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A Computing Objective Tensor Fields

Objective tensor fields are reference frame-independent, which is a
necessary condition that the properties they describe are fundamental
aspects of the flow rather than artifacts of a particular observational
standpoint. We have identified many objective quantities in the liter-
ature and will briefly review the ones we utilize in our experiments,
highlighting their significance in the study of material boundaries in
2D unsteady flow fields.

A fundamental tool in our analysis is the flow map, which de-
scribes the evolution of fluid particle positions over time. The flow
map

Φ
t
t0 : M → M,

x0 7→ Φ
t
t0(x0),

(27)

maps the initial position x0 of a particle at time t0 to its position
at a later time t, along the particle’s trajectory (path line) from
time t0 to time t. The flow map is defined for all possible positions
in the fluid domain, and therefore encapsulates the trajectories of
all particles through the fluid domain. This mapping is essential for
understanding the displacement and deformation of fluid elements
and is integral to the computation of other derived quantities.

The flow map not only encodes the trajectories of particles, but
also serves as foundational tool to measure how differential struc-
tures are advected by the flow. Particularly, the gradient of the flow
map, denoted as DΦ, is of interest in the definition of objective
scalar fields. By interpreting the flow map as a diffeomorphism
that maps all points of the manifold of the fluid domain onto itself
after a finite time t, we can offer a geometric interpretation of DΦ.
Specifically, DΦ is also called the pushforward in differential ge-
ometry. The pushforward represents the linear mapping of vectors
between the tangent spaces of a particle moving from position x0 to
position Φt

t0(x0).

A vector v at the tangent space at x0 is mapped to its image at
time t by the pushforward DΦ(v). The pushforward DΦ(v), de-
scribes the mapping of all possible vectors from the tangent space at
x0 to the tangent space at xt . Analyzing this mapping is crucial as it
reveals how different vectors — and by extension, fluid elements —
rotate and scale under the transformation DΦ(v), thereby indicating
how the fluid itself rotates and deforms. Since DΦ(v) is a linear
mapping, we can easily utilize mathematical tools to quantify the
rotational and deforming characteristics of the flow.

It is important to note that neither the flow map by itself, nor its
gradient are invariant to reference frame transformations. However,
they capture the essence of the fluid dynamics that are objective.

Right Cauchy-Green Deformation Tensor

We can use the pushforward of the flow map to define the right
Cauchy-Green deformation tensor as

C = (DΦ)T (DΦ), (28)

where (DΦ)T represents the transpose of the pushforward DΦ. In
any choice of coordinate system, this tensor can be represented as
a symmetric positive-definite matrix which measures the change
in distances and angles between material elements. By further ex-
amining C, we can derive scalar quantities that describe the flow’s

behavior, such as strain rates and rotation rates, in an objective
manner that is independent of the observer’s frame of reference. To
extract material boundaries of the flow field, we are naturally inter-
ested in the amount of stretching that happens under the mapping of
the flow map and the associated pushforward. This stretching can
be quantified by computing the direction of maximal stretching as
the first eigenvector of the symmetric tensor C. The first eigenvalue,
which quantifies the amount of stretching at each point, is an objec-
tive scalar field which we use to find separating boundaries in the
flow.

Finite-Time Lyapunov Exponents

The finite-time Lyapunov exponent (FTLE) quantifies the rate of
separation of infinitesimally close particle trajectories over a finite
time interval, offering insights into the dynamic behavior of fluid
flows. The FTLE is fundamentally linked to the right Cauchy-Green
deformation tensor C, through the computation of the maximum
eigenvalue of C over a time interval from t0 to t at a point x0, and
can be expressed as

σ t
t0(x0) =

1
|t − t0|

log
√

λmax(x0), (29)

where λmax(x0) is the maximum eigenvalue of the tensor C at the
point x0. This expression highlights how the FTLE measures the
exponential rate of divergence of particle trajectories, with higher
values indicating regions of significant material stretching or folding.

When computing λmax(x0) forward in time (t > t0), high FTLE
values indicate repelling LCS, while when computing λmax(x0)
backward in time (t < t0) high FTLE values indicate attracting
LCS.

B Additional Results

Figure 8: Interactive Iso-Contour Components: (left) Iso-contour compo-
nent preview computed interactively and visualized in the local reference
frame. (right) Iso-contours overlaid on resulting iso-surface.

