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Figure 1: Material boundaries of a vortex street computed as FTLE ridges in (2+1)-D space-time. A key advantage of our framework is that it allows using
standard algorithms and software components for efficient and accurate feature extraction. Here, the ridge surfaces in space-time were extracted using ParaView:
(Top) Both feature extraction and visualization done in a reference frame moving with the vortex street. (Bottom) The same algorithms in the input (lab) reference
frame become significantly less accurate, harder to interpret, and take longer to compute.

Abstract
We present a novel technique for the extraction, visualization, and analysis of material boundaries and Lagrangian coherent
structures (LCS) in 2D unsteady flow fields relative to local reference frame transformations. In addition to the input flow
field, we leverage existing methods for computing reference frames adapted to local fluid features, in particular those that
minimize the observed time derivative. Although, by definition, transforming objective tensor fields between reference frames
does not change the tensor field, we show that transforming objective tensors, such as the finite-time Lyapunov exponent (FTLE)
or Lagrangian-averaged vorticity deviation (LAVD), or the second-order rate-of-strain tensor, into local reference frames
that are naturally adapted to coherent fluid structures has several advantages: (1) The transformed fields enable analyzing
LCS in space-time visualizations that are adapted to each structure; (2) They facilitate extracting geometric features, such as
iso-surfaces and ridge lines, in a straightforward manner with high accuracy. The resulting visualizations are characterized by
lower geometric complexity and enhanced topological fidelity. To demonstrate the effectiveness of our technique, we measure
geometric complexity and compare it with iso-surfaces extracted in the conventional reference frame. We show that the decreased
geometric complexity of the iso-surfaces in the local reference frame, not only leads to improved geometric and topological
results, but also to a decrease in computation time.
CCS Concepts
• Human-centered computing → Visualization; • Applied computing → Physical sciences and engineering;

1 Introduction

Understanding the dynamics of fluid motion in 2D unsteady flow
fields is important for both theoretical exploration and practical
applications. Methods relying on the visualization of fluid flow
by directly showing the paths of individual particles face signif-
icant challenges due to the inherent instability and sensitivity of
Lagrangian fluid motion to initial conditions. This complexity ne-
cessitates the development of robust techniques that can reveal the
underlying structures governing fluid dynamics beyond the behavior
of single particles. Among these techniques, the identification and

analysis of Lagrangian coherent structures (LCS) have emerged as
a cornerstone for a deeper understanding of fluid motion. LCS, as
investigated in early work by Haller and Yuan [HY00], serve as the
backbone of Lagrangian fluid dynamics by highlighting the most
repelling, attracting, and shearing material surfaces. These structures
are pivotal in simplifying the overall geometry of the flow, providing
precise quantification of material transport, and offering insights
about major flow features and mixing processes [Hal15].

Building upon this foundational understanding, our work intro-
duces a novel approach to enhance the computation, visualization,
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and analysis of Lagrangian material boundaries in 2D unsteady flow
fields. By exploiting local reference frame transformations, which
either explicitly minimize the observed time derivative [HMTR19]
or are known to co-move with important features, we are effectively
transforming objective scalar fields, such as finite-time Lyapunov ex-
ponent (FTLE) or Lagrangian-averaged vorticity deviation (LAVD)
fields into a local reference frame corresponding to the LCS. This
transformation allows us to present LCS and their material bound-
aries in a frame of reference that simplifies computations and visual
analysis. Flow features observed in the lab frame can shift substan-
tially between consecutive time steps, causing iso-surface extraction
methods to inadvertently merge or split surfaces and thus distort their
topology. In contrast, a co-moving local frame keeps features nearly
stationary across time steps, preserving more accurate iso-surfaces.

The contributions of our method are twofold. Firstly, we con-
tribute to the field of fluid dynamics visualization by showcasing the
effectiveness of direct visualizations of Lagrangian coherent struc-
tures (LCS) in locally-adapted reference frames. Secondly, we show
that the extraction of iso-surfaces and other geometric features, such
as ridge lines, in their local reference frames, results in smoother ge-
ometries in space-time as well as enhanced topological fidelity. This,
in turn, opens up new avenues for research and application, includ-
ing the potential for improved prediction and manipulation of fluid
behavior in various scientific and engineering contexts. While we
build on an extensive amount of previous work, we for the first time
bring together the computation of reference frames with the compu-
tation and visualization of coherent structures and the corresponding
material boundaries in an interactive framework. One key advantage
of our proposed method is that the computation of iso-surfaces in
their local reference frames can be done by standard algorithms
and software components. We demonstrate that the computation of
iso-surfaces in the local reference frame using VTK [Kit03,SML06],
not only results in triangle meshes with lower complexity and less
topological artifacts, but also in lower computation times.

2 Related Work

Feature extraction in fluid flow is a long-standing important topic in
continuum mechanics as well as in visualization. See, e.g., the state
of the art report by Post et al. [PVH∗03], or the feature flow fields of
Theisel et al. [TS03]. Very powerful general approaches for feature
extraction and tracking have been presented, such as in the feature
tracking kit (FTK) [GLX∗21]. This often involves determining a
well-adapted space-time mesh, including recent work such as that
of Ren and Guo [RG23]. One key advantage of our approach is
that simple reference frame transformations can sometimes help
reduce the need for more complicated approaches such as feature-
adapted meshes. In a suitably transformed field, we can make use of
existing implementations based on regular grids (e.g., VTK [Kit03,
SML06], ParaView [AGL05], or the Topology toolkit [TFL∗17,
BMBF∗19]). Defining and finding features is often done on the
basis of topological properties and structures. See the state of the art
report on topology-based visualization of unsteady flow by Pobitzer
et al. [PPF∗10], the early work of Perry and Chong [PC87, PC94],
or recent work on the distinguished hyperbolic trajectories for 2D
time-dependent vector field topology of Hofmann and Sadlo [HS20].

Lagrangian coherent structures (LCS) Coherent structures
have long been considered to be important topics in flow visualiza-

tion, see, e.g., Kasten et al. [KWP∗10]. A well-known definition of
LCS was introduced by Haller and Yuan [HY00], with an approach-
able introduction by Haller [Hal15]. Serra [Ser17] provides an in-
depth overview of Eulerian and Lagrangian objective structures and
their applications. Lagrangian transport phenomena in geophysical
flows are very important, see, e.g., Jones and Winkler [JW02].

