t))︸ ︷︷ ︸
infinitesimal translation

and (q4(t), q5(t), q6(t))︸ ︷︷ ︸
infinitesimal rotation

.

Each observer thus traces out a curve in each of these 3D parameter
subspaces. Multiple observers then correspond to bundles or families
of curves. Sets of observers can be visualized, explored, and selected
by examining their projected paths in these two subspaces.

Translational subspace. For each observer, the infinitesimal trans-
lation parameters (q1,q2,q3) correspond to the velocity of a reference
point or observer world lines through space. Visualizing this subspace
as R3 allows us to depict world lines as parametric trajectories relative
to the lab frame. We show these curves as paths in (q1,q2,q3)-space,
color-coded or annotated by time, effectively acting like 3D path plots
of the translational velocity.

Rotational subspace. Similarly, (q4,q5,q6) describe the infinites-
imal rotation, i.e., the observer’s angular velocity, i.e., axis and an-
gular speed of rotation. Since the angular velocity magnitude can
become large, we optionally normalize or clamp it for visualization.
For ∥(q4,q5,q6)∥ > 1, we clamp the vector to the unit sphere S2, so
that the direction becomes more visually salient, whereas the mag-
nitude can be color-coded or given by annotations. Thus, we obtain
a direction sphere (Fig. 1, top left) depicting instantaneous axes of
observer rotation.

1D Property Plots. Beyond storing (q1, . . . ,q6) over time, we
also track derived scalar properties such as the Translational Speed
(∥(q1,q2,q3)∥), the Rotational Speed (∥(q4,q5,q6)∥), the Magnitude
of the Observed Time Derivative (see Eq. 13), and other physical mea-
sures (e.g., strain rate) in the co-moving frame. Plotting these scalar
functions of time yields 1D graphs that provide additional insight:
Large spikes or plateaus may correspond to dynamically distinct mo-
tions of the observer. Moreover, the same property plots enable the
user to filter subsets of observers based on thresholds in these derived
properties (see Sec. 5.2).

Visual Interaction in Subspaces. Because each observer is now a
parametric curve in two separate 3D spaces (plus optional 1D property
plots), we allow interactive operations such as clicking or brushing in
the translational subspace to select (or highlight) a set of observers,
or specifying an angular wedge or region on the sphere to filter out
certain rotations in the rotational subspace. Combined with time-based
selection in the property plots, these subspace representations serve
as visual handles for choosing or modifying observers, merging or
splitting sets of observers, and revealing key events.

5.2 Selection and Filtering in Observer Subspaces
Once sets of time-dependent observers are visualized as curves in
the mentioned parameter spaces, we can apply a variety of filters to
declutter the view or to extract sub-families of interest.

observer fieldangular velocity

Fig. 4: Filtering in rotational subspace. (Top row) shows the observer
field obtained via numerical optimization (right), along with its corre-
sponding curves in the rotational subspace (left). A cone filter (red cone
geometry) is applied to remove world lines whose angular velocities fall
outside the desired range. (Bottom row) displays the filtered world lines
(right) and their corresponding curves in the rotational subspace (left).

Filtering by Spatial Region. Spatial filtering methods include, but
are not limited to, proximity to isosurfaces and dynamic bounding boxes
traced from pathline clusters (see Appendix A). In the observer spatial
subspace, because (q1,q2,q3) typically encodes rigid-body translations
or observer reference points, restricting these coefficients to a user-
specified region filters out observers not translating through that area
with the desired velocity.

Rotation-Axis Filtering. In the rotational subspace (q4,q5,q6), we
can treat the unit sphere S2 as the domain of all rotation axes, enabling
interactive conical or angular selections. Concretely, we let the user
choose a cone around a preferred axis, e.g., restricting to all observers
whose rotation axis stays close to a major axis of rotation of a vortex
street. This is especially helpful when many observer curves overlap or
cluster in the rotational space. Fig. 4 shows an example of using cone
filtering to constrain the observer’s rotational subspace.

Time-Window Pre-Filtering. Some observers’ trajectories in these
subspaces become complicated over a long time interval. To reduce
visual clutter, we allow restricting the view to a short time window, e.g.,
[tstart, tend], effectively hiding all observer curves outside it. This not
only clarifies how the curves are distributed in the subspace over that
interval, but also enables interactive time animation by sliding tstart or
tend to reveal how observers enter or leave a region. Furthermore, such
a time-window filter aids in identifying clusters of “co-moving” frames
that persist for only part of the simulation.

