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Introduction

This tutorial introduces the most important basics of Riemannian geometry
and related concepts with a specific focus on applications in scientific
visualization. The main concept in Riemannian geometry is the presence
of a Riemannian metric on a differentiable manifold, comprising a second-
order tensor field that defines an inner product in each tangent space that
varies smoothly from point to point. Technically, the metric is what allows
defining and computing distances and angles in a coordinate-independent
manner. However, even more importantly, it in a sense is really the major
structure (on top of topological considerations) that defines the space where
scientific data, such as scalar, vector, and tensor fields live.

However, the concept of a metric, and crucial related concepts such
as connections and covariant derivatives, are not often used explicitly
in visualization. In contrast to concepts of differential topology, which
have been used extensively in visualization, for example in scalar and
vector field topology, we believe that concepts from Riemannian geometry
have been underrepresented in the visualization literature. One reason for
this might be that most visualization techniques are developed for scalar,
vector, or tensor fields given in Euclidean space R2 or R3, and data given
on curved surfaces are usually treated explicitly through their embedding
in R3. However, the presence of a Riemannian metric on a manifold has
very important implications even for data given in Euclidean space, for
example regarding the physical meaning of visualizations as well as for the
use of non-Cartesian coordinates. Therefore, considering the metric tensor
field explicitly provides several important benefits.

In this tutorial, we try to particularly highlight the additional insight
that can be gained from employing concepts from Riemannian geometry
in scientific visualization. However, although we believe that insight
is the most important benefit to be gained from using these concepts,
we also discuss computational advantages. In addition to Riemannian
metrics, we also introduce the most important related concepts from
modern, coordinate-free differential geometry, in particular general (non-
Cartesian) tensor fields and differential forms, smooth mappings between
manifolds, Lie derivatives, and Lie groups and Lie algebras. Throughout
the tutorial, we use several examples from the scientific visualization
literature, dealing with scalar, vector, or tensor fields, respectively, and
highlight their implicit or explicit connections to Riemannian geometry.

Objectives

The main objective of this tutorial is to introduce the most important con-
cepts of Riemannian geometry, and related concepts from modern differen-
tial geometry, with a strong focus on applications in scientific visualization.
We describe these applications not only in the form of general concepts, but
we also discuss individual research papers and representative techniques
from the visualization literature to highlight how Riemannian geometry
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can provide additional insight on these techniques. Moreover, we discuss
how Riemannian geometry can be seen as providing a unifying framework
that facilitates comparing and discussing visualization techniques that in
individual papers often look different and hard to compare.

Motivation and Audience

While there exist a lot of general mathematical textbooks and courses on
differential geometry and Riemannian geometry, we are not aware of any
course that specifically targets visualization researchers and practitioners.
Furthermore, the concepts—and in particular the emphasis—most relevant
and important for visualization techniques are hard to extract from standard
geometry texts, which often cover a large amount of advanced material.
At the same time, time-dependent data, such as unsteady vector fields, are
not treated in sufficient detail in most geometry texts. This tutorial aims to
start filling this gap for researchers and practitioners in visualization, on an
intermediate level.

Outline and Sessions

The tutorial is structured in six sessions of about 30 minutes each, plus a
short introduction in an initial session 0. The total time is planned for three
hours, with one break in between.

We note that much of each session content expands on and builds on the
content of the sessions coming before. Likewise, some sessions already
provide previews of later sessions that will cover concepts in more detail.
We therefore cover some concepts in multiple sessions, with the goal of
highlighting different aspects and details as well as different connections to
visualization in each session.



1 Overview

We first give an overview of the content and the main concepts to be
introduced in this tutorial, highlighting example applications dealing with
scalar fields, vector fields, and tensor fields. We introduce Riemannian
geometry1 in general, with important concepts that require a Riemannian 1 This is the part of manifold theory,

the theory of manifolds (in particular,
differential manifolds), that focuses on
concepts requiring a Riemannian metric to
be defined. However, many concepts that
are important in this context are defined for
any differential manifold, not just for those
with Riemannian metrics.

metric vs. concepts that do not. In this chapter, we briefly highlight the
major topics that we will cover: Riemannian manifolds and Riemannian
metrics, and the most important related concepts of modern differential
geometry, and why they are important for visualization. We motivate ways
in which the presence of a metric tensor field on a manifold is crucial for
insight into the meaning of visualization techniques.

1.1 Main Concepts

The main concepts that we will introduce in this tutorial are

• Riemannian manifolds. Starting with topological and then differential
manifolds (topological manifolds with a differential structure), we will
endow a differential manifold M with a Riemannian metric g, thus
obtaining a Riemannian manifold (M,g).2

2 Despite the metric being the most
important notion in our context, some
fundamental concepts that we will cover
do not require a metric to be defined. For
example, the gradient 1-form and Lie
derivatives are defined on any differential
manifold. However, the metric can often
provide additional insight or techniques.
For example, “raising” the gradient 1-form
d f to become the gradient vector ∇ f .
In coordinate-free notation, this can be
denoted via the musical isomorphisms,
where ∇ f = (d f )] and d f = (∇ f )[, or via
the natural pairing ∇ f 7→ 〈∇ f , ·〉= d f (·).

• Riemannian metrics: Riemannian metric tensor fields g on differential
manifolds define an inner product 〈·, ·〉 := g(·, ·) in each tangent space
of the manifold, varying smoothly from point to point. Although tech-
nically, metric tensor fields just enable defining and computing inner
products, they are in fact an important notion defining what a space is,3

3 The most famous (pseudo-Riemannian)
example is probably general relativity,
where the four-dimensional spacetime
metric defines what spacetime is, including
its curvature (giving the effect of gravity)
and how particles move along “straight”
lines (geodesics) in curved spacetime.

e.g., as the domain of scalar, vector, and tensor fields. This perspective
enables important insights even in Euclidean space, regarding the behav-
ior of fields. For example, fundamentally it is the metric that determines
many types4 of derivatives, such as ∇v, of vector and tensor fields.

4 Not all derivatives depend on the metric,
e.g., covariant derivatives (using a metric
connection) do, Lie derivatives do not.

• Tensors and tensor fields. Importantly, we do not constrain ourselves
to Cartesian tensors (mathematical objects that only behave as tensors
when Cartesian coordinates are used, but otherwise are non-tensorial),
but we cover general tensors: Contravariant tensors, covariant tensors,
and tensors of mixed type.5 We will cover “classical” index computa- 5 Even linear maps between vector spaces

are mixed tensors. However, the metric is
an example of a covariant tensor.

tions, but in particular also emphasize the more modern purely geo-
metric coordinate-free perspective without coordinates.6 The general 6 A vector v is a geometric vector in

coordinate-free notation. A vector vi

given by (contravariant) components,
however, depends on the particular choice
of coordinates. Computing v = vi ei, with
basis {ei}, links the two perspectives.

concept of tensor fields also includes scalar fields (0-order tensor fields)
and vector fields (first-order contravariant tensor fields).

• Differential forms: Anti-symmetric7 covariant tensors are particularly

7 “Anti-symmetry” for tensors of order less
than two is trivially fulfilled. Therefore,
every covector is a 1-form.

important for integration on manifolds, but provide more general insight
and techniques even beyond. The gradient of a scalar function f : M→R,
given on a manifold M, is naturally a differential 1-form d f (a covariant
vector, or covector),8 and not a (contravariant) gradient vector ∇ f . 8 For integration, the natural notion for line

integrals along curves C is
∫

C d f , or, more
generally,

∫
C ω , instead of

∫
C ∇ f · dr or∫

C v ·dr, respectively, integrating arbitrary
1-forms ω or exact 1-forms d f instead of
vector fields v or gradient vector fields ∇ f .

(Given a metric, the gradient vector can be computed via the natural
pairing ∇ f 7→ 〈∇ f , ·〉= d f (·), equivalent to raising/lowering indices in
classical notation, where (∇ f )i = gi j (d f ) j, and (d f )i = gi j (∇ f ) j.)
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• Connections.9 We will focus on metric connections, i.e., connections 9 “Connecting” two different, but infinites-
imally close tangent spaces on a manifold.
This is sometimes also called an affine
connection. A connection is the major way
in which tangent vectors can be transported
from one tangent space to a neighboring
tangent space. The covariant derivative
measures the corresponding rate of change.
When the covariant derivative of a vector
field along a curve vanishes, the vector is
parallel-transported along the curve.

that are compatible with a given metric g, in particular the Levi-Civita
connection given by Christoffel symbols Γi

jk. Connections are inherently
related to the concept of parallel transport and covariant derivatives.

• Covariant derivatives. Given a connection on a manifold, we can
compute covariant (here in the sense of invariant with respect to the
choice of coordinate system, not in the sense of covariant tensors!10)

10 In fact, covariant derivatives are defined
for any tensor field, i.e., covariant deriva-
tives are defined for any contravariant,
covariant, or mixed tensor field. The covari-
ant derivative of a particular type of tensor
in a given direction (given by a vector) is
again a tensor of the same type. However,
the covariant derivative as a map is one
covariant order higher. For example, the
covariant derivative of a vector field v is a
second-order tensor of mixed contravariant
(because of the contravariant field v) and
covariant type. The latter is because a
tensor that accepts a direction vector as an
argument is covariant in that argument.

derivatives of tensor fields. One hugely important example in flow
visualization is the velocity gradient tensor ∇v. Contrary to widely-used
definitions, in non-Cartesian coordinates this tensor cannot be defined as
a Jacobian matrix of partial derivatives with respect to the coordinates.

• Lie derivatives and Lie brackets. This important type of derivative is
independent of the metric, and computes a derivative of a tensor field
with respect to the flow of an arbitrary given vector field. It is a very
natural geometric concept that has important applications, such as in
observer-relative computations in flow visualization (computing relative
to the flow describing reference frame motion). Moreover, the Lie
derivative of a vector field is the same as the Lie bracket between vector
fields, which is an important concept in Lie theory (turning a Lie algebra
from a vector space into an algebra, with the multiplication operation
given by the Lie bracket). This leads to important applications in surface
computation from vector fields in higher-dimensional ambient spaces,
for example computing streamsurfaces from diffusion tensor fields11.

11 The integration of two vector fields in
3D may “fit together” to form a 2D surface,
or not fit together, forming no surface.
This “integrability” is determined by the
Frobenius theorem, using the Lie bracket.
Even without considering an embedding,
the Lie bracket is needed to determine
whether two vector fields commute or not:
For example, the integration of a set of
basis vector fields only forms a coordinate
system if all pairs of basis vector fields
commute (meaning the Lie bracket is zero).
Otherwise, the vector fields can only define
non-coordinate bases (or frames). This
is important, because most orthonormal
bases do not form coordinate bases, but
non-coordinate frames. (The Cartesian
basis, however, is a coordinate basis.)

• Smooth maps between manifolds, and their corresponding pushforwards
and pullbacks. These are hugely important fundamental concepts that
are required to determine how tensor fields (including vector fields)
are mapped through diffeomorphisms, for example for active trans-
formations or for observer-relative computations and the definition of
objectivity in flow visualization and continuum mechanics.

• Isometries and infinitesimal isometries. Being able to define isometries
precisely is very important to quantifying whether two spaces (Rieman-
nian manifolds) are “the same” (including the same manifold before and
after a transformation). This is crucial for observer (reference frame)
transformations in flow visualization and continuum mechanics.