Finite-time Lyaponuv exponents (FTLE). One option to com-
pute LCS as distinguished material surfaces is to build on FTLE
fields, as proposed by Haller [Hal01], in which LCS are defined as
ridges of FTLE fields [SLM05]. Ridges have, for example, been ex-
tracted with the Marching Ridges algorithm [FP01] as implemented
in the VCG ParaView plugins [SHH∗19]. This has been used for
visualizing LCS extracted as ridges from FTLE fields by Sadlo and
Peikert [SP09], for example.

Reference frame transformations and invariance. The invari-
ance of physical computations with respect to the chosen reference
frame or observer is an important topic in continuum mechanics
and visualization. Earlier work often focused on Galilean invari-
ance [Lug79, SWH05, WSTH07, BHJ16]. It is, however, often seen
as important to not only be indifferent to equal-speed translations of
the reference frame, but also with respect to arbitrary rotations of the
frame. Together, invariance with respect to all rigid reference frame
motions (translations, rotations) is referred to as objectivity [Ast79,
DL76,Ogd97,TN65] in both fluid mechanics [Hal05,HHFH16] and
visualization research [GST16,HMTR19,THR∗21]. Other proposed
types of invariance include rotation invariance [GST16], similarity
and affine invariance [GT20], and invariance under displacement
transformations [BRG20].

Fluid properties can be computed in a way that by construction
is objective. For example, the observation of the vorticity tensor
in the eigenbasis of the rate-of-strain tensor [DL76, Ast79], using
the strain acceleration tensor [Hal05], or observing instantaneous
vorticity deviations and averages along particle trajectories (path
lines) [HHFH16] (LAVD). Moreover, the observation of hyperbolic
stretching behavior computed via the finite-time Lyapunov exponent
(FTLE) [SLM05, HY00]. In fluid mechanics, objective concepts
have been established for all three kinds of Lagrangian coherent
structures [Hal15], i.e., parabolic, elliptic, and hyperbolic LCS.

Alternatively, a special reference frame can be determined in an
objective manner via optimization, which then makes other orig-
inally non-objective properties objective if they are computed in
this optimal frame. The first approach that proposed this idea was
presented by Günther et al. [GGT17], who formulated the search
for the optimal observer as a linear optimization that minimizes the
unsteadiness of the observed flow field. This can also be formulated
in terms of the observed time derivative defined by Hadwiger et
al. [HMTR19]. The approach by Günther et al. [GGT17] and its
extensions [GT20, BRG20, THR∗21] perform reference frame op-
timization completely locally. A global optimization scheme was
proposed by Hadwiger et al. [HMTR19], which was also extended
to curved spaces by Rautek et al. [RMB∗21]. These optimization
techniques can be the basis for subsequent interactive exploration of
reference frames and flow fields, as shown by Zhang et al. [ZHTR22].
An optimal reference frame can also be computed locally in a
manner that is guided by user interaction, such as the vortex lens
metaphor proposed by Rautek et al. [RZW∗24].
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Other optimization methods can also be used to optimally observe
objective properties, such as computing the objective deformation
component of a velocity field as proposed Kaszás et al. [KPH22],
who compute the reference frame that minimizes the observed ki-
netic energy of the flow field. Another fruitful avenue is using
machine learning methods for robust reference frame extraction,
as shown by Kim and Günther [KG19]. Apart from objective vor-
tex extraction [GT18], reference frame considerations have also
been important in the development of unsteady vector field topol-
ogy [BYH∗20].

Vortex detection. A particularly important coherent structure
are vortices. See the state of the art report on vortex extraction by
Günther and Theisel [GT18], in which computational methods are
categorized as either region-based or line-based. Well-known exam-
ples for region-based methods include the criteria of Okubo [Oku70],
Weiss [Wei91], Hunt [HWM88], and Jeong and Hussain [JH95]. Ex-
amples for line-based methods are Sujudi and Haimes [SH95], the
computation of feature flow fields for critical points [TS03], the
parallel vectors operator of Peikert and Roth [PR99], and tracking
of swirling stream lines [BP02, TWHS05, TWSH02]. The LAVD
field by Haller et al. [HHFH16] facilitates detecting vortices both as
regions as well as a vortex core line located at the isolated maximum
of the LAVD scalar field. Other vortex detection methods include
those based on vector field decomposition [BPKB14], the geometric
method by Xie et al. [XXLL10], the integration based methods by
Globus et al. [GLL91], using the acceleration magnitude as Kas-
ten et al. [KRHH11], the approach by Wiebel et al. [WCW∗09]
or Sadlo et al. [SPP04], the predictor-corrector method by Banks
and Singer [BS95], and vortex boundary detection using machine
learning methods [BCG20].

3 Mathematical Framework

In this section, we rigorously define reference frames, their transfor-
mations, and key related concepts used throughout this paper. The
flow domain is a manifold M, specifically M = R2 for 2D unsteady
flow fields v(x, t), with x ∈ R2. Reference frames are described
infinitesimally as (Killing) vector fields w(x, t) on M.

3.1 Reference Frames

Because any reference frame by itself can only be given explicitly
relative to some other reference frame, it is customary to define
a reference frame via the transformation between two reference
frames. In order to transform between two frames, we define a time-
dependent family of diffeomorphisms t 7→ φt . For fixed time t, each
diffeomorphism φt is a smooth map with smooth inverse from the
manifold M to itself, and t 7→ φt depends smoothly on the time
parameter t. That is, we have

φt : M → M,

y 7→ φt(y) =: x.
(1)

This should be interpreted as points labeled x representing spatial
points (actual points, not x coordinates) in the original (input) ref-
erence frame (often also called the lab frame), and spatial points
labeled y representing points (actual points, not y coordinates) in the
reference frame that we want to transform to. We will also simply
say frame x or frame y. Fig. 2 depicts space-time visualizations for
both frames.

For physically-realizable observers, each diffeomorphism φt must
be an isometry [ZHTR22]. For M = R2 (or R3), these isometries
can be given as

φt(y) = w(t)+Q(t)
(
y−w(t0)

)
. (2)

Here, w(t0) is some arbitrary position at time t = t0; each Q(t) is
a rotation tensor (i.e., a proper orthogonal tensor, meaning it has
determinant 1.0, and QT (t)Q(t) = I), and Q(t0) = I (identity).

