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Fig. 1: Vortex structures in an unsteady 2D flow field identified and extracted via interactive exploration. The plane (left) shows vortex
core lines (green) and path lines (black). Path lines are seeded close to critical points. The horizontal axis is time: Core lines and path
lines (white-red) in space-time. The vortex lens regions (yellow insets) show vortex structures visualized with Observed Line Integral
Convolution (LIC), i.e., LIC computed from an observed velocity field relative to a locally optimal reference frame in each vortex lens.

Abstract—This paper describes a novel method for detecting and visualizing vortex structures in unsteady 2D fluid flows. The method
is based on an interactive local reference frame estimation that minimizes the observed time derivative of the input flow field v(x, t). A
locally optimal reference frame w(x, t) assists the user in the identification of physically observable vortex structures in Observed Line
Integral Convolution (LIC) visualizations. The observed LIC visualizations are interactively computed and displayed in a user-steered
vortex lens region, embedded in the context of a conventional LIC visualization outside the lens. The locally optimal reference frame is
then used to detect observed critical points, where v = w, which are used to seed vortex core lines. Each vortex core line is computed
as a solution of the ordinary differential equation (ODE) ẇ(t) = w(w(t), t), with an observed critical point as initial condition (w(t0), t0).
During integration, we enforce a strict error bound on the difference between the extracted core line and the integration of a path line of
the input vector field, i.e., a solution to the ODE v̇(t) = v(v(t), t). We experimentally verify that this error depends on the step size of the
core line integration. This ensures that our method extracts Lagrangian vortex core lines that are the simultaneous solution of both
ODEs with a numerical error that is controllable by the integration step size. We show the usability of our method in the context of an
interactive system using a lens metaphor, and evaluate the results in comparison to state-of-the-art vortex core line extraction methods.

Index Terms—Flow visualization, vortex detection, objectivity, observers, reference frames, Lie algebras, visual lens metaphors

1 INTRODUCTION

The detection, visualization, and analysis of vortices in unsteady fluid
flows is an important well-established problem in flow visualization
and continuum mechanics [14,17,28]. However, one crucial problem in
this context is that velocity vector fields always depend on the chosen
reference frame, or observer, relative to which they were measured or
computed. For this reason, it is important that vortex detection methods
are independent of suitable classes of reference frame motion [14].
Our work belongs to the class of objective approaches [17], which are
invariant with respect to any rigid motion of the reference frame [46].

Recently, several methods have been proposed that compute “opti-
mal” reference frames through optimization, with the goal of making
the observed flow field “as steady as possible.” The latter is quantified
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by computing a time derivative with respect to the optimal reference
frame [16]. Different variants either compute optimal frames in small
spatial neighborhoods [2,12], or in an entire domain of interest [16,35].
However, all of these methods have one drawback in common: By
minimizing over a whole region or neighborhood (either locally or
globally), the “steadiness” of the resulting observed flow field is often
not specifically optimal for any potential (but unknown) vortex core
line, i.e., for one specific point at each time (in 2D flow). In this sense,
the above approaches are only optimal when the time derivative mea-
sure can be minimized to exactly zero. However, in general, and in
particular for real-world data, although the time derivative does become
small, it remains non-zero. This implies that often no potential vortex
core line location lies exactly on a point where the observed vector
field is really a steady vector field. Furthermore, all previous methods
compute the optimal reference frames offline and not interactively. This
makes optimization parameters costly and hard to steer by the user.

In this paper, we propose the first approach for interactive reference
frame optimization in unsteady flow fields that is interactively steered
by the user, without any pre-computation. User interaction is built
around a vortex lens metaphor, denoting a current region of interest,
in both space and time, in which a locally optimal reference frame is
computed interactively. However, in contrast to earlier work we do
not compute an optimal reference frame first, and then only afterward
compute vortex core lines. Instead, we interactively perform a joint
optimization: We jointly optimize for (1) an unknown reference frame
motion together with (2) an unknown vortex core line candidate, such



that both together are optimal in a certain sense. We quantify optimality
by an objective function that combines both (1) a critical point criterion
(a vortex core line should always go through a critical point, i.e., a zero
of the observed velocity field), and (2) an observed time derivative
criterion (the observed field should be as steady as possible).

We show that in this way, (1) our method finds better optimal vortex
core line candidates than previous methods; and that (2) the vortex lens
user interaction enables steering the optimization for optimal results
in a natural way. While the user interactively changes the space-time
position and size of the vortex lens, we asynchronously jointly optimize
both the reference frame and a potential vortex core line candidate, us-
ing an iterative approach based on the often-used proximal Alternating
Direction Method of Multipliers (ADMM) algorithm [31]. Moreover,
we build on previous work that describes the time-dependent motion of
reference frames using the notion of observer velocity fields [16,35,53].

1.1 Mathematical Framework
Following the mathematical framework described by Zhang et al. [53],
we describe a Euclidean reference frame by a time-dependent observer
velocity field w(x, t). The field w is in fact very simple, because it
describes an infinitesimal isometry, i.e., it is a Killing vector field [16]
whose integration gives the corresponding isometry. In R2, isometries
have three degrees of freedom per time step (two for translation, one
for rotation), and all infinitesimal isometries form a 3D vector space of
vector fields in R2 [53]. Thus, any observer field w can be expressed as

w(x, t) = a(t) e1(x)+b(t) e2(x)+ω(t) e3(x), (1)

with time-dependent coefficient functions t 7→ (a,b,ω)(t); a,b,ω ∈ R.
Although w is an unsteady vector field, we choose the three basis vector
fields ei as linearly-independent steady vector fields in R2. See Sec. 4.2.

1.2 Joint Observer and Vortex Core Line Optimization
Our goal is to avoid any pre-computation of reference frames, in con-
trast to all similar prior work on optimal reference frames [12,16,35,53],
and instead interactively minimize the functional in Eq. 2 below for each
time step t, jointly comprising a critical point criterion and an observed
time derivative criterion over a spatial vortex lens region R(t)⊂ R2.

For each time step t, we want (1) a point c(t) that lies on a vortex
core line candidate, ultimately given by a curve t 7→ c(t) ∈ R2; and (2)
an observer velocity field w(x, t), ultimately known for all time steps t.
For a given vortex lens region R(t), we jointly compute minimizers of

min
c(t),w(x,t)

∥∥(v−w)(c(t), t)
∥∥+ µ

A

∫
R(t)

∥∥Lw(v−w)(x, t)
∥∥dA. (2)

Both the position c(t) and the observer field w(x, t) are unknown vari-
ables that we optimize for each time t. The region R(t) with area A is
centered around c(t); µ ∈ R is a relative weight. Both terms in the ob-
jective function above use the L1 norm, which we implement by using
proximal ADMM [31] to obtain the minimizer of Eq. 2. To make the
optimization interactive, we optimize time steps progressively, iterating
from one time to the next. The curve t 7→ c(t) and the optimal ob-
server t 7→ w(x, t) are thus only known in a growing time window [t0, t],
with t progressively increasing from some user-selected start time t0.