1D Property-Based Selection. Finally, we link subspace views to
property plots showing scalar observer metrics (e.g., translational speed,
rotation magnitude, streamline pathline similarity, etc.). Thresholds on
∥(q1,q2,q3)∥ hide observers whose translational velocities exceed de-
sired ranges; similarly, thresholds on ∥(q4,q5,q6)∥ distinguish slowly
rotating observers from fast-spinning ones. Users brush scalar curve
ranges to highlight or exclude observers exceeding selected thresh-
olds. This filtering allows users to refine the set of observers to a
subset meeting specific physical constraints (e.g., moderate rotation,
low acceleration).

Operations on Sets of Observers With our framework users can
make computations on sets of observers, such as interpolating between
them or averaging them. Interpolation of observers allows us to render
smooth transitions when switching between observers for all observer-
aware visualization methods. Averaging of observers allows us to
compute a ’representative’ observer from a set of observers. For in-
stance, if several co-moving observers are found for a single feature of
interest, the average observer is a representative that can be used for
observer-aware visualizations of this feature.

To average multiple observers {wk} we simply average their coef-
ficients at each time. Likewise, to interpolate between two observers
w1,w2, with their time dependent coefficients q1,i(t) and q2,i(t) we do
a convex combination

qi(t; λ ) = (1−λ )q1,i(t) + λ q2,i(t), 0 ≤ λ ≤ 1. (19)



Another useful operation that is well defined on the space of observers
is the inner product, which admits computation of differences or simi-
larities of observers. We give a definition of the inner product and the
associated distance between observers in Appendix C.

These operations, filters and selection techniques enable navigation
through large sets of reference-frame transformations, focusing on
those that follow or reveal features of interest. Observers not matching
desired criteria (e.g., excessive spin or drift) are pruned, leaving a
relevant subset for further analysis or final visualizations.

6 OBSERVER-AWARE FLOW VISUALIZATION METHODS IN 3D
In this section, we discuss observer-aware techniques for visualizing
3D unsteady flows. As outlined in previous work for 2D flow, these
techniques rely on transforming a given fluid flow into the reference
frame of a time-dependent observer. Such transformations can signifi-
cantly reduce the apparent motion of flow features that simply advect
through space, thereby focusing attention on intrinsic behavior such
as deformation, swirling, or stretching. We extend these ideas to 3D
fluid domains, including generalizations and extensions of existing 2D
approaches. Specifically, we are revisiting and extending visualization
techniques that include observed pathlines, temporal interpolation of
scalar fields, and co-moving cameras.

In general, the design of observer-aware visualization algorithms is
informed by the fact that there is not one single static view of the data.
Instead, each distinct observer generates a different (physically inter-
pretable) visualization. Although the underlying 3D flow is unchanged
in its own continuum-mechanical sense, the perceived velocity, position
relative to the camera, or isosurface motion can vary significantly from
one observer to another. While this leads to a vast 6+1D space of pos-
sible observer-aware visualizations that might sound overwhelmingly
complex, this plurality of valid visualizations can also be turned into
an advantage: by comparing multiple reference-frame-aware images
or animations, we can highlight essential flow phenomena that remain
elusive in other frames. Using our framework, we let the user navigate
the observer (and hence visualization) space, selecting or interpolat-
ing among candidate frames until the visualizations yield satisfactory
answers.

Changes of Visual Representations. Observer transformations
in 6+1D (3D translations, 3D rotations, 1D time) affect how visual
representations change in three fundamentally different ways, that
inform the implementation of the respective visualization algorithms:

(1) Spatial primitives that experience rigid transformations: Iso-
surfaces, 3D volumetric renderings of scalar fields, or stream surfaces
(in the fluid dynamical sense of a material boundary) correspond to
purely spatial objects at each time slice. For scalar fields that do not
change with relative velocity changes (due to observer motions), these
visual representations merely undergo rigid transformations. Scalar
fields with this property are called invariant to reference frame trans-
formations or simply objective. Their instantaneous shape remains
identical in the observed domain, which makes them good candidates
to be precomputed and transformed afterwards with rigid body trans-
formations. For instance, an evolving isosurface of an objective scalar
value, can be made "locked in place" in the co-moving observer’s refer-
ence frame. This leads to a clearer depiction of how the surface evolves
in time.