We can therefore also define a reference frame as a map

t 7→
(
w(t),Q(t)

)
. (3)

The map t 7→ w(t) determines a space-time curve which we call a
world line, and t 7→ Q(t) is a time-dependent rotation. Both maps
w(t) and Q(t) are chosen to be smooth with respect to time, and we
can therefore compute the time derivatives ẇ(t) and Q̇(t) of both
functions.

3.2 Reference Frames as Time-Dependent Killing fields

Instead of only working with translations and rotations as above, it
is beneficial to work with the derivatives of reference frame transfor-
mations, which are given by velocity fields that are Killing vector
fields [HMTR19]. Killing fields are the derivatives of isometries,
also called infinitesimal isometries. One immediate benefit that
arises from this is that all Killing fields on a manifold form a vector
space (of vector fields), whose dimensionality is the number of de-
grees of freedom of an infinitesimal reference frame transformation
on the underlying manifold. This enables using linear combinations
of linearly independent basis Killing fields in order to describe any
reference frame [ZHTR22].

Given the map t 7→ φt from Eq. 1, the vector field w that describes
the corresponding infinitesimal transformation is given by

w(x, t) :=
d

dτ

∣∣∣
τ=t

φτ (y), with y = φ−1
t (x). (4)

When φt is an isometry, w is a Killing field. Using Eq. 2, we obtain

w(x, t) =
d

dτ

∣∣∣
τ=t

w(τ)+
d

dτ

∣∣∣
τ=t

Q(τ)
(
y−w(t0)

)
,

= ẇ(t)+ Q̇(t)
(
y−w(t0)

)
,

= ẇ(t)+ΩΩΩ(t)Q(t)
(
y−w(t0)

)
, with ΩΩΩ := Q̇QT ,

= ẇ(t)+ΩΩΩ(t)(x−w(t)) .

(5)

For the last step, we have used y = φ−1
t (x) with φt as in Eq. 2, giving

y = w(t0)+QT (t)(x−w(t)) . (6)

Most importantly, we have introduced the anti-symmetric spin ten-
sor ΩΩΩ, i.e., ΩΩΩ = −ΩΩΩ

T , determining the angular velocity of the
frame y relative to the input frame x. We can now see that, ac-
cording to the definition of Killing fields, the vector ẇ and the
anti-symmetric tensor ΩΩΩ together uniquely define a Killing field on
the manifold M. We also note that, for M = R2, ẇ has two degrees
of freedom and ΩΩΩ has only one, while for M = R3 each of these
has three degrees of freedom. Thus, in total we have exactly the
dimensionality of the vector space of Killing fields as stated above.

Likewise, given a time-dependent vector field w(x, t), the time-
dependent family of diffeomorphisms φt : M → M is given by the
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Figure 2: Discrete space-time structures. (a) Time slices (time depicted vertically) of discrete objective scalar field, world line t 7→ w(t) of reference frame
(yellow), individual iso-contour components (cyan). (b) Iso-surfaces extracted in global input (lab) reference frame x. (c) Iso-surfaces extracted in the
transformed space (determined by the time-dependent isometry φt ) of the locally-determined reference frame y. (d) and (e) Two different iso-surface components
transformed back (via the time-dependent inverse isometry φ−1

t ) into the original input (lab) frame x. Compare (b) with (c,d).

family of curves t 7→ φt(y), for all y ∈ M, as solutions of the ODE

d
dt

φt(y) = w(φt(y), t) . (7)

To solve Eq. 7, we choose the initial values φt0(y) = y for an arbitrary
time t0, with the corresponding diffeomorphism φt0 the identity map.

Finally, from now on we will describe every reference frame as a
Killing field w on M = R2, referred to a basis of Killing fields ei as

w(x, t) = a(t)e1(x)+b(t)e2(x)+ c(t)e3(x), a,b,c ∈ R. (8)

Without restriction of generality, we use the same basis fields ei
as Zhang et al. [ZHTR22], given explicitly as follows. On the
manifold M = R2, we use the following three linearly-independent
basis Killing fields. The vectors ei(x) (i ∈ {1,2,3}) at any spatial
point x = (x̂, ŷ) ∈ R2, using Cartesian coordinates (x̂, ŷ), are

e1(x̂, ŷ) =
[

1
0

]
, e2(x̂, ŷ) =

[
0
1

]
, e3(x̂, ŷ) =

[
0 −1
1 0

][
x̄
ȳ

]
. (9)

For e3, corresponding to input vector fields given on a rectangular
domain D = [xa,xb]× [ya,yb] ⊂ R2, with center point (x̂0, ŷ0) =
1
2 (xa + xb,ya + yb), we define coordinates (x̄, ȳ) := (x̂− x̂0, ŷ− ŷ0).
Using these basis Killing fields, any Killing field (and, thus, infinites-
imal reference frame motion) can be expanded using Eq. 8.

3.3 Locally Defining Reference Frames

Sec. 5 describes our approach for locally determining reference
frames, which we simple refer to as local reference frame (LRF),
in detail, and Sec. 6 describes how we use them to enhance visual-
ization and analysis. However, to immediately expand on the above
discussion, we briefly outline our options for defining reference
frames locally:

1. We choose a spatial position, and extract a reference frame, given
by (a,b,c)(t), along the corresponding world line of an observer
field u (which is usually not a Killing field), as explained in
detail by Zhang et al. [ZHTR22]. Because u was computed to
locally adapt to the flow field, the resulting reference frame is
locally-adapted.

2. We extract a reference frame, given by (a,b,c)(t), by using a lo-
cal user interaction via the vortex lens of Rautek et al. [RZW∗24].
Locality of the frame results from the locality of the vortex lens.

3. We extract a reference frame, given by (a,b,c)(t), for a re-
gion U ⊂ R2. For example, we can compute the best L2 fit of a
Killing field to the flow in U , as done by Kaszás et al. [KPH22].
We can also use option 1 above to obtain a Killing field for each

point in U , and then from these compute the average Killing
field for U . Locality immediately follows from the choice of
region U ⊂ R2.