Eq. 2 includes a critical point criterion (vanishing observed velocity)

(v−w) = 0. (3)

This means that a vortex core line goes through observed critical points
in the observed velocity field, relative to the reference frame w of the
lens. The observed velocity at these points vanishes, as in steady flows.
The second term in Eq. 2 denotes an observed time derivative criterion

Lw(v−w) = 0. (4)

This means that along a vortex core line the observed time derivative
vanishes, relative to the optimal reference frame w (see also Eq. 10).

The overall goal of Eq. 2 is therefore that the curve t 7→ c(t) passing
through observed critical points will map to a single stationary point c
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Fig. 2: Observed Line Integral Convolution (LIC). The insets depict
observed LIC images in five vortex lens regions. They are computed
from observed velocities, relative to a different locally-optimal observer
for each lens. Although for unsteady flows LIC only shows instantaneous
snapshots that often do not depict vortex structures correctly, observed
LIC with a suitably optimized observer solves this problem locally, by visu-
alizing observed velocity fields that are as steady as possible. However,
critical points in observed velocity fields, which become clearly visible in
observed LIC images, reveal vortex structures. Color-coding on the right:
observed velocity magnitude (in insets) vs. original velocity magnitudes.

in the optimal reference frame, as in steady flows. We note that this has
some similarities to feature flow fields [44], but we enforce physical
consistency by optimizing for a field w that is guaranteed to describe a
physical reference frame motion [53], because w is a Killing field.

Given c(t) and w(x, t) as minimizers of the objective function in
Eq. 2, we call the curve t 7→ c(t) an optimal vortex core line candidate.
It is only a candidate, because there is no term in the functional above
that optimizes for actual swirling motion around the core line candidate.
However, this is then simply confirmed afterward by computing dif-
ferent vortex criteria on every candidate line, together with interactive
visualization of these criteria, e.g., color-coding complex eigenvalues of
the observed velocity gradient (∇v−∇w) [53] for each candidate c(t).

1.3 Observed Line Integral Convolution
A crucial ingredient of our framework is the user’s interaction with and
visual inspection of observed velocity fields in an interactively steered
vortex lens region R(t), using observed line integral convolution (LIC)
visualizations. Given the observer field w(x, t) in a vortex lens for
time t, within the respective region R(t) we compute standard line
integral convolution of the corresponding observed velocity field

(v−w). (5)

Despite the simplicity of this equation, because the field w has been
optimized to minimize the observed time derivative as described above,
the corresponding observed velocity field is as steady as possible, and
its observed critical points reveal structures such as vortices as in steady
flows. Fig. 2 illustrates this for five example vortex lens regions.

Moreover, because the computation of the observer field w is objec-
tive, as in prior work [12, 16, 53], in any given vortex lens region R(t)
our observed LIC is an objective visualization: It is independent of
the reference frame for which the input flow field v was measured or
simulated, and observed LIC visualizations will always look the same.



1.4 Vortex Lens in Space-Time
While above we have introduced the vortex lens concept simply as a
time-dependent spatial region R(t), an important idea of our framework
is that the vortex lens is automatically, and progressively, extended into
space-time, from an original lens region R(t0) from some start time t0.

The progressive computation of the observer field w(x, t) allows us
to advect the current lens region R(t) forward in time to obtain the
corresponding lens region R(t + τ) in the next time step t + τ . We will
denote the flow map of the vector field w by φ

tb
ta , which corresponds to

mapping any set of spatial positions in the flow domain from time ta to
the corresponding position under advection by w at time tb, and define

R(t + τ) = φ
t+τ
t

(
R(t)

)
. (6)

It is this “self-advection” of the vortex lens under the flow map of
the observer field optimized for the lens region that allows us to track
vortex core lines, and the corresponding observed LIC, through time.

We note that since the field w is always a Killing field, its flow map φ

comprises isometries, and thus the self-advection of the vortex lens is a
rigid motion and no deformations are introduced. Furthermore, since
we use circular vortex lenses, the rigid motion reduces to a translation.

2 RELATED WORK

Vortex detection. The detection and visualization of vortices in fluid
flows is a very important topic in flow visualization and fluid me-
chanics. Computational methods can be categorized as either region-
based or line-based [14]. Well-known examples for region-based meth-
ods include the criteria of Okubo [30], Weiss [50], Hunt [21], and
Jeong and Hussain [22]. Examples for line-based methods are Sujudi
and Haimes [41], the computation of feature flow fields for critical
points [44], the parallel vectors operator of Peikert and Roth [32], and
tracking of swirling streamlines [4, 43, 45]. The LAVD method of
Haller et al. [19] detects vortices both as regions as well as a vortex
core line located at the isolated maximum of the LAVD scalar field.
Other vortex detection methods include those based on vector field
decomposition [6], the geometric method by Xie et al. [52], the integra-
tion based methods by Globus et al. [11], Wiebel et al. [51], and Sadlo
et al. [37], the predictor-corrector method by Banks and Singer [3], and
vortex boundary detection using machine learning methods [5].

Vortex visualization. Although many techniques for visualizing
fluid flow developed over the years, like Line Integral Convolution
(LIC) [9] and its improvements [27, 39, 40], dense image based meth-
ods [26, 47, 48], texture based methods [23], or streamline-based visu-
alization [24], do not deal directly with the detection of vortices. These
structures play a crucial role in the interpretation of the resulting visu-
alization, as they define the topological structure of the flow [33, 34].
A summary of the state of the art in vortex extraction specifically can
be found in Günther and Theisel [14]. A recent overview dealing with
topology-based flow visualization in detail is given by Bujack et al. [8].

Reference frame invariance. It has been recognized that the detec-
tion of features such as vortices should be independent of any particular
reference frame relative to which a flow field is given [14]. Early ap-
proaches typically focused on Galilean invariance [38,49], including
more recent advances [7]. Going beyond Galilean motion, indepen-
dence of any rigid reference frame motion, including rotations, is
known as objectivity or frame indifference, which is a traditional topic
in continuum mechanics [1, 10, 20, 29, 46] that has received significant
recent attention since the seminal work of Haller in 2005 [17], and is
still a very active topic of research [12, 16, 18, 19, 42]. Other kinds of
invariance, such as rotation invariance [13] have also been defined.