• Lie groups and Lie algebras. Lie theory enables understanding transfor-
mations as symmetries12 within a very powerful framework. For exam-

12 Lie groups are continuous symmetry
groups, defining precisely what being
symmetric (as a specific way of being “the
same”) means. For example, defining that
all rotations of a circle or a sphere are still
“the same circle” or “the same sphere.”

ple, the Lie groups SO(2) and SO(3), for two- and three-dimensional
rotations, respectively, as well as the Euclidean groups (the transforma-
tion groups of all Euclidean isometries). The exponential map connects
infinitesimal transformations (e.g., infinitesimal isometries) to the corre-
sponding “finite” (i.e., integrated) transformations (e.g., isometries).13

13 The exponential map maps an element g
of a Lie algebra, such as an infinitesimal
rotation, e.g., given by an anti-symmetric
matrix X , to the corresponding Lie group
element g ∈ G, for a Lie group G, e.g.,
given by the corresponding “integrated”
orthogonal rotation matrix g(t) = exp(tX),
with G = SO(n). The Lie group is also
a (differential) manifold, and the path
(parameterized by the parameter t, with
t = 0 mapping to the identity) that connects
the identity element of the Lie group (e.g.,
the identity matrix) with the element g(t)
is a geodesic in this manifold (e.g., all
rotations g(t) starting at the identity g(0)).

1.2 Motivating Examples

Gradients of scalar fields

The meaning of the gradient of a scalar field f : M→R, on a manifold M,
is completely independent of any underlying choice of coordinate system,



OVERVIEW 9

which is chosen purely for computational purposes. The most common
way to compute the gradient of a scalar field f is to compute the gradient
vector ∇ f , whose geometric meaning14 is that it points in the direction

14 A geometric (tangent) vector in tensor
calculus is a contravariant vector. Thus,
on a manifold M, the gradient vector field
is a section of the tangent bundle T M.
Each gradient vector, at a point x ∈M, is
a member of TxM, the tangent space at
the point x. However, it is crucial to note
that if a vector n is intended to be used
in an inner product (like ∇ f ), for active
transformations the desired geometric
behavior is that of a covariant vector (a
1-form). Gradient vectors (and surface
normals) must then be treated as 1-forms,
obtained via the natural pairing n 7→ 〈n, ·〉,
that are mapped through diffeomorphisms
via pullbacks instead of pushforwards.

of fastest change (largest directional derivative), with its magnitude ‖∇ f‖
(requiring a metric to be defined) giving the rate of change in that direction.

The gradient vector allows computing the directional derivative Du f , of
the scalar field f in the direction given by an arbitrary vector u, as

Du f = ∇ f ·u =
〈
∇ f ,u

〉
. (1.1)

This requires an inner product 〈·, ·〉 to be defined in each tangent space,15 15 This does not mean that the directional
derivative can only be computed if a metric
is defined! Quite to the contrary (Eq. 1.2).

given by a metric tensor field on M. The inner product, which is a geomet-
ric concept (see below), then enables determining the directional derivative,
i.e., the rate of change16 of the scalar field f in the direction given by u. 16 The rate is measured with u as the “unit,”

i.e., if ‖u‖ increases/decreases, the rate
increases/decreases (see Eq. 1.5). If one
wants to exclude this effect, u must be
chosen as a unit vector, or the rate of
change be divided by ‖u‖.

Computationally, it is an important restriction of the definition of gra-
dients as gradient vectors that each choice of coordinate system requires
a different formula for the gradient vector computation, and also requires
care (and again a different formula) with respect to which (coordinate) basis
or (non-coordinate) frame is used.17 The latter can often lead to misunder- 17 For example, ∇ f = ∂ f

∂x ex +
∂ f
∂y ey

in 2D Cartesian coordinates, with the
Cartesian coordinate basis (ex,ey) =
(∂∂∂ x,∂∂∂ y). However, in polar coordinates
we instead get ∇ f = ∂ f

∂ r er +
1
r2

∂ f
∂θ

eθ ,
with the corresponding coordinate basis
(er ,eθ ) = (∂∂∂ r ,∂∂∂ θ ). Even more confusingly,
if an orthonormal basis {êr , êθ} is used
instead, we get ∇ f = ∂ f

∂ r êr +
1
r

∂ f
∂θ

êθ .
(The coordinate basis in this case is not
orthonormal; the orthonormal basis is
thus a non-coordinate frame. For the
former, [er ,eθ ] = 0, whereas for the latter
[êr , êθ ] 6= 0, with [·, ·] the Lie bracket.)

standings, and thus wrong results, when the basis that corresponds to the
gradient formula is not given explicitly or not fully understood.

In fact, instead of the gradient vector ∇ f , the more “primary” notion
for the concept of a gradient, allowing to compute directional derivatives
without requiring an inner product to be defined, is given by the differential
1-form d f of the scalar field f , also simply called the differential d f . The
1-form d f determines the directional derivative in the direction u as18

18 If this formulation is used, the gradient
vector is not required at all in order to
compute directional derivatives. Even in
computer graphics, the normal vector can
be seen as determining the directional
derivative of the signed distance to a
surface. The corresponding differential d f
is the fundamental reason why normal
vectors in computer graphics do not
transform as regular (geometric) vectors.
They transform as differential 1-forms.

Du f = d f (u). (1.2)

If a metric, defining the inner product, is given, the gradient vector ∇ f is
then defined to be the unique vector such that the following is true:

Du f = d f (u) =
〈
∇ f ,u

〉
. (1.3)

This, in fact, as we will see in detail later on, is usually done by taking
the 1-form d f , which is a covariant first-order tensor (a covector),19 and

19 A covariant first-order tensor, also
called a covector or 1-form, represents a
scalar-valued linear function (or functional)
mapping a (tangent) vector to a scalar.

converting it into its associated (via the metric) contravariant vector20 ∇ f .

20 In “classical” tensor calculus using
indices, the “downstairs” index of the
covariant vector vi = (d f )i is raised to
produce the associated contravariant vector
with an “upstairs” index vi = (∇ f )i. As we
will see later, the (inverse) metric tensor is
used to raise the index via vi = gi jv j .

In contrast to these complications, the differential 1-form d f can always,
i.e., for any coordinate system, be obtained in components via

d f =
∂ f
∂xi dxi. (1.4)

Here, {dxi} is the dual basis, i.e., the covector basis of coordinate differen-
tials corresponding to the coordinate basis {ei}. The dual basis is defined
such that dxi(e j) = δ i

j, where the latter is the Kronecker delta that is 1
when i = j, and 0 otherwise.21 This implies that dxi reads off the i’th com-

21 In “matrix notation” the Kronecker delta
is simply the identity matrix. In this sense,
{dxi} and {ei} are “inverses” of each other.

ponent of a vector: Every vector v can be expanded as v = dxi(v)ei. This is
the same as v = vi ei, with the components vi obtained as vi = dxi(v).

The coordinate basis vectors {ei} themselves are tangent to the coordi-
nate lines of the coordinate system22 {xi}, i.e., the curves along which all 22 With coordinate functions {xi}, where

each xi : M ⊃U →R.other coordinates are constant. They also comprise the partial derivative
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operators ei =
∂

∂xi (sometimes written in abbreviated notation as ∂∂∂ i), because
they are tangent to the direction in which only one coordinate is varied.23

23 This corresponds to the fact that vectors
can be interpreted as directional derivative
operators. For example, we always have
∂∂∂ i xi = dxi(∂∂∂ i) = 1, and if a metric is given
∂∂∂ i xi = 〈∇xi,∂∂∂ i〉. However, we also note
that the basis vectors themselves are often
also computed via partial differentiation.

The multitude of different formulas for ∇ f , if even needed at all, then
arise naturally24 by raising the covector d f to its dual vector ∇ f .

24 This is also called the natural pairing
determined by a given metric g, written
as ∇ f 7→ g(∇ f , ·). That is, d f is determined
by d f (·) = 〈∇ f , ·〉. This is sometimes also
written as d f = ∇ f ·dr, where dr denotes a
vector-valued 1-form.

Riemannian metrics

A Riemannian metric is a second-order tensor field g on a manifold M that
defines an inner product 〈·, ·〉 between two (tangent) vectors v and w as

〈v,w〉 := g(v,w) = ‖v‖‖w‖cosθ , (1.5)

where θ is the angle between the vectors v and w. This metric is required to
be positive-definite,25 i.e., g(v,v) > 0 for all vectors v 6= 0.

25 A generalized version are indefinite,
pseudo-Riemannian metrics. The most
famous example is the four-dimensional
spacetime metric used in special and
general relativity.In our context, it is crucial to realize that the equation above corresponds

to the geometric meaning of the inner product between two vectors, without
requiring coordinates. It is therefore a coordinate-free definition.

That is, one should not right away think of the standard definition of
the Euclidean inner product (the dot product) in Cartesian coordinates,
where 〈v,w〉= ∑i viwi is often seen as the definition of the inner product.26

26 In our context, we would write this
as 〈v,w〉 = viwi = viwi, because in tensor
calculus indices are only allowed to be
contracted in contravariant (upstairs) and
covariant (downstairs) index pairs.

However, in the more general context of Riemannian geometry and tensor
calculus, this computation is merely a way for computing the scalar value
given by the inner product of two vectors in Euclidean space given by
Cartesian components.27 This equation is neither valid28 for non-Cartesian

27 In fact, the standard equation for the
dot product results from the special case
where the metric g in components is given
by gi j = δi j (i.e., by an identity matrix),
because for the full expression (Eq. 1.7) we
get gi jviw j = δi jviw j = ∑i viwi = ∑i viwi.

28 We are referring to the fact that ∑i viwi
is non-tensorial, giving different results
in different coordinate systems. However,
both the expressions viwi and viwi are
tensorial: They give the same result in all
coordinate systems. (The full expression is
gi jviw j , and gi jvi = v j and gi jw j = wi.)

coordinates (even in Euclidean space), nor is it possible to use this defini-
tion in (intrinsically) curved spaces, e.g., on the surface of a sphere seen as
a two-dimensional manifold. The metric tensor g is a purely geometric, i.e.,
coordinate-free, concept. However, for computations in coordinates, we can
use the corresponding components gi j, referred to a basis {ei}, given by

gi j := 〈ei,e j〉. (1.6)

Here, the right-hand side is seen as being evaluated geometrically, i.e.,
without “circularly” using the definition of the (unknown) components gi j.
This can be done using the geometric definition given by Eq. 1.5,29 or 29 We note that when the metric is already

known in some other coordinate system,
such as the “trivial” Euclidean metric
in “background Cartesian coordinates,”
we can “cheat” and simply compute the
geometric inner product from the known
Cartesian components of the vectors ei.

via some other geometric or physical means.30 Of course, if the metric

30 A famous example are the Einstein field
equations, which determine the metric
of curved spacetime from the energy-
momentum tensor field corresponding to
the distribution of energy and mass.

components gi j are already known in some other coordinate system, these
components can simply be transformed to any other coordinate system.31

31 Using the tensor transformation rules for
a covariant second-order tensor.

Another important way to compute the metric components gi j is deter-
mining the metric induced by a surrounding ambient space for which the
metric is already known. For example, for curved surfaces embedded in R3,
with the latter having the Euclidean metric, the 2D metric on the surface
is then trivially induced by the 3D ambient metric. The right-hand side of
Eq. 1.6 can then be computed via the inner product already known in R3.