3.4 Objective Tensor Fields

A tensor field T, of arbitrary order and type, including scalars and
vectors, is objective if and only if under a frame change correspond-
ing to the family of diffeomorphisms t 7→ φt it transforms as

T∗ = φ∗
t T. (10)

The notation φ∗
t denotes the pullback [O’N06] of the diffeomor-

phism φt : M → M at fixed time t. The pullback connects points y
with corresponding points x = φt(y), and, for Euclidean isometries
(Eq. 6), it simply transforms vectors and linear maps of vectors by
rotating them using combinations of Q and QT , as given explicitly
below. In order for a tensor field to be objective, Eq. 10 must hold
for all times t (i.e., for each t). In the following, the pullbacks are
applied explicitly for different fields in M = R2 (also valid for R3).

Objective scalar fields. According to the above definition, a
scalar field f : M → R is objective if f ∗ = φ∗

t f holds. This means

f ∗
(
y
)
= f
(
x
)
, with x = φt(y). (11)

Objective vector fields. A vector field v is objective if v∗ = φ∗
t v

holds. Expanding the pullback of vector fields explicitly, this means

v∗
(
y
)
= QT v

(
x
)
, with x = φt(y). (12)

Objective second-order tensor fields. A tensor field S : v 7→ S(v)
is objective if S∗ = φ∗

t S holds. That is, expanding the pullback, if

S∗(y
)
= QT S

(
x
)

Q, with x = φt(y). (13)

4 Objective Structures

Our interest focus on objective fluid structures – those indepen-
dent of reference frame choice. Our primary targets are objective
space-time structures, synthesized from objective Eulerian struc-
tures and Lagrangian (coherent) structures. While these structures
are theoretically frame-invariant, can in principle be “extracted” in
any reference frame, due to discretization and sampling the actual
choice of reference frame for this computation can make a signifi-
cant difference. See Figs. 2 and 3.

4.1 Objective Eulerian Structures

We define an objective Eulerian structure as a set of spatial points Sτ ,
for a fixed time t = τ , where the way of determining this set of points
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is independent of the chosen reference frame. That is, if we have
any pair of reference frames x and y, as described above, then we
must have

Sτ (frame-x) = φt (Sτ (frame-y)) . (14)

This notation means that using the same way (algorithm, recipe; e.g.,
iso-contour extraction) of determining the set Sτ ⊂R2 independently
in any of the two frames results in the same set of points, where “the
same” is in the sense of the definition of the diffeomorphism φt in
Eq. 1, mapping all points y ⊂R2 to the corresponding points x ⊂R2,
at time t.

In particular, we are interested in objective Eulerian structures
that are objective because they are extracted from objective tensor
fields, for example by computing iso-contours of an objective scalar
field f : M → R. An example for such an objective Eulerian scalar
field is the instantaneous vorticity deviation (IVD) by Haller et
al. [HHFH16]. We refer to the discussion of Mattia [Ser17] for more
details and applications of objective Eulerian coherent structures.

4.2 Lagrangian Structures

Lagrangian structures often can be computed by integrating ob-
jective properties, such as an objective scalar field, along path
lines [Ser17, HHFH16]. As such, they are in essence objective by
definition. However, it is crucial to note that this is only true if the
integration in fact integrates an objective tensor field. Otherwise, the
integration along path lines does not suddenly make a non-objective
property objective.

Again, we are in particular interested in Lagrangian structures that
are extracted from (integrated) objective tensor fields, for example
by computing iso-contours of an objective scalar field f : M → R
that results from integration of an objective tensor field along path
lines.

A very well-known example for such an objective La-
grangian scalar field is the finite-time Lyapunov exponent fields
(FTLE) [Hal01, SLM05]. Another example is the Lagrangian-
Averaged Vorticity Deviation (LAVD) defined by Haller et
al. [HHFH16].

Lagrangian fields vs. Lagrangian coherent structures. A sub-
tle point is that there is no single common definition of a La-
grangian coherent structure (LCS), and common definitions of LCS,
e.g., [HY00, Hal15], do not necessarily fully coincide with the ad-
vection (under the flow map) of a Lagrangian scalar field such as
FTLE [SLM05]. Because our focus is on the extraction and visual-
ization of any such structure relative to local reference frames, we
side-step this issue and for any particular user choice of a particular
objective Lagrangian scalar field and its relation to a Lagrangian
coherent structure we mainly defer to the user’s understanding and
interpretation of that choice.

In Appendix A we describe the computation of objective tensor
fields used in the examples of this paper.

4.3 Objective Space-Time Structures

We define an objective space-time structure for a fixed (finite) time
interval [t0, t1] to be a time-dependent set of points S[t0,t1], where the
way of determining this set of points is, again, independent of the

chosen reference frame. That is, any observer will determine the
same set of points S[t0,t1], where we analogously to Eq. 14 define

S[t0,t1](frame-x) = φ[t0,t1]
(

S[t0,t1](frame-y)
)
. (15)

With this notation we mean that, for the space-time structure S[t0,t1],
Eq. 14 must hold for each fixed time t and the corresponding map φt .

4.4 Computation of Space-Time Structures

We now define a general function Extract, which takes an objective
tensor field T as input and produces an objective space-time structure
S[t0,t1] as output. That is, we define the structure S[t0,t1] computed by

S[t0,t1] := Extract
(

T[t0,t1]

)
. (16)

For tensor fields that are continuous in space and time, their ex-
traction does not depend on the choice of observer, because of the
frame-indifference of objective structures. Denoting a transformed
tensor field by T∗

[t0,t1]
= φ∗

t T[t0,t1], as above, we thus know that the
following equation must hold for any reference transformation φt :

Extract
(

T∗
[t0,t1]

)
= φ[t0,t1]

(
Extract

(
T[t0,t1]

))
. (17)

However, if we now define an operator Extract that is a discretized
version of the continuous operator Extract, we will, in general, have

Extract
(

T∗
[t0,t1]

)
̸= φ[t0,t1]

(
Extract

(
T[t0,t1]

))
. (18)

We will in particular look at the problems incurred by discretizing
the extraction operator in time. See Fig. 3 for an example.