Reference frame optimization. Recently, several methods have
been proposed that find good reference frames through (non-interactive)
optimization. Günther et al. [12], Baeza Rojo and Günther [2], and
Theisel et al. [42] propose local optimization schemes that only opti-
mize over individual small neighborhoods. Hadwiger et al. [16] and
Rautek et al. [35] propose global optimization schemes over an entire
domain of interest. Zhang et al. [53] build on these optimization results
for the interactive exploration of flow fields. Kim and Günther use
machine learning methods for robust reference frame extraction [25].

(a) vortex region candidate identification (b) core line extraction

(c) candidate evaluation (d) observer-relative curves

Fig. 3: Interactive exploration. (a) The user starts by selecting a vortex
lens region in the flow, determining space-time position and region size
(radius of the lens). We interactively perform a reference frame optimiza-
tion for the lens region. (b) We compute a vortex core line starting from
the lens region. For interactivity, the core line extraction is running asyn-
chronously in the background. (c) The user can immediately evaluate
the quality of vortex core line candidates by interactively seeding integral
curves and color-coding a variety of vector field properties. (d) The vector
field describing the optimal reference frame motion associated with one
core line can immediately be used for observer-relative visualizations.

In this paper, we focus on a line-based approach for vortex detection,
where we optimize for the best vortex core line candidate in the region
corresponding to a vortex lens. We use a reference frame optimization
approach and compare to other methods using reference frame transfor-
mations. As pointed out by Bujack et al. [8], most methods for vortex
detection in unsteady flows use reference frames, either explicitly or im-
plicitly, to compensate for ambient motion. We compare our approach
to both kinds of methods. We categorize our approach according to
Bujack et al. [8] as: coinciding with the steady case, segmenting areas
of coherent behavior, Galilean invariant, and objective. Although our
approach is not strictly Lagrangian per their categorization, unlike
some other approaches analyzed by them [8], we explicitly control the
error of our solution as it deviates from a true Lagrangian solution.

3 INTERACTIVE EXPLORATION USING THE VORTEX LENS

Our approach relies on a user in the loop to identify candidates for vor-
tex regions by interactively steering the vortex lens. The lens comprises
a disk-shaped region R(t), of a user-controlled radius r, with a different
region per time t. However, the user always only selects or changes the
vortex lens position and size for any desired time step t0, and our frame-
work automatically, and asynchronously, propagates the region R(t0)
throughout time using Eq. 6. In this way, R(t0) is progressively grown
in time to obtain a space-time vortex lens R([t0, t]), with t increasing
automatically as the optimization of the observer field w(x, t) within
the region R([t0, t]) progresses from time step ti to time step ti+1.

Starting with an initial region R(t0), as in Fig. 3(a), the automatic ex-
tension of R(t0) to R([t0, t]) in space-time is what enables the automatic
extraction of vortex core lines within the space-time domain R([t0, t])
of the vortex lens, as shown in Fig. 3(b). Because the observer field w
is specifically computed just for the vortex lens region, self-advecting
the lens via Eq. 6 is necessary in order to be able to follow the ob-
served velocity field (v−w) through time. The same holds for the user
manually seeding path lines in the vortex lens region, as depicted in
Fig. 3(c). Finally, we can also perform a fully interactive reference
transformation within the space-time region R(t) of any given vortex
lens, which results in “straightening out” vortex core lines and path
lines swirling around them within the lens, as depicted in Fig. 3(d).
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Fig. 4: Vortex core lines and path lines in space-time. Left: path lines closely swirling around vortex cores. Middle: Path lines and core lines
through different time slices matching regions of high absolute vorticity. Right: vortex cores only. Planes depict time slices; time is horizontal.

3.1 Basic Fields for Observer-Relative Visualization

In order to (1) aid the user in finding an initial vortex lens region R(t0),
and (2) help with finding vortex cores and analyzing the observed
flow in the vortex lens, we provide a variety of visualizations of the
properties of different vector fields. We visualize scalar properties such
as the λ2 criterion [22], and provide dense vector field visualizations
such as LIC as well as computing path lines from interactively specified
seed points. In contrast to typical flow visualizations, we provide
these capabilities for several different vector fields that are crucial
components of interactive vortex identification and verification:

• The input flow field v. Naturally, all visualizations that we provide
are meaningful for the input field, with the usual reservation that
LIC images are only instantaneous snapshots in time and do not
correspond to actual particle motion for unsteady flows v.

• The observed relative velocity field (v−w) in the vortex lens
region R(t), embedded in the original input flow v for context.
Visualizing instantaneous observed LIC images and color-coding
properties of individual time steps of this field is meaningful, even
for unsteady flows. However, computing path lines is not: No
particles are advected by the unsteady field (v−w) [53] if w ̸= 0.
The particle trajectories depicted in Fig. 3(c) are computed from
the input field v, not from the field (v−w), although they were
seeded in a vortex lens guided by the observed LIC of (v−w).

• The input field v fully transformed to the reference frame given
by the observer field w in the vortex lens region R(t). We denote
this transformed velocity field by φ∗

t (v−w). The map φ∗
t is the

pullback of the isometry φt [53], corresponding to the integrated
field w. Because it is an isometry, φt is a translation and rotation,
and φ∗

t applies a rotation to the vectors (v−w). In this trans-
formed field, path lines are again meaningful: Physical (massless)
particles move along the corresponding integral curves in the
reference frame given by w. The particle trajectories in Fig. 3(d)
are computed from the transformed velocity field φ∗

t (v−w).

While the distinction between the latter two points above might seem
to be minor, in terms of physical meaning of vector fields it is in fact
crucial. In our interactive vortex exploration, they imply that the user
needs to be aware of these reference frame-dependent subtleties: We
allow for simultaneous visualization and comparison of path lines of the
field v and the field φ∗

t (v−w), respectively, but not of the field (v−w),
although the optimization problem of Eq. 2 uses the latter vector field
instantaneously, and observed LIC images in a vortex lens show the
field (v−w). Nevertheless, visualizing instantaneous properties of the
field (v−w), in particular observed critical points, is meaningful and
important, and significantly helps steer the vortex lens, as follows.

3.2 Observed Velocity Fields and Observed LIC

Denoting the input flow field by v and the observer field by w, we
visualize the observed velocity magnitude by color-coding ∥v−w∥ on
individual time slices in order to help identify critical points in the field
(v−w). This simple visual approach is well-suited to help identify
vortex region candidates. In the left insets depicted in Fig. 2, we show
observed LIC images for a local optimal observer per vortex lens inset.