Given the components gi j, with respect to a given basis {ei}, we can
evaluate the metric for two arbitrary vectors v and w, given in compo-
nents vi and wi with v = viei and w = wiei, respectively, as32 32 The derivation results directly from the

bi-linearity of the metric g.
g(v,w) = g

(
viei,w je j

)
= viw jg

(
ei,e j

)
= gi jviw j.

(1.7)
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Here, we are using the Einstein summation convention. See Chapter 2.1.
Alternatively, we can arrange components in a symmetric matrix.33 In 2D, 33 In Euclidean space with Cartesian

coordinates, this is the identity matrix. In
Euclidean space with polar coordinates,
g11 = 1,g22 = r2, and g12 = g21 = 0.gi j =

[
g11 g12

g21 g22

]
, (1.8)

from which we can then compute the inner product above (Eqs. 1.5, 1.7) as

〈v,w〉= g(v,w) =
[
v1 v2

][g11 g12

g21 g22

][
w1

w2

]
. (1.9)

We note, however, that, as we will explain in detail later on, in order to fully
write the metric tensor g by itself, in components referred to a basis {ei},
we need to use the corresponding basis for covariant second-order tensors34 34 These bases comprise tensor products

of 1-forms ω i reading off coordinates
of vector arguments, giving tensor bases
{ω i⊗ω j}. With arguments, g(v,w) =
gi j ω i(v)ω j(w) = gi jviw j . For dual
coordinate bases, where ω i = dxi, we can
write the tensor bases as {dxi⊗dx j}.

{ω i⊗ω j}, with ⊗ the tensor product, giving the metric tensor as

g = gi j ω
i⊗ω

j. (1.10)

Velocity gradients

In flow visualization, many important properties of vector fields can be
derived from a first-order Taylor expansion of a given vector field v around
each point, which is determined by the velocity gradient tensor ∇v.35

35 At each point x ∈ M, this is a linear
map (∇v)x : TxM→ TxM. For the whole
vector field v, the map can be written as
∇v : T M→ T M, mapping a vector field of
directions to the corresponding vector field
of directional derivatives.The first-order directional derivative of the vector field v in a direction w

is then obtained as ∇v(w),36 i.e., the second-order tensor ∇v at a point 36 Sometimes, e.g., in the Navier-Stokes
equations, this is written as w ·∇v. However,
we are using the more general notation here
that emphasizes that ∇v is a function.

is applied as a linear map to the vector w at that point, mapping it to the
vector ∇wv = ∇v(w) that comprises the directional derivative at that point.

In the flow visualization literature, ∇v is often defined as a matrix of
partial derivatives: The Jacobian (matrix) J, giving (not writing the basis37) 37 The tensor ∇v is a second-order tensor

of mixed type, with one contravariant and
one covariant index. The corresponding
basis is therefore ei⊗ω j . Contrast this with
the basis ω i⊗ω j of the covariant tensor g,
where both indices are covariant.

∇v := J =
∂v
∂x

=
∂vi

∂x j = ∂ jvi. (1.11)

On the right-hand side, the vector components vi are the components
obtained by referring the vector v to a specific basis38, and (∂ /∂x j) =: ∂ j 38 The components must always be com-

bined with the correct basis: For Eq. 1.12,
this means the expansion v = vxex + vyey,
with components (vx,vy) = (v1,v2),
whereas for Eq. 1.13 this means the expan-
sion v = vrer + vθ eθ , with components
(vr ,vθ ) = (v1,v2). (In both, v is the same
vector, just referred to different bases.)

denotes taking the partial derivative with respect to the coordinate x j.
For example, in 2D (again not writing the basis)

∇v := J =

[
∂1v1 ∂2v1

∂1v2 ∂2v2

]
. (1.12)

However, despite its wide-spread usage, this definition is only valid in
Cartesian (affine) coordinates, but it is not valid (not tensorial) in general.
For example, even in flat, two-dimensional Euclidean space with polar
coordinates (r,θ ) := (x1,x2) = (xr,xθ ), we have (not writing the basis)

∇v 6= J =

[
∂rvr ∂θ vr

∂rvθ ∂θ vθ

]
. (1.13)

Of course, one could simply go ahead and define ∇v as above, for any
arbitrary coordinate system. However, then this expression does not define
a tensor, and it will not give the correct geometric behavior.39 This implies

39 For ∇v, the directional derivatives of the
vector field would be wrong (different for
each coordinate system). The directional
derivative of a vector field is a vector:
The derivative of v in the direction w is
the vector ∇wv = ∇v(w). With a non-
tensorial definition of ∇v, this vector will
be different depending on the coordinate
system: Its geometric meaning is lost.

that for each different coordinate system the corresponding (non-tensorial)
definition differs from the behavior in another coordinate system. For
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physical computations, for example, this would imply that physical laws
depend on the coordinate system, which is clearly not desirable.

The maybe simplest example to illustrate why this is a problem is the
basic property that a tensor that is zero in one coordinate system must be
zero in all other coordinate systems. Comparing Eq. 1.12 with Eq. 1.13
for the simple example of a constant vector field in the Euclidean plane,40

40 We define a constant vector field v,
which in Cartesian coordinates has com-
ponents (vx,vy) = (U ,V ), for some
constants U ,V . However, in polar coor-
dinates the components are (vr ,vθ ) =
(U cosθ +V sinθ ,− 1

r U sinθ + 1
r V cosθ ),

giving the derivatives in Eq. 1.13 as

J =

[
0 r vθ

− 1
r vθ − 1

r vr

]
.

Thus, J is non-zero for non-vanishing v.
Comparison with Eq. 1.17 shows why the
correct expression yields ∇v = 0.

once using Cartesian coordinates for the computation, and once using polar
coordinates for “the same” computation, shows that this clearly is not the
case when the definition of ∇v given by Eq. 1.11 is used: The derivatives of
a constant vector field in all directions should be zero (i.e., the zero vector).
However, this is not the case when polar coordinates and Eq. 1.13 are used.

In these notes, we will explain in detail why, in the often very important
general setting,41 a tensor is not just any array of numbers. That is, for 41 In tensor calculus, manifold theory,

differential geometry in non-Cartesian
coordinates, as well as in any physical
setting, from Newtonian mechanics in
non-Cartesian coordinates to special and
general relativity.

example, not every matrix gives a second-order tensor. A simple explana-
tion is that it can only be a tensor if it behaves like a tensor, which is often
determined via tensor transformation rules between coordinate systems, but
this is essentially a geometric, and thus coordinate-free, concept.

So what is the correct general definition of the velocity gradient tensor?
For this, we need the concept of covariant derivative, briefly introduced be-
low, corresponding to a connection given on the underlying manifold M. In
our context, this connection will be a metric connection, i.e., a connection
that is compatible42 with the Riemannian metric on M. 42 This means that ∇g = 0, i.e., the covariant

derivative of the metric tensor field is
identically zero on M. (In components,
this is written as ∇kgi j = 0.) Equivalently,
∇u〈v,w〉 = 〈∇uv,w〉+ 〈v,∇uw〉, for any
vector u and any vector fields v,w.

Connections and covariant derivatives

Instead of using partial derivatives ∂ j in the definition of ∇v, i.e., incor-
rectly defining ∇v := ∂ jvi ei⊗ω j, the general definition of the velocity
gradient tensor must use covariant derivatives ∇ j, i.e., we define

∇v := ∇ jvi ei⊗ω
j. (1.14)

For example, in components in 2D (not writing the tensor basis ei⊗ω j),

∇v :=

[
∇1v1 ∇2v1

∇1v2 ∇2v2

]
. (1.15)

The above is the correct (general) definition of the velocity gradient tensor
as a covariant derivative, corresponding to a specific connection.43

43 We will use the unique Levi-Civita con-
nection, which is both metric (compatible
with a given g) and torsion-free.

The connection can be given in components via Christoffel symbols Γi
jk,

with three indices44 i, j, and k, each ranging from 1 to n. We then get for

44 Despite the slightly misleading notation,
Γi

jk is not a third-order tensor (and it
correspondingly does not transform as one).
The Christoffel symbols are an array of
numbers indexed with three indices, but
they do not obey the tensor transformation
law for third-order tensors. In fact, if they
would, they could not “make” ∇ jvi behave
correctly as a second-order tensor.

∇v in components (referred to the tensor basis ei⊗ω j),

∇ jvi := ∂ jvi +Γi
jkvk. (1.16)

In (intrinsically) flat space with Cartesian or affine coordinates, all Christof-
fel symbols vanish (Γi

jk ≡ 0), but only in this special case is ∇ jvi = ∂ jvi.
Only in this case is Eq. 1.11 equivalent to Eq. 1.14 and therefore correct.

For example, the non-zero Christoffel symbols for polar coordinates are
Γ1

22 = −r, and Γ2
12 = Γ2

21 =
1
r . For this case, we therefore get for Eq. 1.15

∇v =

[
∂1v1 ∂2v1− r v2

∂1v2 + 1
r v2 ∂2v2 + 1

r v1

]
. (1.17)
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The connection and the corresponding covariant derivative are inherently
related to the concept of parallel transport. In fact, a vector field v is said to
be parallel-transported along a curve t 7→ γ(t) with tangent vector field45 w 45 If the curve is written as γ(t), the tangent

vectors w(t) are defined as w(t) := γ ′(t).(with v given at least at each point along the curve46), when
46 For ∇v(w) to be defined, it is sufficient
that the vector field v is defined at least in a
neighborhood around each point γ(t) along
a curve with tangent parallel to w.

∇v(w) = 0, (1.18)

at each point along the curve. A special case are curves that are geodesics,
for which the tangent vectors themselves are parallel-transported, i.e.,

∇w(w) = 0. (1.19)

For (intrinsically) flat manifolds, parallel transport between two points
is independent of the path (the curve) taken between the two points. For
(intrinsically) curved manifolds, parallel transport is path-dependent.47 47 In fact, this is one way in which curva-

ture can be defined, corresponding to the
concept of holonomy. The (fourth-order)
Riemann curvature tensor Ri

jkl captures
the complete behavior of parallel trans-
port of vectors around infinitesimal loops
at a point. If parallel transport is path-
independent, then the Riemann curvature
tensor is zero, corresponding to the mani-
fold being intrinsically flat. In the simple
special case of a two-dimensional surface,
this corresponds to the Gaussian curvature.

Flow maps

The flow map of a time-dependent vector field v(x, t) is given by

F t
t0 : M→M,

x0 7→ F t
t0(x0) =: x(t;x0).

(1.20)

This simply denotes the diffeomorphism F t
t0(x0) : x0 7→ x(t;x0), mapping

from the manifold M to itself, mapping points x0 at time t0 to points x at
time t, defined by for each point x0 following the path line through x0, at
time t0, until time t, at which time the path line passes through the point x.

From a flow map F t
t0 , for a vector field given in Euclidean space, the

corresponding spatial gradient ∇F t
t0 , also called the deformation gradient, is

often computed.48. However, more generally, also including non-Euclidean 48 For example, in FTLE computations, and
in the definition and computation of many
other Lagrangian concepts.

manifolds, this deformation gradient in fact requires the more general
concept of the pushforward or differential of the diffeomorphism F t

t0 .49
49 We note that in general, even the name
deformation gradient is misleading, since
the pushforward of a diffeomorphism
between two general manifolds (or a
general manifold to itself) cannot be
computed as a gradient. We note that in
continuum mechanics, the pushforward at a
given point on the manifold is also called a
two-point tensor, because it maps between
two different tangent spaces (which often
also have, or must have (if there is no trivial
parallel transport), two different bases).