5 Choosing Local Reference Frames

Our main goal is to work with a reference frame that is locally
adapted to a Lagrangian structure of interest, as determined inter-
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Figure 3: Temporal under-sampling of space-time structures. (a) Translat-
ing vortex with increasing translational speed. Iso-contour of local vorticity
deviation extracted in local reference frame but visualized in lab reference
frame. With faster translational speed as well as with finer detailed struc-
tures temporal under-sampling occurs in the lab reference frame. (b) and
(c) Comparison of iso-surface extraction in local reference frame (blue sur-
faces), and in lab reference frame (green surfaces), visualized in (b) the local
reference frame; and (c) the lab reference frame.
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actively by the user. Visual guidance is provided by space-time
visualizations, such as the ones in Fig. 2, for example by consider-
ing color-coded time slices of objective scalar fields such as LAVD
or FTLE. Using this guidance, the user chooses a space-time point
or region of interest, and then a reference frame corresponding to
this user choice is either interactively computed (e.g., by using a
vortex lens [RZW∗24]), or extracted from a pre-computed observer
field (e.g., as described by Zhang et al. [ZHTR22]). The observer
field [HMTR19] used in the latter can be seen as containing in-
finitely many reference frames, one for each point in space, where
each of these frames is locally adapted to the fluid flow around that
point through the optimization process that was used to compute the
observer field.

For most kinds of user interaction, we want the user to not only
choose a reference frame interactively, but to also choose a specific
world line t 7→ w(t) in the reference frame, as well as an iso-value
for the surface extraction. The choice of reference frame, world line
in that reference frame, and iso-value can be done by selecting a
single space-time point for all three purposes. An example of this
user interaction can be seen in the supplementary video.

To explain the difference between a reference frame and a specific
world line, we would like to highlight a subtle point regarding
Killing vector fields. From Eq. 3, we see that a specific world line
can already be part of the definition of a reference frame. However,
a Killing field is an entire vector field that is independent of any
particular spatial point or world line—it is a vector field on the
underlying manifold M, without any “special” point, just like the
input vector field v is. This fact can also be seen from Eq. 8, which
is clearly independent of any particular point. In contrast, Eq. 5
(w(x, t) = ẇ(t)+ΩΩΩ(t)(x−w(t))) is another valid way of writing
a Killing field, which happens to make use of a specific world
line w(t). But this definition results in the exact same vector space
of Killing fields as Eq. 8, and the choice of world line w(t) is not
unique: For a specific Killing field, any world line can be used in
Eq. 5 to define the same Killing field (corresponding to the exact
same reference frame motion).

5.1 Choosing a Starting Point in Space-Time

The first main goal of user interaction with the input flow field is to
choose a point in space-time, which determines a chosen start time
(or reference time) t0 and a corresponding spatial point w(t0). The
user has the following options how to choose these

Direct selection of space-time point. The user selects a space-
time point directly in a space-time visualization, such as the one
shown in Fig. 2 (a). This point then is the point w(t0), at time t0.

Vortex lens selection. The user selects a space-time point to steer
a vortex lens, and the selected point becomes the starting point for
the vortex lens optimization described by Rautek et al. [RZW∗24]
to find the actual optimal point w(t0), taking into account the input
field v in the vortex lens region, in addition to the user’s initial
chosen point.

Selection via iso-value. Considering a time slice with a color-
coded objective scalar field, such as an objective vorticity deviation
(IVD or LAVD), the user can select a space-time point to pick the
corresponding scalar value as an iso-value. We then interactively

extract the corresponding iso-contour in the time slice that the user
selected. Iso-contours often consist of multiple connected compo-
nents, and we choose the component into which the user clicked and
compute the centroid of that component. This point then becomes
the selected space-time point for further interaction. It can be either
(1) used directly, or (2) be used as the starting point for vortex lens
optimization, as above.

5.2 Extracting a Local Reference Frame Transformation

In order to compute or extract a local reference frame, we have
two main types of options: (1) We focus on a single space-time
point, and extract a reference frame corresponding to that point. The
main way of doing this is to use a pre-computed observer velocity
field [GGT17, HMTR19, RMB∗21, RZW∗24]. However, focusing
on a “single point” includes taking into account derivatives at that
point, i.e., even in this case we mean a point and at least a small
neighborhood around it. (2) We focus on a (potentially larger) region,
over which a reference frame is computed, usually by minimizing
a corresponding objective function. This region can be relatively
large, as for example in Kaszás et al. [KPH22], or relatively small,
as for example the vortex lens region in Rautek et al. [RZW∗24].

5.2.1 Locality by choosing a space-time point

As above, by choosing a point we in fact mean choosing a point
and its infinitesimal neighborhood around it, such that derivatives
can be computed at the chosen point to take into account local flow
properties.

Extraction from observer field. As described by Zhang et
al. [ZHTR22], a very useful way to extract a local reference
frame from an observer field u is to let the user choose a space-
time point, which we directly define as the starting point w(t0) at
time t0. We then define the world line t 7→ w(t) by solving the ODE
ẇ(t) = v(w(t), t) as

w(t) = w(t0)+
∫ t

t0
v
(
w(τ),τ

)
dτ. (19)

The corresponding spin tensor is then determined by

ΩΩΩ(t) =
1
2

[
0 −∥∇×u(w(t), t)∥

∥∇×u(w(t), t)∥ 0

]
. (20)

Together, the world line t 7→ w(t) and the spin tensor ΩΩΩ(t) now
completely define the extracted reference frame as given by Eq. 5,
i.e.,

w(x, t) = ẇ(t)+ΩΩΩ(t)(x−w(t)) .

Extraction from input velocity field. A simple approach that can
work well for simple flow fields with a well-chosen point w(t0) is
to use the same recipe as above, but start from the field u := v,
as also shown by Zhang et al. [ZHTR22]. This removes the need
for the optimization of an observer field u in a potentially costly
pre-computation.

5.2.2 Locality by choosing a region

In addition to choosing a point (with an infinitesimal region
around it), it can be beneficial to choose a region for which a refer-
ence frame is optimized. We use the region-based options described
below.
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Vortex lens interaction. The vortex lens described by Rautek et
al. [RZW∗24] lets the user interactively choose a space-time point
and a lens region around it, and then interactively and progressively
computes a reference frame that is adapted and optimized for the
lens region.