(2) Spatial primitives that experience general transformations:
Streamlines, or isosurfaces of non-objective scalar fields are also purely
spatial objects, however since they are affected by the change of rel-
ative velocities, they completely change their shape and need to be
recomputed for every observer or change of reference frame.

(3) Lagrangian space-time primitives: Pathlines, streaklines, and
other Lagrangian curves or surfaces are inherently defined in a do-
main augmented by time. Transforming them from the lab frame to
an observer’s frame typically alters their shape and connectivity in 4D
space-time. Hence, an observed pathline might look significantly more
“steady” or swirl-like in the new reference frame, revealing coherent
structures that were obscured in the lab frame. These primitives can
be precomputed in the lab reference frame and are later transformed
with a time-dependent rigid body transformation. While the precompu-

pathline
streamline

comoving frame
lab frame

Fig. 5: Pathlines (time is color-coded) and streamline segments (light
green) used to compute the steadiness of the flow in the current refer-
ence frame. (top) Lab frame. (Bottom) The same set of pathlines and
streamline segments in the co-moving reference frame. In regions where
the vector field becomes steady with respect to the current reference
frame, pathlines become “streamline-like.”

tation might involve computationally costly numerical integration or
other extraction algorithms, the observer-transformation is typically
computationally less costly and can be done in parallel.

Understanding the difference between these three classes helps to
design efficient visualization algorithms. The subsections that follow,
discuss specific examples.

6.1 Observed Streamline- and Pathline-Filtering
A core motivation for adopting time-dependent observers is to reveal
regions of the flow that appear nearly steady in a particular moving
reference frame. In practice, we want to find curves that represent
parts of the fluid that look “stationary” when viewed in the observer’s
reference frame. This highlights regions that contain coherent structures
of the fluid. However, trivial steady regions (where the flow field is
steady in any reference frame) are typically uninteresting and shall
also be filtered out. We thus propose a novel two-stage filter that (1)
detects curve segments that represent locally near-steady flow regions
in the current observer’s reference frame; and (2) discards segments
that are also near-steady in any frame, keeping only those that gain
their steadiness from the current observer’s perspective.

Before introducing our filter, we emphasize the complementary value
of observer-relative streamlines and pathlines. Because streamlines
are computed from a single time slice, transforming them into the
moving reference frame yields an immediate, view of how the current
observer choice reshapes the local flow geometry. In many scenarios,
such as pinpointing an instantaneous vortex core or outlining shear
interfaces, these observed streamlines convey the essential structure. In
the Appendix, Fig. 13, we demonstrate this effect for the Boeing data
set: when viewed in the co-moving frame, the streamlines collapse into
tight spirals that delineate the vortex core far more cleanly than in the
lab frame, underscoring their utility for frame-aware exploration. To
extend this instantaneous visualization method, we propose to compute
and filter from a large set of pathlines and show the ones that are locally
similar to the streamlines. We propose the following method:
(1) Detecting Near-Steady Regions in the Observer Frame. We first
measure how closely a pathline follows a streamline in the observer’s
reference frame. Concretely, we start with a pathline γ(t) computed
in the lab frame, sampled at discrete vertices γ(tk) (Sec. 3). At each
pathline vertex γ(tk) and time tk, we integrate a local streamline of
the observed velocity field v∗(x, t) (i.e. the velocity in the co-moving
coordinates). This streamline integration is performed forward and
backward for a short time τ , to produce a local streamline segment
Sk(tk− τ : tk + τ). We compute a distance

dk :=
∫

τ

−τ
(γ(tk + s)−Sk(tk + s)

)
)2ds

2τ
(20)

that measures how far the pathline segment around γ(tk) deviates from
the corresponding observer-frame streamline Sk. If dk is below a thresh-
old εobs, we classify that neighborhood of the pathline as near-steady
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Fig. 6: Reference frame-aware isosurface extraction. (a,b) 2D slice of
a 3D scalar field at time (a) t0, (b) t1. (c) Linear interpolation between (a),
(b) at time t0+t1

2 . (d) Reference frame-aware interpolation between (a), (b)
at time t0+t1

2 . (e) 3D iso surface extracted with linear interpolation at time
t0+t1

2 , (f) 3D iso surface extracted by first transforming and interpolating
the scalar field in the co-moving reference frame at time t0+t1

2 .