For a general diffeomorphism φ , the corresponding pushforward is a
map between tangent bundles that is often written as the map φ∗. If the
pushforward is called the differential of φ , it is also often written simply
as dφ . We will denote this map for the diffeomorphism F t

t0 by dF t
t0 :

dF t
t0 : T M→ T M,

v 7→ dF t
t0(v).

(1.21)

The pushforward defined on the entire tangent bundle is in general not a
linear map. Considered point-wise, however, i.e., at each point x0, it is a
linear map between tangent spaces. We can write this linear map as(

dF t
t0

)
x0

: Tx0M→ TxM,

vx0 7→ dF t
t0(vx0).

(1.22)

In the last row of the latter equation, the notation vx0 refers to a single
vector (not a vector field) in the tangent space Tx0 M located at the point x0.
However, for brevity we will often use the simple notation v for both vector
fields (on a tangent bundle) and individual vectors (in a specific tangent
space), because the meaning is usually easy to infer from the context.





2 Manifolds, coordinate charts, vector
fields

In this chapter, we introduce coordinate systems and generalize them
to differential manifolds via an atlas of coordinate charts. We introduce
the fundamental notions of coordinate bases as well as non-coordinate
frames. In the former, all basis vectors are derivatives of the coordinate
functions {xi} of a given coordinate chart. In the latter, they are not, which
for example is often the case for orthonormal frames. The Lie bracket
is a very important concept that clarifies the difference. Vector fields on
manifolds are defined on the tangent bundle.

Vector and tensor components referred to arbitrary coordinate systems;
manifolds that cannot be covered by a single chart (e.g., the sphere); vector
fields on curved manifolds, e.g., geophysical flows 1; computing gradients 1 P. Rautek, M. Mlejnek, J. Beyer, J. Troidl,

H. Pfister, T. Theußl, and M. Hadwiger.
Objective observer-relative flow visual-
ization in curved spaces for unsteady 2d
geophysical flows. IEEE Transactions on
Visualization and Computer Graphics, 27
(2):283–293, 2021

in non-Euclidean coordinate systems, e.g., polar coordinates or curvilinear
grids; preview of later sessions: velocity gradient tensors.

The most important concepts covered in this chapter are:

• The Einstein summation convention.

• Manifolds; in particular differentiable manifolds.

• Coordinate systems. These are not sets of vectors (bases), but real-
valued coordinate functions. Vector bases result as partial derivatives of
these coordinate functions.

• Coordinate bases vs. non-coordinate frames.

• Change of basis.

• Dual bases and dual frames.

• Coordinate charts and atlases. Many manifolds cannot be covered by
a single coordinate system (in this context called a coordinate chart),
but must be covered by an atlas of multiple coordinate charts (with
overlapping regions).

• Tensor transformations.

• Tangent spaces and tangent bundles.

• Vector fields.

• Lie brackets.

2.1 The Einstein Summation Convention

We first briefly summarize an important notational convention that we will
use in many computations using coordinates. (In addition, in the tutorial
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we will also cover and use the more “modern” perspective of coordinate-
free differential geometry, i.e., where geometric objects are used without
coordinates, often enabling more geometric insight.)

We employ the Einstein summation convention (Frankel, 2011, p.59)2, 2 Theodore Frankel. The Geometry of
Physics: An Introduction. Cambridge
University Press, 3rd edition, 2011

implying summation over indices occurring twice (once “upstairs” and
“downstairs” each). For example, to represent a vector v referred to a
basis {ei}, we pair3 contravariant components vi with the basis vectors via 3 Paired indices are often called dummy in-

dices. When a contraction (the summation
over paired indices) is carried out, these in-
dices “fall out” of the resulting expression.
Here, the result is the geometric vector v,
without any remaining index. However,
see also the example below, where w jδ i

j is
contracted to wi: The dummy index j has
fallen out; the free index i remains.

v = vi ei := ∑
i

vi ei,

=v1 e1 + v2 e2 + . . .+ vn en.
(2.1)

Carrying out the implied summation is called a contraction. For an n-
dimensional manifold, every paired (“dummy”) index represents a sum over
all n dimensions (with n fixed and assumed known). Thus, an expression
like vi ei above represents a sum over n terms, with i ∈ {1, . . . ,n}.

The actual letter (here, index i) for the index has no intrinsic meaning4. 4 This can be a great source of confusion
when translating tensor expressions into
matrix expressions and vice versa.

Indices occuring twice can be renamed freely, as long as the corresponding
pairing in the summation convention stays the same. Indices that occur only
once5 can also be renamed freely; however, they also need to be renamed 5 These indices are often called free indices.

There is no implied summation over free
indices; e.g., the second-order tensor gi j .

consistently everywhere, in particular also on both sides of an equation.
Likewise, a 1-form ω referred to a dual6 1-form basis {ω i} expands as 6 See later for an explanation of dual bases.

ω = vi ω
i := ∑

i
vi ω

i,

=v1 ω
1 + v2 ω

2 + . . .+ vn ω
n.

(2.2)

Another example of a tensor contraction is applying a 1-form ω , with
components vi, to a vector w, with components wi, to obtain the scalar7

7 A 1-form is a linear function that, when
applied to a vector, yields a scalar.

ω(w) = vi wi := ∑
i

vi wi,

=v1 w1 + v2 w2 + . . .+ vn wn.
(2.3)

In coordinate-free notation, the above contraction is simply ω(w) by itself,
where a 1-form ω is contracted with a vector w, both without components.

In components, where the 1-form is expanded to ω = vi ω i, and the
vector is expanded to w = wi ei, the above is the correct expression for the
contraction, because8 ω i(e j) = δ i

j. From this, we can derive the above as9

8 This is the definition of a dual basis, i.e.,
a basis {ω i} that is dual to the basis {ei}
is defined to be the {ω i} that fulfills
ω i(e j) = δ i

j , with δ i
j the Kronecker delta

that is 1 when i = j, and 0 otherwise.
9 All expansions like this one here exploit
the fact that tensors are multi-linear
functions of their arguments, i.e., they are
linear when all arguments except one are
held fixed. For vectors and 1-forms this
simply means that they are linear functions.
This directly allows “pulling” coefficients
in front of expressions, as is done here.
More explicitly, this gives

(vi ω
i)(w j e j) =

(
∑

i
vi ω

i)(
∑

j
w j e j

)
,

= ∑
i, j

(
(vi ω

i)(w j e j)
)

,

= ∑
i, j

vi w j
ω

i(e j) = ∑
i

viwi.

ω(w) =(vi ω
i)(w j e j),

=vi w j
ω

i(e j),

=vi w j
δ

i
j,

=vi wi.

(2.4)

In the last step, we have exploited that δ i
j is 1 when i = j, and 0 otherwise:

vi w j
δ

i
j := ∑

i j
vi w j

δ
i
j,

=1 · v1 w1 + 0 · v1 w2 + . . .+ 1 · vn wn,

=v1 w1 + v2 w2 + . . .+ vn wn,

= ∑
i

vi wi = vi wi.

(2.5)
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That is, the summation convention works the same for multiple pairs of
repeated indices. Computing the inner product between two vectors is then

g(v,w) = gi j vi w j := ∑
i, j

gi j vi w j,

=g11 v1 w1 + g12 v1 w2 + . . .+ gnn vn wn.
(2.6)

For an n-dimensional manifold, such an expression therefore automatically
represents n2 terms: Contracting k pairs of indices gives nk terms.

Another important example is applying a linear map T to a vector v,
yielding another vector w. This is equivalent to standard matrix-vector
multiplication10. In tensor notation, this is written as

10 Note, however, how the indices i, j in
the tensor expression do not have any
inherent meaning, corresponding to the fact
that there are no “rows” or “columns” in
tensor notation. Instead of the index names,
for the tensor T i

j one can think about the
first index (just here i) as rows, and the
second index (just here j) as columns,
respectively. (However, this is still partially
just a (common) convention; writing T j

i vi

instead would be just as valid, although be
slightly harder to map to matrix notation.)

w = T(v),

=
(
T i

j v j)ei := ∑
i

(
∑

j
T i

j v j)ei = wi ei.
(2.7)

As a last important example, the equivalent to matrix-matrix multiplication
followed by matrix-vector multiplication, corresponding to the application
of the composition of two linear maps to a vector, is11

11 Again note that the indices do not
have inherent meaning. Individually, the
tensor components of the linear maps
can be written as T i

j and Si
j , respectively.

However, for function composition, i.e.,
“matrix multiplication,” some indices
must be renamed and the corresponding
expression is Si

k T k
j . (In contrast, Si

j T i
j has

the meaning of “component-wise matrix
multiplication,” the Hadamard product.)w = (S◦T)(v) = (S(T(v)),

=
(
Si

k T k
j v j)ei := ∑

i

(
∑
j,k

Si
k T k

j v j)ei = wi ei. (2.8)

Expressions like this one usually can be read in multiple ways. For exam-
ple, here involving two simultaneous contractions in wi = Si

k T k
j v j, or first

computing an intermediate vector uk = T k
j v j followed by wi = Si

k uk. And, in
fact, the geometric output vector w results from a third contraction (wi ei).

Figure 2.1: Coordinate chart on the sphere.

2.2 Manifolds

Topological manifolds

A topological manifold M is a mathematical structure describing an n-
dimensional12 space13, with the essential characteristic that the neighbor-

12 It is important to note that the dimen-
sion n must be fixed and be the same
everywhere on a given manifold.
13 The space Rn is already such a manifold,
but often we are interested in more
complicated manifolds, such as a sphere, a
torus, or a more general n-D manifold not
embedded in some Rm with m > n.

hood14 of every point x ∈M, maps to a corresponding neighborhood of a

14 For completeness, we note that we
only consider spaces that are Hausdorff
(“any two distinct points have disjoint
neighborhoods”) and second-countable
(“there exists a countable base for the
topology”), excluding “pathological” cases.

point in Rn with a homeomorphism, i.e., a bijective map (one-to-one and
onto) that is continuous and whose inverse is also continuous15.

15 Homeomorphisms (“topological isomor-
phisms”) are the most important functions
in topology; they preserve all topological
properties. In our context, this implies
that the neighborhoods of x ∈ M and
of ϕ(x) ∈Rn are topologically the same.

Naturally, this is possible for Rn itself, or any open set that is a (proper)
subset of Rn. However, more generally a manifold M is not a subset of Rn

and is covered with multiple open subsets Uα ⊂M, where α is an index from
some index set, and where the union of all subsets is the entire manifold M.
Each open16 set Uα is individually mapped to a corresponding open subset

16 The entire set Rn, with the natural
Euclidean topology (the topology induced
by the Euclidean metric), is itself an open
set. (In fact, in Rn it is also closed.)

of Rn by the corresponding homeomorphism, which we denote by a map

ϕα : M ⊃Uα → ϕα (Uα ) ⊂Rn,

x 7→ ϕα (x).
(2.9)

An important technical property of this construction is that each point x ∈M
mapping to ϕα (x) ⊂ Rn in this way obtains a corresponding tuple of
n-dimensional coordinates17 for the point x. Roughly speaking, we can

17 Later, we will call the pair (Uα ,ϕα ) a
coordinate chart, or simply a chart.

therefore say that a manifold is a topological space that has dimensionality
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n everywhere and where it is possible to assign n-dimensional coordinates
(a tuple of n coordinates, corresponding to a point in Rn) in a continuous
and continuously invertible way. However, this can only be done with a
single map ϕ for very simple manifolds, and therefore, in the important
general case, but even on relatively simple manifolds such as a sphere, mul-
tiple overlapping open sets Uα with corresponding maps ϕα are required18.