Observed kinetic energy-minimizing reference frame. Trans-
lated to our terminology, Kaszás et al. [KPH22] propose to compute
the Killing field w that minimizes the kinetic energy of the input
flow field in a region U ⊂ R2 transformed into the reference frame
determined by the field w. Computationally, they find the minimizer
of

min
w(t)

∫

U(t)
∥v(x, t)−w(x, t)∥2

2 dA. (21)

The time-dependent field w(x, t) is computed for each time t sep-
arately, for which the above expression determines the field w(t)
that is closest to the input field v(t) in the L2-norm, within a given
region U(t), and dA a differential area element in this region. The
region U(t) is determined by a chosen initial region U(t0), and
defining U(t) for all other times t by advecting U(t0) according to
the flow map of the input field v.

Average Killing field reference frame. From the representation
of a Killing field via Eq. 8, if we have extracted a reference frame
for each spatial point in a region of interest as above, we can simply
take the average of all reference frames extracted in the region, by
averaging each of the parameters a,b,c in Eq. 8 over the region, re-
sulting in a single “average” Killing field. We note that this was also
proposed and described in more detail by Zhang et al. [ZHTR22].

6 Using Local Reference Frames

Our use of locally defined reference frames has two major goals: (1)
Discrete computation of space-time structures in a locally-adapted
frame can increase the quality of the extracted structure significantly.
(2) Visualizing space-time structures in a suitable frame reduces
visual clutter and makes visualizations more natural and easy to
interpret.

6.1 Explicit Reference Frame Transformations

We will need explicit expressions for the reference frame transforma-
tion φt , with the isometry according to Eq. 2, as well as the inverse
transformation φ−1

t , according to the isometry given by Eq. 6.

For M =R2, using Cartesian coordinates the rotation tensors Q(t)
in Eqs. 2, 5, and 6 can be written using an angle function θ(t) as
matrices

Q(t) =
[

cosθ(t) −sinθ(t)
sinθ(t) cosθ(t)

]
. (22)

The world line t 7→ w(t) and the integrated angle θ(t), respectively,
are the solutions of the respective ODEs

d
dt

w(t) = w
(
w(t), t

)
,

d
dt

θ(t) = c(t). (23)

Here, the angular velocity c(t) is the single degree of freedom
(for M = R2) that defines the spin tensor ΩΩΩ(t). By a well-known
property of Killing fields in Rn, both the curl of the field w and the
spin tensor ΩΩΩ(t) will be the same at every point of the domain R2,

and we have

ΩΩΩ(t) =
[

0 −c(t)
c(t) 0

]
. (24)

The angular velocity c(t) could be computed via the curl ∇× as

c(t) :=
1
2
∥∇×w∥. (25)

However, from Eq. 8 with the basis Killing fields ei given in App. ??,
we can see that the c(t) in Eq. 8 and in Eqs. 24 and 25 are identical.

We can now solve the two ODEs in Eq. 23 above as the initial
value problem (IVP) with w(t0) as chosen and θ(t0) = 0, giving

w(t) = w(t0)+
∫ t

t0
w
(
w(τ),τ

)
dτ, θ(t) =

∫ t

t0
c(τ)dτ. (26)

Space-time integration. In order to allow the user to interactively
choose any time t0 as a “reference time” for the visualization of
space-time structures, we correspondingly integrate w(t) and Q(t) in
both time directions (forward and backward), starting from the inter-
actively chosen, but otherwise arbitrary, time t0 and w(t0), together
with initial value θ(t0) = 0, immediately also giving Q(t0) = I
(identity) via Eq. 22.

6.2 Structure Extraction

A key advantage of our framework is that for the extraction of
structures we can use unmodified standard algorithms and imple-
mentations, for example as implemented in VTK or ParaView. In
order to facilitate this approach, we (1) transform the input field
using our reference frame transformation (Sec. A) before feature ex-
traction. While this requires computing the transformed field across
the entire domain, we demonstrate reduced overall computation
time compared to direct extraction in the original frame. (2) apply
the inverse transformation to extracted features (typically triangle
meshes) to bring them back to the original frame. This lightweight
post-processing is easily parallelizable and suitable for GPU accel-
eration. For implementation, we employ VTK’s marching cubes
for iso-surfaces and Sadlo & Peikert’s Filtered AMR Ridge Extrac-
tion [SP07] for ridge extraction.

6.3 Reference Frame Aware Visualization

Visualizing objective structures in a local reference frame, which
is usually not the input (lab) frame, aids detailed visual analysis.
Coherent structures that are moving through space over time tend to
become “vertical” in space-time visualizations in a reference frame
that co-moves with them. See, Figs. 4 and 5 for examples. Fig. 10
in Appendix B illustrates the seeding of path lines in space-time
in order to investigate the relationship between particle trajectories
and (potential) material boundaries. In such visualizations it be-
comes better visible whether particles cross surfaces, which might
necessitate further investigations whether these surfaces can in fact
represent material boundaries.

In purely spatial visualizations (i.e., not space-time) structures
look almost steady, i.e., almost not moving, instead of moving
through the spatial domain. This allows for a visual analysis of
the shape and how the shape of the structure changes over time. For
example, in Fig. 5 and in the supplementary video we show iso-
contours that merge and split over time, which is only easily visible
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in the co-moving reference frame and much harder to observe in the
lab reference frame.

7 Results and Discussion

In Fig. 1, we show material boundaries of a vortex street computed
as FTLE ridges in (2+ 1)-D space-time using ParaView. FTLE
is a common tool in the visualization of material boundaries, and
ridges of the FTLE field can be extracted to obtain a geometric
representation of the boundary. We show a comparison of material
boundaries, extracted in the local reference frame (Fig. 1 top), versus
the lab reference frame (Fig. 1 bottom). The material boundary
extraction in the local reference frame results in a smoother surface
and reduced computation times (Table 1, Cylinder-ridge).