In the right insets in Fig. 2, observed velocity magnitude is color-coded.
All observed velocity fields visualized in Fig. 2 are from the same input
field v, but relative to different observer fields w. We want to highlight
that the observed velocity depends on the w that is the outcome of a
local optimization. When the user selects a point, our system computes
the observer that is locally optimal for the lens region around this point.
This approach of embedding local observers within the context of the
original global observer is very suitable for interactive exploration. The
field (v−w) allows identifying meaningful observed critical points
without having to perform a global reference frame transformation first.

3.3 Vortex Core Line Candidates
Our interactive optimization gives a vortex core line candidate t 7→ c(t)
by minimizing the objective function given in Eq. 2. However, although
the goal is to find vortex core lines, we do not explicitly optimize for any
specific vortex criterion related to swirling particle behavior. Therefore,
each vortex core line candidate must be verified afterward. To help in
this task, any vortex criterion resulting in a scalar field, such as λ2 [22],
can be color-coded interactively in spatial regions, for any time step t,
as well as on the current vortex core line candidate curve. In order to
obtain a vortex core line candidate, we follow these major steps:

• We obtain each vortex core line candidate t 7→ c(t), together with
a reference frame t 7→ w(x, t), from the iterative joint optimization
described in Sec 5. We enforce that the candidate described by the
curve t 7→ c(t) obtained via optimization is as close as possible to
a world line (an integral curve) t 7→ w(t) of the observer field w
(see also the discussion in Sec. 4.1). For any time step ti with i> 0,
we initialize the optimization of the unkown point c(ti) with the
position obtained via an integral curve of the observer field w that
is seeded at the previous point c(ti−1), and integrated forward in
time to obtain a point w(ti). We then set c(ti) = w(ti) and start
optimizing the position c(ti) jointly with the field w(ti). That
is, both the point c(ti) and the field w(ti) change until we have
that c(ti) is an observed critical point relative to the field w.

• A goal for any vortex core line is for it to be Lagrangian, i.e., that
it is a path line t 7→ v(t) of the input flow v. In light of the above,
this means that we are searching for an unknown observer w such
that a specific observer world line t 7→ w(t) is identical to a path
line t 7→ v(t). This can only be true if the critical point criterion
in Eq. 2 is zero on the world line t 7→ w(t). We therefore analyze
the error given by the deviation of the three curves c(t), w(t), and
v(t). We can enforce convergence toward the same trajectory for
all three curves by decreasing the integration step size (Sec. 6.1).

• Finally, the desired behavior of particles swirling around the
vortex core line candidate must be verified, using any one of
many available criteria (see below), in order to determine whether
the candidate in fact qualifies as a vortex core line.

Again, the second point above is subtle: The goal is to search for a
vortex core line candidate that is an actual particle trajectory, around
which we will subsequently verify that other particles exhibit swirling
behavior. However, without the optimization finding the minimizer
of Eq. 2 we would not have found this core line candidate, except by
exhaustive search and extensive verification.



We cannot simply search for critical points in the input field v,
because they are only meaningful with respect to a reference frame that
allows transforming the input field into a steady observed field. For
this, however, we have to compute the reference frame w first.

3.4 Observed Critical Point Analysis

To determine swirling behavior around a found vortex core line candi-
date, we color-code the corresponding integral curve by whether the
eigenvalues of the observed velocity gradient (∇v−∇w) are complex.

To do this, we check for a negative sign of the discriminant ∆ =
b2 −4c of the characteristic polynomial λ 2 −bλ + c of the observed
velocity gradient. (We note that the coefficients b,c are the standard
notation for the coefficients of a quadratic polynomial, but have nothing
to do with the (a,b,ω) values that we use to describe observer fields w.)

Denoting the components of the tensors ∇v and ∇w with row i,
column j by ∇ jvi and ∇ jwi, respectively, we have b = ∇1v1 +∇2v2,
c=∇1v1∇2v2−(∇2v1−∇2w1)(∇1v2−∇1w2), for the observed veloc-
ity gradient. The observed discriminant in expanded form is therefore

∆ = (∇1v1 +∇2v2)2 −4(∇1v1
∇2v2 − (∇2v1 −∇2w1)(∇1v2 −∇1w2)),

= (∇1v1 +∇2v2)2 −4(∇1v1
∇2v2 −∇2v1

∇1v2+

∇2v1
∇1w2 +∇1v2

∇2w1 −∇2w1
∇1w2).

(7)

We note that the first, “trace-squared,” term does not depend on the
observer field w, but the second, “four times determinant,” term does.

4 OBSERVER FIELDS

We build on previous work that describes the time-dependent motion of
reference frames using the notion of observer velocity fields [16,35,53].
In the following, we give the individual definitions that we rely on
heavily in our interactive framework and in the rest of the paper, in
particular for the optimization process described in Sec. 5.

An observer field is simply a velocity field that describes the (rel-
ative) motion of a reference frame by an entire unsteady vector field.
In this work, we use an observer field denoted by w, which describes
an infinitesimal isometry, i.e., the derivative of a rigid motion. Such a
vector field is also called a Killing vector field [16]. This setup unifies
and simplifies many observer-relative computations, and enables fully
interactive transformations into a new reference frame, even while the
reference frame is changing [53]. In our framework, we rely on this ca-
pability to interactively visualize the input field relative to the reference
frame that is currently being optimized for the vortex lens region.

An observer field w enables especially simple computations with
reference frames, because the field w is fully determined by a time-
dependent function t 7→

(
a,b,ω

)
(t), where a,b,ω ∈R, determining the

field w via Eq. 1. However, once the field w is known, it is advantageous
and often simpler to use w like any other velocity field in equations,
without always having to specify the semantics of an observer.

4.1 Observer World Lines

A world line t 7→ w(t) of an observer field w is a solution of the ODE
ẇ(t) = w(w(t), t), with an initial value w(t0), i.e., some position on
the path line t 7→ w(t) at time t = t0. In our framework, observer
world lines are important, because our goal during optimization is to
jointly search for an observer field w and a vortex core line candidate
t 7→ c(t), such that the latter is a world line of the computed observer
field. That is, ideally we have t 7→ c(t) = w(t). This will mean that the
observed vortex core line is a stationary point in a steady transformed
velocity field φ∗

t (v−w). However, if the actual minimum obtained in
Eq. 2 is not exactly zero, the above will only be approximately true.
Our approach therefore tracks and iteratively minimizes the deviation
between the two curves c(t) and w(t). The difference between these
two curves is a measure for the optimality of the detected vortex core
line candidate. In space-time visualizations, the above means that a
vortex core line with t 7→ c(t) = w(t) is perfectly vertical. See Fig. 3(d).