18 Because the sets Uα are open sets and we
have to cover the entire manifold M, this
naturally also means that there have to be
overlapping regions in which individual
points x will have multiple coordinates
(each one coming from a different ϕα ).

A manifold with this structure is a topological manifold. Topological
manifolds by themselves have already many important applications19.

19 We refer to the detailed treatment given
by (Lee, 2011) :

John M. Lee. Introduction to Topological
Manifolds. Springer-Verlag, 2nd edition,
2011

However, for our purposes we require calculus to be possible on manifolds.
For calculus on manifolds, we additionally need a differential structure to
be given on a topological manifold, turning it into a differential manifold.

Figure 2.2: Polar coordinates are not
defined everywhere in R2.

Differential manifolds

A topological manifold with an additional differential structure is a differen-
tial manifold, often also called a smooth manifold. Roughly speaking, the
differential structure consists of a maximal set of charts {(Uα ,ϕα )} (called
an atlas), whose union covers the entire manifold, with (partial) overlaps
between charts, and where all coordinate transition functions between
charts are differentiable in regions where multiple charts overlap.

Roughly speaking, we can also just say that a smooth manifold has a
well-defined n-dimensional tangent space “attached” to every point x ∈M on
the manifold M, where that tangent space is typically denoted by TxM.

The full technical definition20 is more complicated, with deep conse-

20 For more complicated manifolds, such
as the 7-dimensional sphere S7, there in
fact exist multiple different differential
structures.

quences in differential topology21. However, for our purposes this simple

21 We refer to the detailed treatment given
by (Lee, 2012) :

John M. Lee. Introduction to Smooth
Manifolds. Springer-Verlag, 2nd edition,
2012

definition will suffice. For typical applications in our context, the differen-
tial structure simply means that the techniques of calculus are available to
us on the manifold, by simply transferring them from Rn to M. This mainly
means that we can use standard Rn calculus22 “on” M, by performing

22 We highly recommend the concise book
by (Spivak, 1965) :

Michael Spivak. Calculus on Manifolds.
Benjamin Cummings, 1965computations in each coordinate chart (via simple computations in Rn).

The differentiability of the transition functions in each chart overlap
guarantees the consistency of calculus computations between charts,
thus becoming intrinsic to the manifold, invariant with respect to—i.e.,
independent of—the subset of Rn that is being used.

In order to make the latter possible from a calculation perspective,
calculus on manifolds usually makes use of tensor techniques, i.e., we
build on methods from tensor calculus. These techniques have the crucial
property that they result in coordinate-independent results, i.e., all compu-
tations agree and are independent of any particular choice of coordinate
chart (Uα ,ϕα ). We can think about this property even for the almost triv-
ial23 example of the manifold M = R2, but with two different coordinate

23 We note, however, that things do not
stay trivial for long. Even for M = R2,
for example, one polar coordinate system
is only defined for Uα = ϕ−1

α ({r,θ})
for all 0 < r < ∞ and 0 < θ < 2π , with
(0,0) denoting the pole that is the origin
of the coordinate system: At the pole, all
angles θ would map to the same point, and
thus there is no unique coordinate (r,θ );
moreover, the angle θ has a discontinuity
where θ = 0 and θ = 2π denote the same
line extending rightward from the origin.
For simple calculations without calculus
it sometimes does not matter much that
a single point has “multiple coordinates,”
but for a differential manifold this is not
allowed: There is no corresponding map
ϕα that is a homeomorphism, because
it would not be bijective. Therefore, in
order to be able to include the pole and the
angle discontinuity “half-line,” a second
overlapping chart with different pole and
angle assignment is required (or another
chart that does not have these constraints).

systems, such as two different sets of 2D Cartesian coordinates (e.g., where
one coordinate system is rotated with respect to the other one). A more il-
lustrative example is using 2D Cartesian coordinates and polar coordinates,
respectively. Naturally, we want all geometric meaning to be independent
of the particular choice of coordinate system in R2. This is ensured in a
well-defined way by the framework of tensor calculus techniques.
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2.3 Coordinate Systems

In this section, we will start with the simplest case24, where a single 24 Below, we will extend this notion to that
of coordinate charts, each of which maps
an open subset U ⊂M of an n-dimensional
manifold M to a subset of Rn. Multiple
(overlapping) coordinate charts then
comprise a coordinate atlas that jointly
covers the entire manifold M.

coordinate system maps the entire n-dimensional manifold M to Rn.
In the general notion of a coordinate system, accommodating arbi-

trary coordinate systems, such as curvilinear coordinates, as well as non-
Euclidean manifolds, such as a sphere, a coordinate system does not consist
of n coordinate vectors25. Instead, for an n-dimensional manifold it consists 25 In contrast, basis vectors live in each

tangent space TxM, at x ∈ M, and they
are often obtained as derivatives of the
coordinate functions.

of n coordinate functions {xi}, with each

xi : M→R,

x 7→ xi(x).
(2.10)

This approach is crucial for non-affine (including Cartesian) coordinate
systems: Coordinate vectors are only possible in linear spaces26, but

26 Where the whole manifold M is a vector
space with the origin at 0, or an affine
space with an arbitrarily-chosen origin.

coordinate functions (as R-valued functions xi on a manifold M) can be
defined on any manifold.

Figure 2.3: Cartesian coordinates in R2.

For example, for n = 2, the two coordinate functions x1,x2,

x1 : M→R,

x2 : M→R.
(2.11)

Figure 2.4: Polar coordinates in R2.

Sometimes, the coordinate functions are labeled differently to highlight
the particular coordinate system used. For example, for 2D polar coordi-
nates (r,θ ) =

(
r(x),θ (x)

)
, we can define (x1,x2) := (xr,xθ ), writing27

27 We also could denote xr simply by
a function r, and xθ by a function θ .
Usually, the context makes clear whether
a value r or a function r (as r(x) with
r : M→R,x 7→ r(x)) is meant.

xr : M→R,

xθ : M→R.
(2.12)

Altogether, the n-tuple of n coordinates of any point x ∈ M, where M is
n-dimensional, can be obtained via a coordinate map

ϕ : M→Rn,

x 7→ ϕ(x) =
(
x1(x),x2(x), . . . ,xn(x)

)
.

(2.13)

If desired, we can again make the particular coordinate system more
explicit, for example denoting the polar coordinate map from above as

ϕ : M→R2,

x 7→ ϕ(x) =
(
xr(x),xθ (x)

)
=
(
r(x),θ (x)

)
.

(2.14)

2.4 Coordinate Curves

Coordinate curves on a manifold, of a coordinate system or of the coor-
dinate map of a given coordinate chart,28 are simply the 1-manifold pre-

28 For coordinate charts see Sec. 2.8.images of the coordinate map, when varying one chosen coordinate while
keeping all other coordinates constant. When a coordinate map x 7→ ϕ(x) is
given, we can choose one coordinate xi to vary, and define the curve

t 7→ x(t) := ϕ
−1 (x1,x2, . . . , t, . . . ,xn) ∈M. (2.15)

Here, the curve parameter t replaces the i’th coordinate, and all other coor-
dinates x j, j 6= i, are held fixed.29 See Fig. 2.5 for examples of coordinate

29 Which coordinate curve we get depends
on the choice of constants for {x j}, j 6= i.

curves on manifolds, i.e., examples for the 1D pre-images just defined.
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Figure 2.5: Coordinate curves of different
coordinate maps, on different manifolds:
(Left) Cartesian coordinate curves on
M = R2; (Center) Polar coordinate curves
on M = R2; (Right) Coordinate curves of
multiple coordinate charts on the sphere,
M = S2. For charts, see Sec. 2.8.

2.5 Coordinate Bases vs. Non-Coordinate Frames

Vectors are geometric objects independent of any chosen basis. In order to
refer a vector v to a basis, we expand it in components as v = vi ei, where
{ei} is a basis for TxM, and, in general30, the TxM at different x ∈M have

30 In principle, they are always different
bases. However, when all tangent spaces
are identical copies of each other, with the
manifold M having trivial parallel transport,
one can say in this context all bases are
“the same.” (E.g., Cartesian/affine coordi-
nates on (intrinsically) flat manifolds.)

different bases. It is crucial to understand that the vectors ei are themselves
also seen as geometric vectors (e.g., as the tangent vectors of coordinate
curves) that exist without having to refer them to another basis31.

31 Otherwise, this would seem to be a
“circular” definition.

(That said, however, if we know two different (geometric) bases, e.g.,
the tangent vectors to two different coordinate systems, we can refer one of
them to the other one32, obtaining the corresponding expansions ẽ j = ẽi

j ei).
32 This is exactly what we have to do to
perform a change of basis, see below.

A coordinate basis for the coordinate system {xi} is denoted, in each
tangent space TxM at the point x ∈M, by

ei :=
∂

∂xi =: ∂∂∂ i. (2.16)

From the coordinate functions {xi}, we obtain coordinate basis vectors as

∂∂∂ i :=
∂

∂xi :=
∂

∂xi ϕ
−1 (x1,x2, . . . ,xn) . (2.17)

This definition evaluated at a single point x ∈ M gives basis vectors ∂∂∂ i

in the corresponding tangent space TxM. Evaluating for all points x ∈
M gives vectors ∂∂∂ i in each tangent space TxM, thus for each i giving a
corresponding basis vector field (see below), which we also denote by ∂∂∂ i.

Figure 2.6: (Non-)commutativity of basis
vector fields.

Each coordinate basis vector ∂∂∂ i is the tangent vector, at the point x ∈M
of evaluation, to the corresponding coordinate curve on M, through the
point x, along which all coordinates x j with j 6= i are constant. It is crucial to
understand that the ∂∂∂ i are geometric vectors in each tangent space TxM33.

33 The corresponding vectors in
components Rn, with respect to
the same coordinate system, are al-
ways {(1,0, . . . ,0), (0,1, . . . ,0), . . . , (0,0, . . . ,1)}.

Coordinate basis vector fields34 always commute, stated explicitly by

34 See below. This commutativity, and
the corresponding Lie bracket, only make
sense for vector fields, not for individual
vectors in a single tangent space.

[∂∂∂ i,∂∂∂ j] = 0. (2.18)

The operator [·, ·] is the Lie bracket (of vector fields), which is described
below. It essentially measures the non-commutativity of vector fields.

In contrast, in a non-coordinate basis {ei}, where the ei in each tangent
space TxM are arbitrary linearly-independent vectors, with ei 6= ∂∂∂ i, the
corresponding basis (or frame) vector fields do not commute. That is,

[ei,e j] 6= 0. (2.19)
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Basis vector fields

It is often very important to consider that the notation {ei} does not only
correspond to a basis of n linearly-independent vectors in one tangent
space TxM, but that there is one such basis in every tangent space TxM35. 35 See below for the description of vector

fields as sections of the tangent bundle T M.Therefore, the notation {ei} also refers to a set of n tangent vector fields,
the basis vector fields, where the corresponding vectors in each TxM at each
point x ∈ M must be linearly-independent in each vector space TxM. In
each TxM, the set of vectors {ei} forms a vector space basis for TxM.