in the observer frame (i.e. “streamline-like”). In Fig. 5 we illustrate
how the transformation of a set of pathlines and their corresponding
streamline segments, into the reference frame of the co-moving ob-
server, changes their geometry and alignment. Observed pathlines that
are similar to streamlines in the co-moving frame of reference are of
interest.
(2) Excluding Regions Steady in Any Frame. Not all near-steady
regions are interesting—some might be stationary in any frame. We ex-
clude trivial cases by computing the time derivative in the lab frame and
discarding pathline segments in zero time-derivative regions. Hence,
our final observed pathline filter displays only those segments that are
streamline-like in the reference frame of the co-moving observer, but
exhibit substantial unsteadiness in any other (e.g., the lab-) frame. The
remaining trajectories highlight material parcels that gain their apparent
steadiness only from the chosen observer’s viewpoint. By focusing on
pathline segments that become steady solely under the current observer,
we isolate Lagrangian coherent structures “co-moving” with the ob-
server, such as vortex cores or rotating fluid parcels. Segments that
remain near-stationary in all frames are discarded, thus removing steady
fluid regions. When purely instantaneous insight is desired, stream-
lines can be filtered instead of pathlines with the identical two-stage
filter, giving users a consistent tool for either temporal or instantaneous
exploration.

The thresholds (εobs, εlab) can be tuned by the user to filter for fea-
tures of interest. A smaller εobs retains strongly co-moving segments,
while a larger εlab preserves contextual background flow regions. Be-
cause both thresholding and streamline integration can be done at
interactive rates, domain scientists can explore different observer mo-
tions (e.g., solutions to global or local reference frame optimizations)
and see which portions of the fluid remain steady, or swirl-like in each
candidate observer frame. An example is shown in Fig. 8. This two-
stage “streamline-like” matching strategy highlights flow regions most
relevant to each observer’s perspective, avoiding clutter from globally
trivial steady zones.

6.2 Scalar Field Interpolation for Isosurface Animations
Zhang et al. [37] demonstrated that extracting iso-lines or FTLE ridges
in the co-moving reference frame leads to simpler shapes and more sta-
ble animations in 2D unsteady flow. Although this method generalizes
to higher dimensions, the interpretation changes from iso-lines in 2D
to isosurfaces or FTLE surfaces in 3D. Specifically, in 3D, surfaces are
typically extracted at discrete timesteps as instantaneous spatial objects
and then animated over time.

To generate intermediate frames, scalar values are usually inter-
polated in the lab frame, then isosurfaces are extracted. However,
interpolated scalar fields often exhibit considerable artifacts from fast
moving structures. By first transforming the scalar field into a suitable
co-moving frame, we reduce artifacts that originate from the motion
during interpolation. Hence, the resulting isosurfaces in intermediate
frames appear more coherent.

Fig. 6 shows an example of an isosurface extracted in the lab frame
compared to an isosurface extracted in the co-moving frame. The
difference in Fig. 6 is large because we exaggerate the problem for the
purpose of illustrating the effect of sub-optimal scalar field interpolation
in the lab frame. To compute isosurface animations in co-moving
frames, we choose an observer w whose motion is adapted to a region
of interest (Sec. 3). At each timestep ti, we pull back the scalar field
ϕ(x, ti) into the observer’s coordinates via the rigid map φ

−1
ti of w. This

produces ϕ∗(y, ti) = ϕ(φti(y), ti), an observed scalar field in the moving
frame. Because w co-moves with key features of interest, ϕ∗ often
varies less over time. Next, we interpolate this time series {ϕ∗(·, ti)}
at intermediate times (e.g. ti+α with 0 < α < 1) to obtain a smooth
animation in the observer coordinates. We extract isosurfaces in the
observer’s reference frame and map the surfaces back to the lab frame.
Formally:

1. Compute ϕ∗(y, ti) := ϕ(φti(y), ti) for all discrete ti.

2. Interpolate ϕ∗(y, ti+α ) over time in the co-moving domain.

3. Extract isosurfaces (or ridges) in ϕ∗(y, ti+α ).

4. Map each surface back to the lab frame via φti+α
for visualization.

By performing interpolation in the co-moving frame, the scalar field
often appears less unsteady for evolving structures that might primarily
be undergoing translations or rotations. This reduces aliasing artifacts
and smoothing errors during the animation of isosurfaces.