Temporal under-sampling. Fig. 3 illustrates the problem of
temporal under-sampling in the original reference frame because
of the fast motion of the vortex and the fine detail of the flow
features. Using a reference frame that co-moves with the features can
prevent temporal under-sampling in these scenarios. Fig. 3 (a) shows
the synthetic data set. We compute the synthetic vortex structure
that translates with increasing translational velocity by applying
an unsteady reference frame translation u(x,y, t) to a steady vortex
v(x,y) given as:

(a)

(b)

(c)

Figure 4: Removing Topological Defects. (a-c) Geometric and topological
defects of potential material boundaries in the Four Centers synthetic flow
when extracted in the input (lab) frame (left); no defects when extracted in
local reference frame (right). (a-b) vorticity (non-objective), (c) Rotational
component of Cauchy Green Deformation Tensor (objective).

iso-surfacepathline local vorticity deviation
-1 1

(a)

(b)

(c)

Figure 5: Local vorticity deviation iso-surfaces shown in a local reference
frame: (a) Negative local vorticity deviation (iso-value: -0.1). (b) Positive
local vorticity deviation (iso-value: 0.1). (c) Close-up of merging material
boundary time-series (left to right, iso-value: 0).

v(x,y)=

(
−10ye−10((x+1)2+y2)

10(x+1)e−10((x+1)2+y2)

)
u(x,y, t) =

(
−0.25t

0

)

We sample the synthetic vortex in the domain x = [−4..4], y =
[−2..2] on a regular grid of size 256x128. We sample the time
domain t = [0..5] at 32 equally spaced time steps. In Fig. 3 (b), we
compare the extracted iso-surfaces visualized in the local reference
frame of the feature. In Fig. 3 (c), we compare the extracted iso-
surfaces visualized in the lab reference frame. Temporal under-
sampling becomes a problem when features move too fast relative
to the reference frame and when fine geometric details need to be
resolved.

This result illustrates the meaning of Equation 18: Although
in theory the extracted features are invariant to reference frame
transformations, when discretely computing surfaces using standard
software tools the reference frame does make a difference. Com-
puting features in the local reference frame results in better quality
because the local reference frame is best adapted to the feature.

One assumption that we make in our approach is that a suitable
local reference frame exists and can be computed. While there are
no guarantees for this in general, we have found that in many cases
and potential application scenarios suitable local reference frames
exist and can be extracted. In this paper we treat the computation of
observer fields as a black-box, since different methods for the nu-
merical optimization exist [GGT17, HMTR19, RMB∗21, RZW∗24].
In principle, our method is agnostic to the method that defines the
observer motion. Notably, numerical optimization methods are not
the only way to define observer fields. In certain application sce-
narios, an observer motion can even be assumed or inferred from
simulation parameters. Since reference frame transformations do
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1min max 0

(c)

(d)

(b)

(f)

(a) IVD FTLE

Figure 6: Comparing material boundaries in local reference frames. Iso-surfaces of IVD and FTLE (IVD and FTLE color-coded on the plane: blue to red). (a)
overview of dataset. (b) Crop out of region 1. (c) Crop out of region 2. (d) Crop out of region 3. (b,c,d) surface complexity visualized in the local reference frame,
from left to right: IVD (ours), IVD (original frame), FTLE (ours), FTLE (original frame). Note that the surface curvature (color-coding blue to yellow) is only
lower in the time-direction when computed in the local reference frame.

not affect the correctness of the solution, they can be applied in the
reference frame that is found to be most suitable and leads to the
least topological artifacts in practice.

7.1 Interactively Changing Local Reference Frames

Fig. 6 demonstrates the effectiveness of our technique by comparing
material boundaries extracted in both the original and local reference
frames. Specifically, it showcases iso-surfaces of the Instantaneous
Vorticity Deviation (IVD) and the Finite-Time Lyapunov Exponent
(FTLE). Panel (a) provides an overview of the dataset, while panels
(b), (c), and (d) present cropped regions. In these cropped views, the
surfaces are arranged from left to right as follows: IVD computed
using our method, IVD in the original frame, FTLE with our method,
and FTLE in the original frame. The surfaces are color-coded from
blue to yellow to represent curvature.

A key observation from the figure is that the iso-surfaces com-
puted in the local reference frame exhibit significantly lower curva-
ture in the time direction compared to those in the original frame.
This reduction in curvature indicates that the extracted local refer-
ence frame effectively makes the flow features as steady as possible.
Importantly, this improvement is achieved by employing rigid mo-
tion observers, ensuring that the reference frame transformation
remains physically correct and interpretable.

The reduced geometric complexity—evident from lower trian-
gle counts (see Table 1) and decreased curvature in the time di-
rection—is not the result of simply smoothing out the geometry.
Instead, it stems from adopting a physical observer that optimally
co-moves with the flow structures. As a consequence, the curva-
ture and fidelity of the surfaces are not smoothed in space but are
optimally adjusted over the time dimension. This leads to better vi-
sualizations that enhance the representation of flow features without
compromising their physical accuracy.

The computation of material boundaries in the local reference
frame of a moving feature opens the door for a novel interactive
visualization tool. We can interactively extract iso-contour compo-
nents at a location chosen by the user. Since iso-contour extraction is
much faster than iso-surface extraction we can repeat this procedure
in several time steps by following the reference frame. This effec-

tively provides a preview of the iso-surface. Without a suitable local
reference frame it is not possible to consistently choose the correct
iso-surface component over time. Fig. 8 in Appendix B shows two
iso-contour previews with the resulting iso-surfaces. The supple-
mentary video demonstrates how this novel interactive method is
used in the exploration of a dataset.

7.2 Evolution of Boundaries in the Local Reference Frame

In Fig. 5, we show a simulated von Kármán vortex street. In this
case study, we demonstrate the visualization of material boundaries
delineating areas of clockwise and anti-clockwise rotation. By using
a local reference frame that moves alongside the evolving vortex
street, we are able to capture the dynamic development of these
separating boundaries over time. We extract iso-surfaces from the
scalar field of local vorticity deviation, which has been calculated
relative to the co-moving reference frame. Figs. 5 (a) and (b) are
space-time visualizations with the time dimension as the vertical
axis. We show time-slices of the iso-surfaces with iso-values (a)
−0.1 and (b) 0.1. Path lines of particles show a good agreement
of the clockwise and counter-clockwise separating boundaries. In
Fig. 5 (c), we show a time-series of the evolution of the iso-surface
boundary with iso-value 0. The perspective of the co-moving refer-
ence frame allows for an in-depth analysis of the material boundary
over time. Notably, in this reference frame we can observe how these
boundaries, which remain stable for some time, converge and merge
during later stages of the evolution of the vortex street. See the video
in the supplementary material for an interactive visualization of the
evolution of boundaries that is much easier to observe in the local
reference frame.