Frame fields

We refer to the basis vector fields of non-coordinate bases, or non-coordinate
frames, as frame fields. However, in general one needs to be careful what is
meant by these terms and make sure that it is clear whether a basis or frame
is a coordinate or a non-coordinate basis (or frame).

2.6 Change of Basis

Given two different bases {ẽi} and {ei}, we can refer one of the two bases
(here, {ẽi}) to the other one (here, {ei}), by expanding36

36 Note that the index j is shown offset to
the right, indicating that it is the second,
and not the first, index. (The first index
here is i.) This will make mapping the
tensor transformation laws of components
(as opposed to the basis vectors here) to
standard matrix notation easier. See below.

ẽ j = ẽi
j ei. (2.20)

The n×n components ẽi
j are simply the n components ẽi

j, with the second
index j held fixed, for each basis vector ẽ j, for all n basis vectors {ẽ j},
with j not held fixed. We can write this schematically in “matrix form” as37 37 This expression must be evaluated using

the same multiplications and additions
of elements as in standard matrix-vector
multiplication, keeping each geometric
vector ei, ẽi as a single mathematical object.

Note, however, that due to the arrange-
ment using standard matrix notation, in
the use of ẽi

j here, the first index (i) is the
column index, and the second index ( j) the
row index, respectively: One can think of
this matrix as having been “transposed.”
However, in tensor notation, as in Eq. 2.20,
this is irrelevant: “Transposition” merely
results from using matrix notation. (Alter-
natively, the basis vectors could have been
arranged as row instead of column vectors.)


ẽ1

ẽ2
...

ẽn

=


ẽ1

1 ẽ2
1 . . . ẽn

1
ẽ1

2 ẽ2
2 . . . ẽn

2
...

...
. . .

...
ẽ1

n ẽ2
n . . . ẽn

n




e1

e2
...

en

 . (2.21)

Likewise, we can expand in the other direction, as

e j = ei
j ẽi. (2.22)

Again in schematic matrix form, we can write this as
e1

e2
...

en

=


e1

1 e2
1 . . . en

1
e1

2 e2
2 . . . en

2
...

...
. . .

...
e1

n e2
n . . . en

n




ẽ1

ẽ2
...

ẽn

 . (2.23)

The two matrices of components are matrix inverses38 of each other, i.e., 38 These are standard matrices of coeffi-
cients, i.e.,

[
ei

j
]
·
[
ẽi

j
]
=
[
ẽi

j
]
·
[
ei

j
]
= I,

giving the identity. (It does not matter here
whether all matrices are transposed or not.)
In tensor notation, the equivalent expres-
sion is denoted by ei

k ẽk
j = ẽi

k ek
j = δ i

j .

[
ei

j
]
=
[

ẽi
j
]−1. (2.24)

We know that we can refer an arbitrary geometric vector v to either basis as

v = ṽi ẽi = vi ei, (2.25)

and therefore, if we know the components vi, inserting Eq. 2.20 into the
above39, we obtain the components ṽi, with ei

j given by Eq. 2.24, as

39 We have ṽi ẽi = ṽ j ẽi
j ei = vi ei, and

therefore vi = ẽi
j ṽ j , giving ṽi = ei

j v j ,
because ei

k ẽk
j = δ i

j . (The naming of i
and j has no meaning by itself: Only the
matching of indices for contraction must be
correct, and therefore as long as this stays
the same, indices can freely be renamed.)
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ṽi = ei
j v j. (2.26)

This gives the change of basis, from the basis {ei} to the basis {ẽi}. We
call the matrix [ei

j ] = [ ẽi
j ]
−1 the change of basis matrix, from basis {ei} to

basis {ẽi}. In matrix form, using the known components ẽi
j, this is40 40 Now, in contrast to above, the first

index (i) is in fact the row index, and the
second index ( j) is the column index.

ṽ1

ṽ2

...
ṽn

=


ẽ1

1 ẽ1
2 . . . ẽ1

n

ẽ2
1 ẽ2

2 . . . ẽ2
n

...
...

. . .
...

ẽn
1 ẽn

2 . . . ẽn
n


−1

v1

v2

...
vn

 . (2.27)

Comparing Eqs. 2.21 and 2.27 we now see that the components vi trans-
form contravariantly, i.e., inversely to the transformation of the basis41. 41 Computing the analogous transformation

for 1-forms (covectors), in components re-
ferred to a 1-form basis (the dual basis, see
below), we see that they transform directly
(not inversely) as the basis transforms, i.e.,
1-forms transform covariantly. See below.

2.7 Dual Bases and Dual Frames

We will also need the concept of a dual basis {ω i}, of 1-forms ω i, where

ω
i(e j) = δ

i
j. (2.28)

The Kronecker delta δ i
j = 1 for i = j, and zero otherwise.

Each ω i is a covector, or 1-form, which is a linear function mapping a
vector to a scalar42. The dual basis {ω i} reads off the components vi of a 42 Such a map is also called a functional.

contravariant vector v referred to the basis {ei}, such that43 43 This results from linearity and Eq. 2.28:

ω
i(v) = ω

i(v je j) = v j
ω

i(e j) = v j
δ

i
j = vi.

v = ω
i(v) ei = vi ei. (2.29)

If the basis is a coordinate basis, i.e., ei := ∂∂∂ i, we can use the corresponding
coordinate 1-forms ω i := dxi, and write

v = dxi(v) ei = vi ei,

= dxi(v) ∂∂∂ i = vi
∂∂∂ i.

(2.30)

An arbitrary 1-form ω can be referred to a 1-form basis {ω i}, giving
covariant components {vi}, such that we have

ω = vi ω
i. (2.31)

Analogous, but inverse, to Eq. 2.26, for a change of basis, and thus a corre-
sponding change of dual basis, the covariant components {vi} transform to
covariant components {ṽi} according to44 44 Again, an advantage of tensor index

notation is that the matrix transposes
sometimes required in the equivalent matrix
notation are not necessary.

ṽ j = ẽi
j vi. (2.32)

In matrix notation, again analogous but inverse to Eq. 2.27, this gives45 45 However, again note the matrix “transpo-
sition” compared to the matrix in Eq. 2.27.

ṽ1

ṽ2
...

ṽn

=


ẽ1

1 ẽ2
1 . . . ẽn

1
ẽ1

2 ẽ2
2 . . . ẽn

2
...

...
. . .

...
ẽ1

n ẽ2
n . . . ẽn

n




v1

v2
...

vn

 . (2.33)

Comparing Eqs. 2.21 and 2.33, we see that the components vi transform
covariantly, i.e., exactly the same way as the basis {ei} transforms.



MANIFOLDS , COORDINATE CHARTS , VECTOR FIELDS 23

We note that in matrix notation, covectors are often written as row
vectors instead of as column vectors, which then gives the equivalent46 46 Note that now the matrix is not trans-

posed, like the matrix in Eq. 2.27.

[
ṽ1 ṽ2 . . . ṽn

]
=
[
v1 v2 . . . vn

]


ẽ1
1 ẽ1

2 . . . ẽ1
n

ẽ2
1 ẽ2

2 . . . ẽ2
n

...
...

. . .
...

ẽn
1 ẽn

2 . . . ẽn
n

 . (2.34)

2.8 Coordinate Charts and Atlases

Coordinate charts

A coordinate chart (or, simply, a chart) is a pair (U ,ϕ), where U ⊂M is an
open subset of an n-dimensional manifold M. The chart map ϕ maps the
region U to a subset of Rn,

ϕ : M ⊃U → ϕ(U) ⊂Rn,

x 7→ ϕ(x).
(2.35)

To specify the chart map ϕ , we use n coordinate functions {xi},

xi : U →R,

x 7→ xi(x).
(2.36)

The chart map again maps each point x⊂U to a tuple of n coordinates,

ϕ : U → ϕ(U) ⊂Rn,

x 7→ ϕ(x) =
(
x1(x),x2(x), . . . ,xn(x)

)
.

(2.37)

Coordinate atlases

If an atlas comprising multiple charts is used—or has to be used, as is
the case even for a sphere, for example—to cover the manifold M, the
individual charts described above can be labeled

(Uα ,ϕα ), (2.38)

where the index α comes from an index set. The union of all open sets
Uα is required to cover all of M. We note that, naturally, the coordinate
functions {xi} for each chart (Uα ,ϕα ) are usually different for each chart.

As above47, each chart map ϕα is a map 47 Also, what we called a coordinate system
in our context is essentially a single chart.
For example, Uα = M = Rn, with only
a single possible index α . (Also note, for
consistency, that Rn is an open set.)

ϕα : M ⊃Uα → ϕα (Uα ) ⊂Rn, (2.39)

x 7→ ϕα (x). (2.40)

See, e.g., Lee (Lee, 2012)48. 48 John M. Lee. Introduction to Smooth
Manifolds. Springer-Verlag, 2nd edition,
2012

Chart transitions

In the overlapping region Uα ∩Uβ of two charts (Uα ,ϕα ) and (Uβ ,ϕβ ),
with Uα ∩Uβ non-empty, we can define the chart transition map ϕβ ◦ϕ−1

α ,
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mapping the overlapping region from the chart (Uα ,ϕα ) to the chart
(Uβ ,ϕβ ), as a map

ϕβ ◦ϕ
−1
α : ϕα (Uα ∩Uβ )→ ϕβ (Uα ∩Uβ ),

ϕα (x) 7→ (ϕβ ◦ϕ
−1
α )(ϕα (x)) = ϕβ (x).

(2.41)

Written with coordinate n-tuples49 in Rn, this gives 49 We denote the coordinate functions
comprising the map ϕα by {xi} and those
comprising the map ϕβ by {x̃i}.ϕβ ◦ϕ

−1
α : ϕα (Uα ∩Uβ )→ ϕβ (Uα ∩Uβ ),(

x1,x2, . . . ,xn) 7→ (ϕβ ◦ϕ
−1
α )

(
x1,x2, . . . ,xn)= (x̃1, x̃2, . . . , x̃n) .

(2.42)

Since ϕβ consists of the individual coordinate functions {x̃i}, this means50

50 For example, mapping from polar
coordinates in Uα = R2−{(0,0)} to 2D
Cartesian coordinates in Uβ = Uα , the
transition map ϕβ ◦ϕ−1

α is the map (r,θ ) 7→
(r cosθ ,r sinθ ), comprising the individual
functions (r,θ ) 7→ r cosθ , (r,θ ) 7→ r sinθ .(

x1,x2, . . . ,xn) 7→ x̃1 = (x̃1 ◦ϕ
−1
α )

(
x1,x2, . . . ,xn) ,(

x1,x2, . . . ,xn) 7→ x̃2 = (x̃2 ◦ϕ
−1
α )

(
x1,x2, . . . ,xn) ,

...(
x1,x2, . . . ,xn) 7→ x̃n = (x̃n ◦ϕ

−1
α )

(
x1,x2, . . . ,xn) .

(2.43)

We note that here we have used the notation x̃i both for a specific coordinate
(value) x̃i as well as for the function x̃i : Uβ → ϕβ (Uβ ),x 7→ x̃i(x). This
simplifies the notation, and which exact meaning is meant is usually easy to
see from the context. Going even further, sometimes it is convenient (and
common) to also just write x̃i for the function x̃i ◦ϕ−1

α . Then we can write51 51 This is really quite a misuse of notation,
but it is very convenient and usually not too
ambiguous. In particular, it makes denoting
and computing derivatives very convenient.