4.2 Observer Basis Vector Fields
The representation of an observer field w in R2 as a time-dependent
function t 7→

(
a,b,ω

)
(t) and its computation via Eq. 1 rely on a choice

of three linearly-independent basis observer fields [53] in R2. Apart
from the requirement of linear independence, each basis field must be
a Killing vector field [16], i.e., the derivative of a rigid motion, but
is otherwise arbitrary. However, it is helpful to choose basis fields
corresponding to an intuitive physical meaning, as described below.

We choose the following basis observer fields, where the vectors at
any point p = (x,y) ∈ R2, in Cartesian coordinates, are given by

e1(x,y) =
[

1
0

]
, e2(x,y) =

[
0
1

]
, e3(x,y) =

[
0 −1
1 0

][
x
y

]
. (8)

In the definition above, we define spatial coordinates (x,y) ∈ R2 rel-
ative to the origin at the center of mass of the flow domain, given
by the average of all spatial positions within the domain. The three
vector fields ei are linearly independent as vector fields in R2 (not as
individual vectors at just a single point). Therefore, they comprise a
basis of the three-dimensional vector space of Killing vector fields in
R2, corresponding to the derivatives of all possible rigid motions in R2.
The specific basis vector fields given above are chosen such that the
three parameters (a,b,ω) have the physical meaning that (a,b)T are
the translation velocity, and ω is the angular velocity, respectively, of
the reference frame motion described by the velocity field w in Eq. 1.

4.3 Observed Time Derivative
For the computation and use of reference frames for the observation
of unsteady input flow fields v, the most important ingredient is a time
derivative of a given velocity field v relative to a given observer field w.
We call this time derivative the observed time derivative [16] relative to
an arbitrary reference frame motion given by the vector field w.

Relative to an arbitrary given reference frame motion w, the observed
time derivative of an arbitrary unsteady input vector field v is

∂v∗

∂ t
(x∗, t) = φ

∗
t
(
Lw(v−w)(x, t)

)
. (9)

Here, the map φ∗
t denotes the pullback of the isometry φ corresponding

to the observer transformation, as described in Sec. 3.1.
The observed time derivative term Lw(v−w) is given by [16]

Lw(v−w) =
∂v
∂ t

− ∂w
∂ t

+∇v(w)−∇w(v). (10)

In terms of the observer field w determined by a time-dependent func-
tion t 7→ (a,b,ω)(t) and Eq. 1, the individual terms above are

w(x, t) = a(t) e1(x)+b(t) e2(x)+ω(t) e3(x),
∇w(x, t) = a(t) ∇e1(x)+b(t) ∇e2(x)+ω(t) ∇e3(x),

∂w
∂ t

(x, t) =
da(t)

dt
e1(x)+

db(t)
dt

e2(x)+
dω(t)

dt
e3(x).

(11)

The velocity gradients ∇ei, of the basis observer fields given in Eq. 8,
required by the expansion of ∇w above, are

∇e1 = 0, ∇e2 = 0, ∇e3 =

[
0 −1
1 0

]
. (12)

In this way, by the choice of basis in Eq. 8, the parameter ω(t) directly
attains the physical meaning of instantaneous angular velocity at time t.

5 ITERATIVE JOINT OPTIMIZATION

We jointly compute optimal vortex core line candidates and reference
frame motions asynchronously during user interaction. Fig. 5 illustrates
our iterative optimization algorithm. As shown in Fig.5 0 , we start
from a region R(ti) that is identified by the user to be a good candidate
for a vortex region at some time ti, given via a start point c0(ti) in space
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Fig. 5: Iterative joint optimization. To jointly optimize for a vortex core
line candidate c(t) together with a reference frame motion described
by an observer field w(t), we asynchronously perform ADMM iterations
during user interaction, minimizing Eq. 2 in the vortex lens region R(t).

and time, and a user-specified vortex lens radius r. See also Fig. 3(a).
Then, vortex core line candidates (Fig. 3(b)) are computed iteratively.

We compute the time-dependent t 7→ c(t) and t 7→ w(t) by iterating
from time ti to time ti+1. Each time ti is computed in two major steps:

1. The joint optimization of a reference frame transformation w(ti)
and a vortex core line position c(ti) using the ADMM algorithm
in two alternating phases (Sec. 5.1). See Fig. 5 1 .

2. The integration of the field w, starting from the optimal point c(ti),
at time ti, to obtain the start point c0(ti+1) for the next time ti+1
(Sec. 5.3). See Fig. 5 2 . If none of the stopping criteria (Sec. 5.2)
are met, the algorithm continues with step (1) for time t = ti+1.

5.1 Alternating Optimization
For each time ti, we need to jointly optimize for a reference frame w(ti)
and a point c(ti) to minimize Eq. 2. In step (1), depicted in Fig. 5 1 , we
iteratively alternate between two ADMM optimization phases until they
converge to a local optimum, enumerating the iterations of these phases
with an index k. In phase (1a), depicted in Fig. 5 1 a , we hold the
position ck(ti) constant, and optimize for the reference frame wk+1(ti)
that minimizes the time derivative in Eq. 2. In phase (1b), depicted
in Fig. 5 1 b , we hold the reference frame wk+1(ti) constant, and
minimize the observed velocity magnitude in Eq. 2 by moving the point

ck+1(ti) around the previous point ck(ti) within a search radius rs.
The two phases (1a) and (1b) are alternated and coupled by the

proximal ADMM (alternating direction method of multipliers) algo-
rithm [31] until they converge, or a maximum iteration count is reached.

Proximal ADMM. The proximal ADMM algorithm solves a convex,
possibly non-smooth, optimization problem [31, p. 153]. The general
problem can be stated, for some given functions f and g, as

argmin
x

f (x)+g(x). (13)

In our optimization algorithm, the function f corresponds to the inte-
gral of the observed time derivative (see Eq. 2 and Eq. 10) over the
vortex lens region R(t), of radius r centered around the point ck(ti). See
Fig. 5 1 a . The function g consists of the observed velocity magni-
tude and a function that depends on the distance of point ck+1(ti) to the
center of the vortex lens region for regularization. See Fig. 5 1 b .

In our framework, the proximal algorithm solves for an unknown
5D vector x, of the position ck in coordinates (xk,yk), and the reference
frame coefficients (ak,bk,ωk) that define the observer field wk. That is,

x =
[

xk yk ak bk ωk
]T

. (14)

The proximal algorithm to solve Eq. 13 above is given by the iterations

xk+1 := proxλ f

(
zk −uk

)
,

zk+1 := proxλg

(
xk+1 +uk

)
,

uk+1 := uk +xk+1 − zk+1.