6.3 Co-moving Cameras via Local Reference Frames

A closely related yet distinct concept to scalar-field interpolation in a
co-moving frame is to “lock” the camera onto a particular fluid feature.
This allows the user to watch an evolving phenomenon (e.g., a vortex,
an isosurface, or a specific sub-region of a larger structure) without
the distraction of that feature drifting around in the scene. Prior 2D
approaches [25, 37] demonstrated selecting an observer (rigid-body ref-
erence frame) to track and stabilize features. We generalize this idea to
3D flow visualization. In 3D, isosurfaces often span large regions with
multiple loosely connected parts. The user might wish to “zoom in”
on one localized phenomenon: e.g., a vortex within a larger structure.
To address this, we let the user pick that sub-region directly on the
isosurface at time t0, and compute an observer that specifically tracks
or co-moves with that sub-region. Crucially, large connected surfaces
may only partially move consistently (e.g., the middle of an isosurface
might remain stationary, whereas its edges swirl). Being able to isolate
a smaller region is key for effectively “locking onto” it.
Locking to a Targeted 3D Feature. In our framework, candidate
observers are computed through user-driven region selection, extract-
ing local reference frames by minimizing objectives like unsteadiness.
Local reference frames can be generated through two alternative ap-
proaches: applying a spatial filter after performing global observer
optimization [7], or conducting spatial filtering first, followed by ob-
server optimization within the localized area of interest. From a perfor-
mance perspective, the latter approach generally proves more efficient
and practical. In our framework, we define the local area of interest
by integrating a cluster of pathlines and computing a time-dependent
bounding box that encloses this cluster at each timestep. This results
in a dynamically moving bounding box, as illustrated in Fig. 11 (Ap-
pendix A). If the feature is lost or moves out of view, users can adjust
the observer accordingly. By repeating this process and smoothing the
resulting observer, we obtain a time-dependent rigid transformation
that keeps the chosen patch centered in the camera view.
Co-Moving Camera for Feature Animations. Once we obtained a
suitable observer w, 3D visualizations (isosurface animations, volume
rendering, pathlines) can be drawn in observer coordinates. From the
user’s perspective, it appears as if the camera has locked onto the tar-
get sub-region: that region remains roughly stationary in the viewport
while the rest of the flow (and bounding domain) may translate or rotate.
Hence, the user can focus on how the feature evolves (e.g., deforms,
splits, merges) over time, free from the complication of global drift,
making it easier to perceive subtle morphological changes.
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Fig. 7: Animation sequence of an isosurface of vorticity magnitude. (top) four frames of an animation sequence are shown in the lab-reference
frame. (bottom) A locally adapted reference frame that co-moves with one specific vortex ring filament at the front, allows us to lock the camera to a
small region of the isosurface. The user can focus on the evolution of in this region without the difficulty of following it while it drifts downstream.

7 RESULTS AND DISCUSSION

We evaluated our method on four different 3D unsteady flow datasets,
each highlighting various aspects of our approach. In each case, we
combined reference frame transformations, isosurface-based filtering,
and pathline visualization to expose phenomena that are otherwise
difficult to see in a standard lab-frame visualization. We also report per-
formance numbers for the different computation-intensive components
of our framework and created animation sequences (see video) to give
a dynamic view on the presented case studies.

7.1 Case Studies
Delta Wing Simulation. In our first case study, we analyze vortex
filaments behind a wing. The dataset is simulated using the Lattice
Boltzmann Method with a grid resolution of [110,628,110] over a
spatial domain of [−0.99,1.00]× [−5.71,5.71]× [−0.99,1.00]. The
dataset spans a time range of [0.00,1.73] with 234 time steps. This
dataset is characterized by multiple, intricately intertwined vortex fila-
ments advecting downstream at different speeds. Traditional lab frame
views make it hard to discern the swirling motion of each filament
because they collectively translate in the flow direction. As shown in
Fig. 1, we use an isosurface-based spatial filter (Sec. 5.2) to isolate
regions of high vorticity, and seed pathlines near these vortex cores.
These pathlines define the reference frame transformation described
in Sec. 4.2. In the co-moving reference frame (Fig. 1, top row), the
pathlines clearly swirl around the vortex filaments, while in contrast,
the lab-frame visualization (bottom row) shows all pathlines convecting

threshold = 0.05

no threshold

threshold = 0.01

lab frame

co-moving frame

Fig. 8: Pathline filtering with different thresholds for the vortex street in
the co-moving frame (bottom) compared to the lab frame (top).