(
x1,x2, . . . ,xn) 7→ x̃1 = x̃1 (x1,x2, . . . ,xn) ,(
x1,x2, . . . ,xn) 7→ x̃2 = x̃2 (x1,x2, . . . ,xn) ,

...(
x1,x2, . . . ,xn) 7→ x̃n = x̃n (x1,x2, . . . ,xn) .

(2.44)

This means that in this context, x̃i also denotes a function

x̃i : Rn ⊃ ϕα (Uα ∩Uβ )→ ϕβ (Uα ∩Uβ ) ⊂Rn. (2.45)

We can now define the n×n Jacobian matrix52 of the coordinate transition

52 As a matrix [Ji
j ]; here with row index i

and column index j. However, that the
actual letter for the index does not have
any intrinsic meaning: Indices can be
renamed freely in any expression, as
long as the pairing of indices stays the
same. Even more importantly, in tensor
notation there is no concept of “rows” and
“columns”: Indices are paired automatically
through the Einstein summation convention.
However, to make these expressions less
error-prone to map to matrix equivalents,
we can use the convention that the first
index will correspond to the row index,
and the second index will correspond to
the column index. For mixed tensors, we
indicate the index order by writing J i

j

instead of J i
j , where the second index is

visibly offset to the right (and so forth, for
more indices).

Figure 2.7: Two charts and transition map.
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Ji
j :=

∂ x̃i

∂x j :=
∂ (x̃i ◦ϕ−1

α )

∂x j

(
x1,x2, . . . ,xn) . (2.46)

The inverse (see below) Jacobian matrix maps in the opposite direction,

J̃ i
j :=

∂xi

∂ x̃ j :=
∂ (xi ◦ϕ

−1
β

)

∂ x̃ j

(
x̃1, x̃2, . . . , x̃n) . (2.47)

These two Jacobian matrices are in fact matrix inverses of one another, as53 53 This is easy to see even without computa-
tion: The coordinates are defined such that
along each fixed coordinate curve, all other
coordinates are constant.Ji

k J̃ k
j =

∂ x̃i

∂xk
∂xk

∂ x̃ j = δ
i
j, and therefore,

[
Ji

j
]
=
[

J̃ i
j
]−1. (2.48)

2.9 Tensor Transformations

Given a chart transition as described above, and the corresponding Jacobian
matrices for the coordinate transformations for contravariant and covariant
vectors54, respectively, we obtain the following tensor transformation rules, 54 The complete transformation laws for

tensors of arbitrary order and variance will
be described later. However, we note that
they are the straightforward extension of
the transformation laws given here, using
the exact same Jacobian matrices.

corresponding to the change of coordinates induced by the chart transition.

Contravariant vectors

A contravariant vector, given in components vi with respect to a coordinate
basis {∂∂∂ i := ∂

∂xi }, transforms to components ṽi with respect to a coordinate
basis {∂̃∂∂ i := ∂

∂ x̃i }, according to the contravariant transformation rule55

55 This results from the fact that {∂∂∂ i}
transforms with J̃ i

j , i.e., ∂̃∂∂ j = J̃ i
j ∂∂∂ i, and

because the vector v should be kept the
same, the components vi must transform
with the inverse matrix, which is Ji

j . I.e.,

v = vi
∂∂∂ i = v j

δ
i
j ∂∂∂ i,

= v j(J̃ i
k Jk

j)∂∂∂ i,

= (v jJi
j)(J̃

k
i ∂∂∂ k) = ṽi

∂̃∂∂ i.

ṽi = Ji
j v j =

∂ x̃i

∂x j v j. (2.49)

In fact, the Jacobian matrix Ji
j used here is the same as the (more general)

inverse matrix [ ẽi
j ]
−1 from Eq. 2.27, if the basis {ei} = {∂∂∂ i}. That is,

Ji
j = ei

j, and [ei
j ] = [ ẽi

j ]
−1. However, the definition of the Jacobian

matrix Ji
j, and the corresponding tensor transformation, is only valid for the

transformation from one coordinate basis to another coordinate basis.
For non-coordinate bases, the tensor transformation law for a contravari-

ant vector is the general transformation56 given by Eqs. 2.26 and 2.27. 56 Naturally, the more general approach is
of course also correct for coordinate bases.

Covariant vectors

A covariant vector, given in components vi, with respect to a dual coor-
dinate basis {dxi}, transforms to components ṽi, with respect to a dual
coordinate basis {dx̃i}, according to the covariant transformation rule57 57 Analogously, but inversely, to above,

ω = vi dxi = vi(J̃ i
j J j

k)dxk ,

= (vi J̃ i
j)(J

j
k dxk) = ṽi dx̃i.

Here, we have used that the dual basis
transforms as dx̃i = Ji

j dx j , resulting from

dx̃i(∂̃∂∂ j) = (Ji
k dxk)(∂̃∂∂ j),

= (Ji
k dxk)(J̃ l

j ∂∂∂ l),

= Ji
k J̃ l

j dxk(∂∂∂ l),

= Ji
k J̃ l

j δ
k
l = Ji

k J̃ k
j = δ

i
j .

ṽ j = J̃ i
j vi =

∂xi

∂ x̃ j vi. (2.50)

Analogously (but inversely) to the contravariant transformation rule given
above, the Jacobian matrix J̃ i

j = ẽi
j, with ẽi

j as in Eq. 2.32, if the ba-
sis {ω i} = {dxi}. Here, matrix notation must be used with care: The
matrix in Eq. 2.34 is indeed [ J̃ i

j ]. However, the matrix in Eq. 2.33 is [ J̃ i
j ]

T .
Again, our definition of the Jacobian matrix J̃ i

j of partial derivatives, and
the corresponding tensor transformation, is only defined for the transforma-
tion from one dual coordinate basis to another dual coordinate basis.

For non-coordinate dual bases, the tensor transformation law for a
covariant vector is the transformation58 given by Eqs. 2.32, 2.33, and 2.34. 58 Again, the more general approach is of

course also correct for coordinate bases.
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Figure 2.9: Charts projected to the sphere,
with coordinate curves (coordinate isolines)
shown. We note that the discontinuities
in the coordinate curves between charts,
which are visible here, are in fact removed
smoothly by the coordinate transition maps
in chart overlap regions (not shown here).

2.10 Example: Charts on the Sphere

As a full example, in this section we will derive six charts covering a sphere
via simple orthogonal projection for each chart, i.e., we project a subset of
the “planar” coordinate space R2 onto the sphere to obtain coordinates on
the sphere. To simplify the discussion, we will denote the region of R2 that
corresponds to the coordinates used in each chart by Ū , defining

Ū := ϕ(U) ⊂R2. (2.51)

That is, Ū is the region in “coordinate space” for the chart (U ,ϕ). Further-
more, we will denote the two corresponding coordinate functions x1,x2 by u
and v instead, i.e., we will use u := x1 and v := x2, with

u : U →R,

v : U →R.
(2.52)

In a typical implementation, a (u,v) coordinate can then be taken to corre-
spond directly to 2D texture coordinates, which can be used, for example,
for LIC (Line Integral Convolution) computations.

Figure 2.8: Six charts on the sphere.

We now explicitly derive the coordinate bases and their derivatives
of charts (U ,ϕ) on a sphere mapping to the coordinate region Ū ⊂ R2,
corresponding to orthogonal projection of the region Ū onto a hemisphere
of some arbitrary radius r. See Figs. 2.8 and 2.9. From these, we can derive
the metric tensor and the Christoffel symbols referred to the chart, given
analytically for any position referenced by (u,v) coordinates.

Furthermore, although we use six charts to cover the sphere, below we
mainly derive a single chart, because all other charts are completely analo-
gous. Even more simple, the metric as well as the Christoffel symbols that
we derive for one chart are identical for all other charts, due to symmetry.

We emphasize that, although below we perform some derivations in
the ambient space R3, the resulting metric (Eq. 2.71) and the Christoffel
symbols (Eq. 2.77) are completely intrinsic, i.e., independent of the immer-
sion in R3, and correspondingly are 2D quantities. Using the Christoffel
symbols, we can compute the covariant derivative of any vector field v
(Eq. 2.81, Eq. 6.8) in a completely intrinsic manner.

Due to projection, each region Ū ⊂ R2 is limited to an (open) disk of
radius r in the (u,v) plane, i.e.,

Ū = {(u,v) : u2 + v2 < r2}. (2.53)
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We describe the map from Ū ⊂R2 (intrinsic view; corresponding to U on
the manifold M) to ambient R3 (extrinsic view) via the inclusion map59 59 We map the disk in R2 to the correspond-

ing hemisphere in R3.

ι
x⊥y : Ū ⊂R2 ↪−→R3,

(u,v) 7→ (u,v, w̄).
(2.54)

We define the third component w̄ to be60 60 This is simply the third component of a
vector pointing to a point on a hemisphere
of radius r, in Cartesian 3D coordinates
(u,v, w̄). (Located in the 3D center of the
hemisphere.)

w̄ :=
√

r2−u2− v2. (2.55)

This chart is defined via projection onto the hemisphere on the x,y plane,
denoted by x⊥ y. The entire sphere is covered by six analogous charts. In
total, we define the six orthogonally projected charts

ι
x⊥y : (u,v) 7→ (u,v, w̄), ι

−x⊥y : (u,v) 7→ (−u,v,−w̄),

ι
z⊥y : (u,v) 7→ (−w̄,v,u), ι

−z⊥y : (u,v) 7→ (w̄,v,−u),

ι
x⊥−z : (u,v) 7→ (u, w̄,−v), ι

x⊥z : (u,v) 7→ (u,−w̄,v).

(2.56)

Figure 2.10: Used region (dark blue) in
orthogonally projected chart on the sphere.

To avoid too severe distortions, apart from overlaps to facilitate transitions
between neighboring charts, each chart is only used where (see Fig. 2.10)

u2 ≤ w̄2, and

v2 ≤ w̄2.
(2.57)

Outside this region, another chart will be used.
We now consider the basis vectors

ei = ∂∂∂ i =
∂

∂xi , i ∈ {1,2}, (2.58)

denoting coordinate functions x1,x2 := u,v. In the chart, e1,e2 are by
definition given by components (1,0), (0,1), respectively.

In ambient space R3, however, for the chart x⊥ y, they map to the
partial derivatives of Eq. 2.54, i.e.,

ẽ1

∣∣∣
(u,v)

=

 1
0

−u/w̄

 , ẽ2

∣∣∣
(u,v)

=

 0
1

−v/w̄

 . (2.59)

These components are referred to Cartesian coordinates in R3. We will now
also use the shorthand notations

a2 := r2−u2,

b2 := r2− v2.
(2.60)

The dual basis ω i, with ω i
(
e j
)
= δ i

j, mapped to ambient space R3, is

ω̃
1
∣∣∣
(u,v)

=
1
r2

 a2

−uv
−uw̄

 , ω̃
2
∣∣∣
(u,v)

=
1
r2

−uv
b2

−vw̄

 . (2.61)

In order to be able to directly use Eq. 2.76 below, these two dual basis
vectors ω̃1 and ω̃2 were computed such that they correspond to orthogonal
projection from the ambient space R3 into the tangent plane of the immer-
sion of M into R3. An easy way to do this is to compute an orthogonal third
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extrinsic basis vector ẽ3 := ẽ1× ẽ2, and compute the extrinsic dual basis by
inverting the 3×3 matrix with columns {ẽi} to get {ω̃ i}.