(15)

This algorithm uses two auxiliary vectors z and u with the same five
components as the vector x. The vectors z and x iteratively converge
to each other and the optimum, while the vector u gradually vanishes.
The components (xk,yk) of the vector zk are initialized with the (x,y)
coordinates of the start point c0(ti), and (ak,bk,ωk) with the (a,b,ω)

defining the observer field w0(ti). The vector u is initialized as uk = 0.
In each iteration, the algorithm first evaluates the proximal operator

of the function f (see below), and then evaluates the proximal operator
of the function g (also see below). Then the residual vector u is updated.

The general proximal operator proxλh of a function h is defined as

proxλh(y) := argmin
x

(
h(x)+

1
2λ

||x−y||2
)
. (16)

That is, the solution of the proximal operator is itself defined as the
solution of a minimization problem. The parameter λ regularizes how
far away the new iterate is allowed to be from the previous iterate [31].

Proximal operator of observed time derivative. The proximal
operator of the observed time derivative, with the function f below, is

proxλ f (y) := argmin
x

(
f (x)+

1
2λ

||x−y||2
)
, (17)

with the function f defined as (see Eq. 2)

f (x) =
µ

A

∫
R(ti)

∥∥Lw(v−w)(ck(ti), ti)
∥∥dA. (18)

In order to be able to evaluate the observed time derivative in the
function f above in an iterative fashion, where we do not yet know
the observer field w for the time step ti+1, we make the simplifying
assumption that, at the time step ti, the observer field w is a steady
velocity field. That is, we conceptually set ∂w

∂ t = 0 for the optimization
of the observer field in this time step. Although the time derivative
does, in general, not vanish for the final optimized field w for all time
steps, this simplification allows us to proceed iteratively at interactive
computation rates for our optimization problem. Correspondingly, in
the world line integration step described below in Sec. 5.3, we make
the same simplifying assumption. We can also view this simplification



as being similar to a single stage in a Runge-Kutta integration method,
in order to proceed in the time direction. We note that this approach
does not imply, however, that the entire obtained observer field w will
be a steady velocity field: It will, in general, be a different vector
field w(x, t) in each time step t, and thus w will be an unsteady field.

Proximal operator of critical point criterion. The proximal opera-
tor of the critical point criterion, with the function g = g1 +g2 defined
below, is given by

proxλg(y) := argmin
x

(
g1(x)+g2(x)+

1
2λ

||x−y||2
)
. (19)

The function g1 for the observed velocity magnitude is (see Eq. 2)

g1(x) = ∥v(ck, ti)−w(ck, ti)∥ . (20)

The function g2 is a vortex lens region regularization term given by

g2(x) = max
(
0,∥ck − c0∥− rs

)
. (21)

In this regularization term, c0 is the center of the vortex lens region R(ti)
at time ti. This regularizer becomes larger than zero when the point ck
is outside of the search radius rs in the vortex lens region. The vector
x again contains the two coordinates of the position ck, and the three
coefficients that uniquely define w, to evaluate the functions g1 and g2.

Minimizing the L1 norm avoids the well-known problem of the L2
norm that it tends to spread out small errors over the entire domain.
While the L2 norm also can be used in our framework, we have experi-
mentally observed lower error rates (Sec. 6.1) with the L1 norm.

Also note that in all equations we use physical units (spatial positions
and distances, time, velocities), which ensures that the optimization
result does not depend on arbitrary scale factors or coordinate systems.

5.2 Stopping Criteria
After the ADMM has converged to a locally optimal reference frame
transformation w(ti) and a vortex core line position c(ti), we check if
any of the stopping criteria are met. We first check if the angle between
v(c(ti), ti) and w(c(ti), ti) is larger than a user-specified tolerance. In
addition, we check whether the point is outside the search region R(ti).
If one of the two criteria is fulfilled, we assume that this is the end of
the vortex core line candidate’s curve and stop. If the criteria pass, we
use the solution in the subsequent integration step. See Fig. 5 2 .

(a) (b)

(c) (d)

Fig. 6: Seven Rotating Centers: (a) LIC with path lines seeded at
the centers of the LIC-patterns. No critical point. (b) Large vortex lens
region (blue) centered on one of the outer centers. Critical point matches
observed-LIC pattern center. The tracked critical point is shown as
orange curve. (c) and (d) Two different-size vortex lenses: (c) Small
region: locally the observed LIC pattern matches the critical point. A path
line (green-yellow) confirms critical point location. Globally observed LIC
patterns do not match. (d) Large region: LIC patterns match globally.
Center (space-time with vertical time axis): Seven core lines with several
path lines each that closely swirl around the vortex cores. Same for (c)
and (d): The core lines are independent of the vortex lens size. However,
the computed Killing fields resulting from (c),(d) are very different.

5.3 Observer World Line Integration

As depicted in Fig. 5 2 , we integrate the observer field w(ti) to com-
pute the next start point c0(ti+1) for the optimization at time ti+1. From
the known point c(ti), resulting from the optimization at time ti, we nu-
merically integrate a short segment of the world line t 7→ w(t) through
the observer field w for a given time interval ∆t using RK-4 integration
and the approach given below. After the integration step, we check
if the next point is within the space and time boundaries of the data
set. If the new point is outside the time domain or the spatial domain,
we stop. Otherwise, we initialize the next optimization step with the
current point and observer field and continue with the next time step.

Integration of observer motion. To integrate a world line t 7→ w(t)
of the observer field w, we choose an integration interval ∆t and use
Runge-Kutta RK-4 integration. For each RK-4 stage, which is akin to
one Euler step, we have the simplifying assumption that the observer
field w is a steady velocity field, i.e., we conceptually set ∂w

∂ t = 0.
However, we run alternating ADMM iterations (Sec. 5.1) in each RK-
4 stage to update the field w(t). For this reason, our optimization
corresponds to a fully general unsteady observer field w with ∂w

∂ t ̸= 0.