downstream, largely obscuring the individual swirling characteristics of
each filament. Fig. 7 focuses on a single vortex ring filament evolving
at the leading edge. In the lab frame (top), this filament quickly drifts
to the downstream region, forcing the viewer to follow it manually in a
time-dependent animation. By contrast, using our isosurface animation
and co-moving camera methods (Secs. 6.2 and 6.3), we are locking a
locally adapted reference frame onto this filament (Fig. 7, bottom) and
keep it within a fixed viewing volume. This makes changes of the shape
and the relation to other filaments much more apparent. Because the
Delta Wing flow includes multiple vortex filaments, no single reference
frame can simultaneously “track” all filaments if they travel at different
speeds or directions. Fig. 9 illustrates two filaments, each requiring

comoving frames
lab frame

(a)

(b)

(c)

(d)

(e)
time

vorticity magnitude isovalue: 12.8

velocity magnitude

Fig. 9: Observed pathlines in different reference frames. Due to the
different speeds of the vortex filaments we get two different co-moving
frames. (a) and (b) two sets of pathlines, both in the lab frame. (bottom
part) pathlines in different co-moving reference frames: (c) both sets of
pathlines in the reference frame of the second vortex filament. One set of
pathlines is not aligned with the vortex. (d) pathlines seeded on the first
vortex filament in their co-moving reference frame. (e) pathlines seeded
on the second vortex filament in their co-moving reference frame.



Table 1: Performance analysis of observed pathline filtering. The
Configuration column specifies computational complexity parameters,
giving: (number of pathlines, points per pathline, number of stream-
lines sampled per pathline, streamline integration steps). The Observed
Pathline column is the CPU time required to transform pre-integrated
pathlines into the observer’s reference frame. The Observed Streamline
column is the computational time needed to integrate observed stream-
lines at each sampled point along the pathlines. The last two rows show
the timing of generating Fig. 8 and Fig. 10. All times are in ms.

Configuration Observed Pathline Observed Streamline

mean range± mean range±
DeltaWing (64,640,64,100) 0.82 0.20 295 37
DeltaWing (256,2560,256,100) 10.85 2.50 1450 200
DeltaWing(1024,10240,1024,100) 38.78 6.10 3500 300
DeltaWing (1024,10240,1024,500) 29.16 12.10 7530 900
DeltaWing(4096,40960,4096,500) 813.42 81.10 161280 5200
Boeing (2048,2560,256,100) 27.91 1.00 1720 200
Half Cylinder (8196,1280,128,100) 128.07 15.00 1050 200

its own co-moving frame. In Fig. 9(c), pathlines seeded for one fila-
ment appear incorrectly aligned when observed in the co-moving frame
of another filament, demonstrating that each vortex core’s swirling is
frame-dependent. Conversely, Figs. 9(d) and 9(e) show each vortex
filament in its own co-moving reference frame, revealing the clear
swirling motion around each core. This discrepancy is not an artifact
but evidence of how distinct vortex filaments demand individualized
reference frames to capture their local dynamics accurately, which is a
core motivation of our approach.

Half Cylinder Vortex Street is a 3D dataset capturing the flow be-
havior around a semi-circular obstruction on a structured grid [1]. The
dataset has a spatial extent of [−0.5,7.5]× [−1.5,1.5]× [−0.5,0.5], a
grid resolution of [640,240,80], and a time domain of [0,15] with 151
timesteps. We computed reference frame transformations using local
reference optimization [7]. We used our parameter space representation
described in Section 5 to confirm that one reference frame transfor-
mation captures the evolving vortex street. In Fig. 8, we show results
obtained with our pathline filtering method explained in Sec. 6.1.

Boeing 747 Simulation. This dataset was simulated us-
ing the Lattice Boltzmann Method, featuring a grid resolu-
tion of [425,950,90] within a spatial domain of [−2.49,2.51] ×
[−5.00,5.02]× [−0.99,1.01]. The dataset spans a time range of
[0.00,1.96] with 199 time steps. To avoid costly computations of
the reference frame transformations with optimization methods in re-
gions of the dataset that are not of interest, our framework allows the
user to select a subregion of interest on the isosurface (Sec. 5.2). We
then compute the reference frame transformations using local reference
optimization [7] only in the selected region and the advection of the
selected region. This greatly improves the computation time and is
more suitable in an interactive scenario. In Fig. 10, we show pathlines
seeded in the lab-frame as well as the locally computed reference frame
that was used to compute pathlines transformed into the co-moving ref-
erence frame. The pathlines were filtered with our pathline-streamline

vorticity magnitude isovalue: 10.0

Fig. 10: Boeing 747 visualized using a moving reference frame extracted
from a local optimization. (left) Pathlines are densely seeded on an iso-
surface of the Boeing 747 dataset. The yellow area marks the interaction
area that the user selected to extract a reference frame. A local reference
frame optimization is started in this area and the advected area over time,
resulting in a reference frame that is visualized in the yellow rectangle
below. (right) Pathlines are automatically filtered and only visualized in
areas of the fluid flow that become nearly steady in the observed field.