7.3 Topological Artifact Removal in the Local Reference
Frame

In Fig. 4 we show a case-study of investigating the material bound-
aries of the synthetic four centers vector field. In Fig. 4 (a-c) on
the left side we highlight geometric and topological defects that are
introduced by extraction operators that operate in the lab reference
frame and compare to our method that extracts iso-surfaces in the
local reference frame.

In Fig. 4 (a), we show that the visualization of potential material
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Figure 7: Investigating material boundaries. Material boundaries extracted
in a local reference frame. Path lines confirm the close match between both
material boundaries and their contained particles. Left: LAVD and right:
Lagrangian of the rotational component of the Cauchy-Green Deformation
Tensor

boundaries in the lab-frame prevents us from understanding the
structure of the flow field, while in (b) when visualizing the same
geometry in the local reference frame of the features, the potential
material boundaries become apparent.

In Fig. 4 (c), we show an objective invariant of the Cauchy-Green
deformation tensor. We consider the rotational component of the
Cauchy-Green deformation tensor that results in objective material
boundary candidates. The topological defects on the left in Fig. 4 (c)
lead to the extraction of a single iso-surface component. The topo-
logical defects are removed on the right in Fig. 4 (c) resulting in
three distinct iso-surfaces.

Although the defects in Fig. 4 (a-c) appear to be small, they alter
the topology of the surface, wrongly fusing independent components
of the boundary. Defects like these can significantly complicate the
analysis and further processing of boundaries.

7.4 Lagrangian Structures in the Local Reference Frame

We show the use of our visualization method to compare existing
and to design new Lagrangian Structure extraction methods. In Fig. 7
we show the use of our visualization tool to compare results from
the well established LAVD method on the left - which integrates the
vorticity deviation along particle trajectories - and on the right we
show a new method which integrates the rotational component of
the Cauchy-Green deformation tensor (shown in Fig 4 (c)). Both
Lagrangian Structures in Fig. 7 are extracted from objective tensor
fields and show perfect agreement with the path lines of the particles
that are contained inside the boundary.

A key result of our research is the application of our method
to extract and analyze material boundary candidates in the local
reference frame. In Appendix B Fig. 10 we show a comparison of
material boundary candidates derived from multiple vortex region
methods. Our method allows to visualize the superior accuracy of the
LAVD method in aligning boundaries with path line trajectories, in
this idealized model of a simplified model used to study geophysical
fluid dynamics.

Table 1 summarizes the performance measurements comparing
iso-, and ridge-surface extraction in the Original Reference Frame
(Ext-ORF) with our proposed method in the Local Reference Frame
(Total-LRF), which consists of a scalar field transformation (S-RTF)

Dataset Res Tri-ORF Tri-LRF Ext-ORF [s] (S-RFT [s] + Ext-LRF [s] = Total-LRF [s])
RFC 512x512x128 2984K 887K 8.81 0.17 2.49 2.66
RFC 128x128x32 287K 68K 0.92 0.01 0.15 0.16
Boussinesq-iso-1 256x512x150 278K 120K 1.02 0.15 0.48 0.63
Boussinesq-iso-2 256x256x150 474K 209K 1.25 0.07 0.62 0.69
Boussinesq-iso-3 64x128x150 118K 78K 0.38 0.01 0.22 0.23
Boussinesq-iso-4 512x1024x150 108K 76K 1.90 0.61 1.22 1.83
Bickley Jet 2048x256x300 194K 94K 2.46 0.83 0.96 1.79
Cylinder-iso 1024x512x256 24851K 1426K 12.40 1.21 5.41 6.62
Cylinder-ridge 1280x160x32 6406K 3359K 268.48 0.21 175.67 175.88

Table 1: Performance comparison of extracting surfaces in the Original
Reference Frame (Ext-ORF) and in the Local Reference Frame (Total-
LRF). All time measurements are in seconds. Res is the resolution of the input
scalar field. S-RFT is the time to compute the reference frame transformation
of the scalar field. The triangle count is reported for the surfaces in the
Original Reference Frame (Tri-ORF) and in the Local Reference Frame
(Tri-LRF). The lower geometric complexity of the extracted surfaces in the
local reference frame leads to faster computation times, also compensating
for the overhead of the reference transformation of the scalar field.

followed by the surface extraction (Ext-LRF). Although our method
introduces an additional computation step (the scalar field reference
frame transformation), the total computation time (Total-LRF) is
lower than that of the traditional approach. This efficiency gain
is due to the significantly reduced geometric complexity of the
surfaces in the local reference frame, as indicated by the lower
triangle count (Tri-LRF) compared to the number of triangles in
the original reference frame (Tri-ORF). Since the computational
cost is dominated by the surface extraction process, the simpler
geometry in the local reference frame leads to faster computations,
which compensates for the overhead of the transformation step.
Consequently, our method not only produces iso-, and ridge-surfaces
with enhanced geometric and topological fidelity, but also achieves
a reduction in total computation time.

8 Conclusions

In this paper, we have presented a general framework that proposes
to both compute as well as visualize coherent structures, such as
material boundaries, in a local reference frame. The resulting vi-
sualizations often exhibit reduced visual clutter, which can greatly
facilitate interactive exploration and analysis. Moreover, even if a
standard visualization in the original input (lab) reference frame is
desired, we have shown that computing the structures of interest in
the local reference frame and then transforming the result back to
the input frame can lead to quality improvements and remove topo-
logical artifacts due reduced issues with discretization and sampling
in the time domain. Further, we have demonstrated the computa-
tional efficiency of our approach and introduced a novel interactive
iso-contour component preview visualization that is enabled by lo-
cal reference frames. We believe that in addition to the existing
great variety of powerful feature-adaptive computation approaches,
it is very beneficial to also offer interactive visualization and explo-
ration capabilities that fully take reference frame transformations
into account. Ultimately, the concept of interactively choosing and
changing the reference frame which is used for the visualization,
and computation of features as proposed here, could become an
important ingredient of visual analysis software for fluid flows.
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