On the left of Fig. 8 we show results from our novel interactive
iso-contour preview visualization. On the right of Fig. 8 we show the
corresponding iso-surfaces that are computed in the local reference
frame. We note that the interactive preview visualization only works
in situations where a suitable reference frame is found. In contrast
without the computation of the reference frame (i.e., in the original
reference frame) an interactive preview would only work for fluid
flow structures that largely stay in place or happen to be steady.
Since this is typically not the case - our novel preview visualization
method is only feasible when considering a local reference frame.
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In Fig. 9 we compare our method (iso-surface extraction in the
local reference frame) with the iso-surface extraction in the original
frame when the time domain is under-sampled (i.e., fluid structures
move at a speed where surface extraction methods fail in the orig-
inal reference frame). In Fig. 9 we show a cropped region of the
Boussinesq dataset and compute iso-surfaces with VTK from a de-
liberately under-sampled dataset. We under-sample the dataset in
the time domain to test our reference frame based approach. From
top to bottom we show the original resolution (dim t = 32) and
successively reduce the number of samples in the time domain by a
factor of two. The surfaces are color-coded using Normal Deviation
(ND), where lower ND values indicate smoother surfaces. The con-
ventional approach introduces significant geometric and topological
artifacts due to temporal under-sampling. A good local reference
frame can still combat the under-sampling when reconstructing a
fluid flow structure that moves with a speed where the conventional
approach fails.

In Fig. 10 we use our method to extract and analyze material
boundary candidates in the local reference frame of the synthetic
Bickley jet function. The Bickley jet is a mathematical model used
to describe and analyze geophysical fluid dynamics. It represents a
simplified way to understand the behavior of jet streams or oceanic
currents. The model consists of a series of sinusoidal waves super-
imposed on a mean flow, which together mimic the meandering
nature of real jet streams or currents. This idealized configuration
allows scientists to study the stability, wave interactions, and energy
dispersion within these geophysical phenomena in a more controlled
and analytical framework.

We compare the material boundary candidates extracted from
several state of the art vortex region methods. Our method allows
us to compare the results of multiple methods in the local reference
frame of the vortex structures. Fig. 10 shows the iso-surfaces of the
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Figure 9: Temporal under-sampling: Comparing surface extraction in the
original reference frame (right) with surface extraction in the local reference
frame (left) in the case of temporal under-sampling.
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Figure 10: Comparing vortex criteria in local reference frames. Iso-
surfaces of Lambda2 criterion and LAVD. (a) the model of the jet stream
visualized as timeline seeded on the zero iso-contour of vorticity at time zero,
advected over time. Top of (a) Lambda2 iso-surfaces, bottom of (a) LAVD
iso-surfaces. (b) The same iso-surfaces as in (a) visualized together with
path lines seeded at time zero exactly at the iso-contours of the surfaces. Top
of (b) Lambda2 iso-surfaces do not contain the path lines seeded on their
iso-contours. Bottom of (b) LAVD iso-surfaces perfectly agree with the path
lines advected from their iso-contours.

Lambda2 criterion and LAVD. Fig. 10 (a) shows the iso-surfaces
(blue) together with the model of the jet stream visualized as a
timeline seeded on the zero iso-contour of vorticity deviation at time
zero and advected over time (time axis is vertical - color coding
blue to red). Fig. 10 (a) shows that Lambda2 iso-surfaces as well
as LAVD iso-surfaces are situated next to the modeled jet stream
that flows between them. In Fig. 10 (b), the same iso-surfaces as in
(a) are shown. This time they are visualized together with path lines
seeded at time zero at the iso-contours of the surfaces. The top of
Fig. 10 (b) shows that Lambda2 iso-surfaces do not contain the path
lines seeded at their iso-contours. The bottom of Fig. 10 (b) shows
that LAVD iso-surfaces perfectly agree with the path lines starting
at their iso-contours at time zero.

This tells us that in ideally modeled situations LAVD is better
suited for material boundary extraction. Our method makes it pos-
sible to analyze Lagrangian structures in the local reference frame
with high accuracy surface extraction. In this case the visualization
shows perfect agreement of LAVD material boundaries and path
line trajectories.
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