6 EVALUATION

The accuracy of our optimization determines the quality of our observer-
relative visualizations, as well as the quality of the extracted core lines
that are used for direct visualization and for the advection of the vortex
lens through time. To measure the quality of a vortex core line we
propose to compute a Lagrangian Deviation Error Rate (LDER) as
defined below. We use LDER to verify that our approach produces
results that converge to a Lagrangian particle trajectory with decreasing
integration step size. Further, we use the average of LDER over all
extracted vortex core lines to demonstrate that our interactive approach
competes with state-of-the-art core line extraction methods. The last
part of our evaluation demonstrates that it is possible to find the same
set of vortices as with state-of-the-art methods. We show that the set
of vortex core lines detected by other methods relies on pre-processing
and post-filtering. Since the post-filtering method can produce false
positives (i.e., wrongly detected core lines as a result of too little
filtering), as well as false negatives (i.e., missed core lines as a result of
too aggressive filtering), a manual review of each core line is necessary.
Therefore, we argue that an interactive method with tightly coupled
detection and reviewing is a beneficial addition to the overall workflow.

6.1 Lagrangian Deviation Error Rate
To evaluate the quality of our core line integration approach, we com-
pute how much the core line deviates from a true Lagrangian solution to

Fig. 7: Dynamic reference frame transformations. Observer-relative
path lines are shown for two different reference frame transformations.
Top: Relative to the reference frame transformation of one of the small
outer vortices. Bottom: Relative to the reference frame transformation
of one of the critical points on the inside. The path lines in the center
clearly show that only two of the critical points in the center are vortices.
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Fig. 8: Convergence of the average Lagrangian deviation error rate
(LDER) for the rotating four centers data set, for increasing number of
integration steps n (horizontal axes) over fixed time interval T . Different
resolutions (32 to 512) of (top) input field v, (bottom) observer field w.

Table 1: Average Lagrangian deviation error rate comparisons.

RFC512 (v) R512 (w) Cylinder Boussinesq

affine [15] 0.000120 0.000107 0.000913 0.001579
displacement [2] 0.000245 0.000099 0.001615 0.002036
objective [12] 0.000132 0.000096 0.000946 0.001222
PV [36] 0.024123 0.005378 0.001639 0.001989
similarity [15] 0.000135 0.000097 0.000942 0.001443
vortex lens 0.000345 0.000043 0.000975 0.000478

the ODEs v̇(t) = v(v(t), t), and ẇ(t) = w(w(t), t), respectively. Since
numerical integration errors are unavoidable, we measure this deviation
by integrating path line segments t 7→ v(t) and t 7→ w(t), in the fields v
and w, respectively, computing their average deviation from the core
line t 7→ c(t) over a fixed time interval T . We start a path line t 7→ u(t),
with u := v or u := w, respectively, at a point c(ti) on the core line at
time ti, and integrate for time T = ti+n − ti, with n integration steps.
The average deviation from the Lagrangian trajectory t 7→ u(t) then is

LDER(c; ti,T ) =
1
T

n

∑
j=1

∥∥u
(
ti+ j

)
− c

(
ti+ j

)∥∥(ti+ j − ti+ j−1). (22)

In Fig. 8, we analyze the average Lagrangian deviation error rates for
all core lines of the rotating four centers (RFC) test data set. For this
data set, the optimal reference frame is known, and we can therefore
analyze our method with respect to the ground truth. Different grid
resolutions (Fig. 8, top: RFC32 to RFC512, input field v; Fig. 8, bottom:
R32 to R512, observer field w), and different numbers n of integration
steps in the fixed time interval T in Eq. 22 (Fig. 8, horizontal axes),
affect the LDER values for both the field v (Fig. 8, top) and the field w
(Fig. 8, bottom). We can see that the average error rate decreases with
decreasing step size (i.e., increasing n for fixed T ) and with increasing
data resolution. We conclude that our approach is able to find core lines
that get closer to Lagrangian particle trajectories with higher sampling
rates of the input data as well as smaller step sizes of our integration.

We compare our approach to several state of the art methods. We
extract vortex core lines using the parallel vectors (PV) operator [36]
as implemented in VTK. Then we compute optimal reference frames1

1source provided at https://github.com/tobguent/optimal-frames
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Fig. 9: Post evaluation of core line candidates. We use increasingly
aggressive thresholds for the Q-criterion and overlay the results for [12].
Left: all filtering results overlaid, additionally our result is overlaid on top.
Right: sets of too aggressive Q-thresholds removed. The remaining sets
might contain false positives and are subject to manual review.

using objectivity [12], and affine and similarity invariance [15], as well
as invariance under displacement transformations [2]. Vortex cores are
extracted from these optimal frames by connecting critical points of the
transformed vector field [12, Sec. 5.1]. The core lines are subsequently
filtered using the Q-criterion to remove noise and critical curves that
are not vortex core lines. In Table 1, we show the resulting average
error rates of the six methods measured on three test data sets. For
the rotating four centers data set (Table 1, RFC512 and R512), we
measure Lagrangian deviation error rates (Eq. 22) with respect to the
input field (v) as well as the known optimal observer field (w). For a
fair comparison in Table 1, we use one integration step for each time
step for our method. We conclude that our method is comparable and
even outperforms other methods in some cases. Reducing the step size
of our method decreases the error considerably, as shown in Fig. 8.

6.2 Assessment of Completeness
To assess that the set of vortex core lines that can be found with our
method is complete we used the core lines that were extracted with
the other five methods and compared the results. We observed that for
test data sets with ground truth available the resulting set of core lines
is identical. For simulated data the absence of ground truth makes it
hard to evaluate for completeness. The other methods rely heavily on
post-filtering, and the results typically depend on several filter criteria.

In Fig. 9, we show different filtering results of the set of core lines
that were extracted using the objective vortices method [12]. We filter
the set of core lines with increasingly aggressive thresholds of the
Q-criterion. Core line candidates with higher Q-thresholds are strict
subsets of filtering results with lower Q-thresholds. While thresholds
above 100 result in false negatives (missing core lines, visible on the
left of Fig. 9), Q-thresholds below 100 result in many false positives
(critical points that are not core lines visible on the right of Fig. 9).
With our method (overlaid yellow in Fig. 9) we obtained a result most
similar to a threshold of 50. In the absence of ground truth we do
not attempt to argue which method produces better results, but rather
want to point out that for a reliable result a careful review of core line
candidates with interactive visualization methods is always necessary.