Table 2: Time measurements for reference frame transformation of
scalar field with 30 time steps (Rft-Scalar Field), marching cubes isosur-
face extraction for one time step (MC-Isosurface), and the generation of
iso-surface animations (Animation) over 30 frames of different datasets.

Dataset Rft-Scalar Field MC-Isosurface Animation

Boeing 2.57±0.50 sec 678.10±10.0 ms 1.98±0.2 sec
Half Cylinder 2.98±0.30 sec 719.77±26.8 ms 1.65±0.2 sec
DeltaWing 3.99±0.07 sec 205.66±33.8 ms 1.12±0.1 sec

Table 3: Performance analysis of observer field optimization. Global
Time is the runtime per timestep for global optimization [7]; note that
this method fails to execute on the Boeing dataset due to memory con-
sumption. Local Optimizations is the average number of grid points per
timestep processed after local spatial filtering, and Local Time is the
average runtime per timestep using our spatial filter. The first three rows
correspond to Fig. 11 (a-c). The last row corresponds to Fig. 12.

Dataset Resolution x Timsteps Global Time Local Optimizations Local Time

Boeing (425, 950, 90) × 199 - 5168 6.5 sec
Half Cylinder (640, 240, 80) × 151 420 sec 1540 4.2 sec
DeltaWing (110, 628, 110) × 234 250 sec 2925 6.8 sec
SmokeBuoyance (47, 95, 47) × 160 11 sec 1100 2.0 sec

similarity measure (Sec. 6.1) to highlight the regions of the fluid that
become steady in the current frame of reference. Pathlines that align
with the iso-surface indicate a coherent structure of particles that rotate
in place (relative to the co-moving observer).

7.2 Performance

The performance evaluation experiments were conducted on an Intel(R)
Xeon(R) Gold 6230R CPU @ 2.10GHz with 2 processors.

Performance of Observed Pathline Filtering. Pathlines are pre-
integrated, and an interactive change of observer invokes two main
computational steps: (1) transforming pathlines into the observer refer-
ence frame, and (2) integrating observed streamlines and computing the
difference between them (Sec. 6.1). The computations are performed
in parallel on the CPU. Timing measurements for these two major
computational steps are reported in Table 1.

Co-moving Camera Isosurface animation. The co-moving camera
animation involves two primary steps: (1) transforming the scalar field
into the co-moving reference frame, and (2) extracting isosurfaces using
the marching cubes algorithm at each animation frame. The generation
of isosurface animation is done in parallel. The computational cost of
isosurface extraction depends significantly on the selected iso-values.
Table 2 reports the computational times corresponding to the representa-
tive iso-values and their resulting isosurfaces and isosurface animations
presented throughout the paper. Pseudocode is given in Appendix B.

Local Reference Frame Optimization. In Table 3 we show per-
formance measurements of the reference optimization method. We
compare the time it takes to run the optimization of [7] on the entire
grid for one time step (Global Time), with our method of first apply-
ing a spatial filter and then only locally extracting a reference frame
transformation (Local Time). Although these times are not interactive,
we significantly reduce computation times. For the Boeing dataset,
we were not able to compute the reference frame optimization for the
whole dataset on our desktop machine, but we were able to compute it
for a spatially filtered region. Appendix A Fig. 11 shows the grid cells
that were considered for the local optimization.

8 CONCLUSIONS

In this paper, we propose the first framework for interactive observer-
aware visualization of 3D unsteady flow fields. Our framework is
based on a unifying representation of reference frame motions as six
time-dependent parameters. We use this representation to visualize,
analyze, filter, and combine reference frame transformations in an
interactive feedback loop. We presented novel, and adapted observer-
aware visualization methods and applied them in different case studies.
Our framework opens the door to more sophisticated 3D observer-
aware analysis, which can further be integrated with topological and
Lagrangian flow feature analysis methods in the future.
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