6.3 Parameters for Experiments
The optimization steps that are the solutions to the proximal operators
can be implemented with a common solver. We tried several solvers
including Gradient Descent, Levenberg-Marquardt, and Gauss-Newton.
While these methods compute the same solution they differ in terms
of numerical stability and computation times. While Gradient Descent
and Levenberg-Marquardt have approximately the same performance,
Gauss-Newton was slower by one order of magnitude for our problem.
We experimentally found that the λ parameter setting of the proximal
ADMM algorithm is not critical, but the algorithm performed best in
terms of performance when λ = 100. The region size parameters of our
method have a clear meaning. The parameter r must be set by the user
as it depends on the size of the feature that shall be tracked. Although
small r yield good results, the user might want to track features with
larger reference frames (Sec. 7.1). All results (except for the discussion

https://github.com/tobguent/optimal-frames


of region size) were produced with a region radius that is equal to
the cell size of the data grid. The region size r influences the number
of Riemann sum terms that are used to estimate the time derivative
integral over R(t), and thus directly impacts performance. To test the
performance of our approach (and for the region size discussion) we
have increased the number of terms. For less than 400 terms our method
was fully interactive, providing responsive lens interaction with more
than 20 fps. However, for the results shown in this paper we used just
five terms. The search region parameter rs was consistently set to eight
times the grid cell size. This gives enough room for the optimization to
correct the error that was done in the numerical integration step. The
stopping criterion that is concerned with the angle between the vectors
v(c(t), t) and w(c(t), t) was set to 2 degrees in all our experiments.

7 RESULTS AND DISCUSSION

We demonstrate different aspects of our framework on analytically-
defined test cases, and on numerically-simulated flow fields. The
supplemental video shows recordings of interactive exploration sessions
using our tool. Our vortex lens method runs at interactive frame rates.

7.1 Region Size Dependence
The size of the computational region is an important parameter of recent
reference frame computation methods. In the examples in Figs. 6 and 7,
we illustrate the influence of the region size on the obtained results. In
Fig. 6, we show a synthetic data set that consists of seven vortex cores.
Five small vortex regions rotate around two larger ones. In Fig. 6(a),
LIC and path lines seeded at the centers of the velocity patterns are
shown. Fig. 6(b) shows the extracted vortex core lines of the outer five
vortex cores in orange. We show observed LIC with a reference frame
computed in the large blue region. The centers of the outer vortices in
the observed LIC match the orange core lines. In Fig. 6(c) and (d), we
show the effect of the region size on the observed velocities. The small
region (blue) in Figure 6(c) captures the local reference frame. A path
line (green-yellow circle) shows that the critical point only matches
the small vortex in the blue region. In Fig. 6(d), a larger region is used
to compute the reference frame transformation. The observed critical
points match the core line. The overlay in the center of Fig. 6 shows
the extracted seven vortex core lines as well as swirling path lines.

The obtained core lines are independent of the region size. However,
the result of our optimization is not only a core line but also a reference
frame transformation, and this transformation depends on the region
size. In Fig. 7, we show a comparison of two reference frame transfor-
mations. The top image in Fig. 7 are the observed path lines relative
to the observer that was computed for the yellow core line. The small
region makes the reference frame transformation adapted to the small
vortex only. At the bottom of Fig. 7, the same path lines are shown
relative to the observer that was extracted for the yellow curve. A larger
region was used to compute a reference frame for the two rotating
vortices in the center. This example shows that the extraction of vortex
core line candidates is independent of the region size. However, the
reference frame transformation that is computed to follow the critical
point is not unique and depends on the region size. Users can therefore
choose a region size that matches the feature that they want to visualize
relative to the reference. We note that the optimal reference frame
depends on the scale of the feature that the user wants to visualize or
track over time. A comprehensive analysis of a flow would include the
analysis of optimal reference frames on different scales. Although we
do not further explore this here, we consider this an important insight
for future work on multi-scale feature detection and visualization.

7.2 Exploratory Visualization and Candidate Review
We show example results from short interactive sessions using our
interactive tool. The example in Fig. 1 is the visualization of vortex
cores from a simulation of a heated cylinder. Small vortices develop and
traverse across the simulation domain. In Fig. 4, we show additional
close-ups of the same interactive session. Path lines can be seen to
closely swirl around the extracted core lines. The color coding on the
planes in Fig. 4 visualizes vorticity. The insets show examples of vortex
lens regions with observed LIC. In Fig. 10, the result of an interactive

exploration session can be seen. The simulation of a viscous 2D flow
around two obstacles starts out as a laminar flow, to later develop
vortices behind the second obstacle. The circulating flow behind the
corners partially exhibits swirling motion as can be seen from the path
lines. Fig. 10 (top) is a visual summary of the data set using core lines
and pathlines. The color coding on the time slices is observed vorticity
magnitude. At the bottom of Fig. 10, we show the extracted core lines
from our result, overlaid on top of the result from five other state of
the art methods. We see that the results of the different methods are in
consensus behind the second cylinder on the right. The flow behind the
first cylinder on the left is mostly laminar with little rotation. This is
the region where the results of the methods differ the most.

In Fig. 11 (supplementary), we show the extracted vortex cores of
a simulated vortex street behind a cylinder obstacle. The behavior of
the flow is easily understood from a few vortex core lines. Towards the
end of the spatial simulation domain the vortices become weaker and
transition into laminar flow as can be seen from the path lines seeded
close to some critical points.

8 CONCLUSIONS

We have presented the first interactive framework that performs fully
interactive optimal reference frame optimization for vortex discovery
in unsteady 2D fluid flows. Our approach is interactively steered by the
user via a vortex lens metaphor that determines the region of interest
in which vortex structures are sought via mathematical optimization.
Moreover, we also perform the first joint optimization of a vortex core
line together with the reference frame motion relative to which a vortex
core can be detected. This is done interactively using efficient ADMM
iterations. Nevertheless, our optimization result only suggests an opti-
mal candidate for a vortex core line. Final evaluation is required to be
done by the user. For this purpose, we provide a variety of visualization
and interaction techniques, including real time transformation of the un-
steady input flow field into the interactively computed reference frame,
observed LIC in a lens, and lens advection through time. Overall, we
have shown that the combination of interaction and joint optimization
allows the user to obtain insights using observed flow visualization as
well as high-quality vortex core line structures that are guaranteed to be
close to Lagrangian particle trajectories in the original input flow field.

vortex lens

objective

affine

displacement

parallel

similarity

Fig. 10: Simulated viscous flow around a corner and two obstacles:
Space-time visualization (time is vertical). Top: result of an interactive
vortex candidate extraction session. Vortex core candidates (yellow)
and path lines seeded close to critical points. Path lines can be used to
distinguish core lines from other critical points. Bottom: Extracted vortex
core lines (ours in yellow) overlaid with results from other approaches.
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A SUPPLEMENTARY RESULTS

Fig. 11: Vortex street behind a cylinder obstacle (space-time visualiza-
tion): Top: critical curves (green) extracted using the vortex lens. The
planes show observed velocities (blue-yellow color coding). Bottom:
Path lines are manually seeded close to critical points to verify that the
extracted curves are vortex cores.
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