The basis vector ẽ3, and its corresponding dual ω̃3, are

ẽ3

∣∣∣
(u,v)

=

u/w̄
v/w̄

1

 , ω̃
3
∣∣∣
(u,v)

=
1
r2

uw̄
vw̄
w̄2

 . (2.62)

2.11 Tangent Spaces and Tangent Bundles

The tangent bundle T M, over a base manifold M, is the disjoint union of all
tangent spaces TxM for all points x ∈M. See Fig. 2.11.

Figure 2.11: Tangent bundle over base
manifold M.

Formally, a tangent bundle is often denoted by

π : T M→M. (2.63)

Here, the manifold M is called the base manifold, and the map π is the
bundle projection map that takes a point (vector) on the bundle to the
corresponding point on the base manifold, such that every point (vector) in
the tangent space TxM (which is a subset of the bundle manifold) is taken to
the corresponding point x ∈M on the base manifold. Given the definition of
a vector field as a section of the tangent bundle (see below), for any vector
field v : M→ T M we correspondingly have

π(v(x)) = x, at all points x. (2.64)

The tangent bundle construction is very important to be able to see (and
work with) vector fields as geometric entities independent of coordinates.
For example, in a region U ⊂M, there is always a local trivialization

TU ∼=U×Rn. (2.65)

Such a local trivialization is a local isomorphism that can be determined
by choosing a set of basis vector fields in the corresponding region U ,61 or, 61 And, of course, we also choose a

coordinate chart for the region U .more precisely, choosing n linearly independent basis vector fields

ei : M ⊃U → TU ⊂ T M. (2.66)

Because every vector field v can then locally be given in n components
vi(x) at every point x ∈U , altogether giving an n-tuple of coordinates in Rn

for each vector at each point x ∈U , referred to the corresponding basis in the
corresponding tangent space TxM with x ∈U , i.e., where we have

v(x) = vi(x) ei(x), (2.67)

the choice of basis fields determines a specific isomorphism62 between a 62 Again, we of course also have a co-
ordinate chart. To specify the whole
isomorphism from a point in TU to the
corresponding point in U×Rn, we therefore
need 2n numbers. This also shows that the
manifold TU (and T M) is 2n-dimensional.

region of the tangent bundle and the Cartesian product of U and Rn.
However, it is a crucial fact that for many manifolds (such as a sphere)

giving such a trivialization is not possible globally, and therefore a vector
field cannot simply be defined as a section of U ×Rn. If a global trivial-
ization is indeed possible, the manifold M is called parallelizable. On the
sphere, for example, where one knows that no global set of basis vector
fields exists, this immediately shows that the sphere is not parallelizable.
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This leads to the fact that a vector field as a “set of components” per
point is, in general, not a global construction. However, a vector field
as a section of the tangent bundle (see below) is a global (coordinate-
independent) construction. The use of multiple overlapping coordinate
charts, and the corresponding local basis vector fields, corresponds to using
multiple different local trivializations, exactly corresponding to the (local)
expansion of vector fields referred to the local set of basis vector fields.

Figure 2.12: Vector fields are sections of
the tangent bundle.

Figure 2.13: Tensor bundle.

Figure 2.14: Tensor bundle with metric
tensor field.

Tensor bundles

The same construction as for the tangent bundle can be used for tensor
fields of arbitrary order and type (variance), for example the tensor bundle
for (0

2) tensor fields, where a specific section is the metric on the manifold
M. Another example is the bundle for (0

1) tensor fields, which is usually
called the cotangent bundle.

2.12 Vector Fields

A smooth vector field v on a manifold M is a smooth function giving a
vector v(x) at every point x ∈M on the manifold. We write this as

v : M→ T M,

x 7→ v(x).
(2.68)

T M refers to the tangent bundle of M, the manifold of all tangent spaces
of M, and a vector field is also referred to as a section of T M. That is, a
vector field, as a section of the tangent bundle, is a smooth assignment of
one element v(x) of the tangent bundle per base point x ∈M, such that we
have π(v(x)) = x, meaning that the vector v(x) is a member of the tangent
space TxM.

Where no confusion arises (between vector fields as functions v and
individual vectors v(x), an individual vector v(x) is often also simply
denoted by v. However, one needs to keep in mind whether the current
context is referring to whole vector fields or just to individual vectors.

2.13 Lie Brackets

The Lie bracket (of vector fields) is a map

[·, ·] : X (M)×X (M)→X (M),

(v,w) 7→ [v,w].
(2.69)

Here, X (M) denotes the space of smooth vector fields on the manifold M.
That is, the Lie bracket maps a pair of vector fields on M to another vector
field M.

In Lie theory, the space X (M) constitutes a Lie algebra comprised of
the vector space X (M) together with a multiplication operation given by
the Lie bracket.
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2.14 Example: Metric on the Sphere

For each of the charts on the sphere given in Sec. 2.10, the components of
the metric tensor g can be referred to components given by

gi j = ẽi · ẽ j. (2.70)

Here, ẽi denotes the basis vectors ẽ1 and ẽ2, because n = 2. However,
here, as indicated by the tilde, we are referring to 3D vectors in 3D tangent
spaces TxR3 of the ambient space R3, instead of to 2D vectors in the intrin-
sic tangent spaces TxS2 of the sphere as a two-manifold. Correspondingly,
the · in Eq. 2.70 denotes the usual Euclidean dot product in R3, or, more
specifically, the standard dot product in each tangent space TxR3.

For our charts (Sec. 2.10), the metric g (in components gi j) at a point x
identified by coordinates (u,v) ∈ Ū ⊂R2 in the chart, and its inverse g−1 (in
components gi j), are then given by63 63 As usual, this means

[
gi j] = [gi j

]−1 as
matrix inverses, and in tensor notation we
have gik gk j = δ i

j , and gik gk j = δ
j

i .
gi j

∣∣∣
(u,v)

=
1

w̄2

[
b2 uv
uv a2

]
,

gi j
∣∣∣
(u,v)

=
1
r2

[
a2 −uv
−uv b2

]
.

(2.71)

Here, we have again used the shorthand notations64 64 By r we denote the radius of the sphere,
and (u,v) are the coordinates of a point x in
the chart, with u2 + v2 < r2.a2 := r2−u2,

b2 := r2− v2,

w̄2 := r2−u2− v2.

(2.72)

chart

metric

Figure 2.15: Metric in a chart on the sphere.
We describe everything intrinsically in
2D coordinate charts. At each coordinate
(u,v) in a region Ū ⊂ R2, corresponding
to the open set U on the sphere, with
Ū = ϕ(U), we know the corresponding
metric tensor (glyph visualization on the
right) in components gi j .

Transformation rule

Since the metric g is a covariant second-order tensor, its components gi j

transform according to

g̃i j = J̃ k
i J̃ l

j gkl =
∂xk

∂ x̃i
∂xl

∂ x̃ j gkl . (2.73)

In case of a non-coordinate basis, the more general rule is65 65 In matrix notation, the equivalent expres-
sion is

[
g̃i j
]
=
[
ẽi

j
]T [gi j

][
ẽi

j
]
. We note

that this is not the same transformation rule
as for a linear map between vectors, i.e., it
does not apply the transformation

[
ẽi

j
]−1.

This is a crucial difference, except when[
ẽi

j
]

is an orthogonal matrix. See below.

g̃i j = ẽk
i ẽl

j gkl . (2.74)

However, due to the covariant nature of the metric tensor, and the cor-
responding covariant transformation rule, this transformation does not
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correspond to the definition of similar matrices. Two matrices A and B
are similar if there exists an invertible matrix P, such that B = P−1AP.
Among other properties, similar matrices always have the same eigenvalues.
However, in general, this property does not hold for the transformation
given above66. For this reason, the metric tensor in general, as a matrix, 66 In matrix notation, the transforma-

tion of a covariant second-order tensor
corresponds to B = PT AP instead
of B = P−1AP. The two are only equal for
orthogonal change-of-basis matrices P.

does not have the same eigenvalues in different coordinate systems67.

67 An exception is when the transformation
is simply rotating the basis. Only then is P
orthogonal, and therefore P−1 = PT . Then,
the two matrices are in fact similar and
therefore do have the same eigenvalues.

2.15 Example: Christoffel Symbols on the Sphere

One simple way to derive the Christoffel symbols Γi
jk, in a specific chart

such as that described in Sec. 2.10, is to make use of the immersion68 of the

68 Of course, if such an immersion (or an
embedding) is given. If none is given or
known, the more general, fully intrinsic
approach must be used. (We note that
for this computation, it does not matter
if an embedding or “only” an immersion
(with potential self-intersections in the
ambient space) is known, since the whole
computation is done locally.)

sphere S2 in R3. To do this, we first compute the partial derivatives of the
basis vectors in ambient R3, in the directions x1,x2 := u,v, evaluated at the
coordinate (u,v) ∈ Ū ⊂R2, as

∂1ẽ1

∣∣∣
(u,v)

= − 1
w̄3

 0
0
b2

 , ∂1ẽ2

∣∣∣
(u,v)

= − 1
w̄3

 0
0

uv

 ,

∂2ẽ1

∣∣∣
(u,v)

= − 1
w̄3

 0
0

uv

 , ∂2ẽ2

∣∣∣
(u,v)

= − 1
w̄3

 0
0
a2

 .

(2.75)

Now, from these basis vector field partial derivatives ∂ j ẽi, reading off
components in the tangent plane with the dual basis gives

Γi
jk = ω̃

i(
∂ j ẽk

)
, for i, j,k ∈ {1,2}. (2.76)

Due to the way in which we have computed the dual basis {ω̃1, ω̃2}, this
is equivalent to a completely intrinsic computation from the metric using
Eq. 6.10, but easier to compute. We emphasize that using this extrinsic
“shortcut” computation does not in any way change the fact that after-
wards we can perform all computations requiring Christoffel symbols, i.e.,
covariant derivatives, in a fully intrinsic manner.

The Christoffel symbols that we need, given with respect to (u,v) ∈ Ū ⊂
R2, are (only six are unique, because Γ1

12 = Γ1
21, Γ2

12 = Γ2
21),

Γ1
11

∣∣∣
(u,v)

= cub2, Γ1
21

∣∣∣
(u,v)

= cu2 v,

Γ1
12

∣∣∣
(u,v)

= cu2 v, Γ1
22

∣∣∣
(u,v)

= cua2,

Γ2
11

∣∣∣
(u,v)

= cvb2, Γ2
21

∣∣∣
(u,v)

= cuv2,

Γ2
12

∣∣∣
(u,v)

= cuv2, Γ2
22

∣∣∣
(u,v)

= cva2.

(2.77)

Here, we have used the shorthand notations

a2 := r2−u2,

b2 := r2− v2,

w̄2 := r2−u2− v2,

c :=
1

r2w̄2 .

(2.78)
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One can verify that with these Christoffel symbols we now have, extrinsi-
cally in R3,

∇ẽ j ẽk = Γi
jk ẽi, for i, j,k ∈ {1,2}, (2.79)

where ∇ẽ j ẽk always lies in the tangent plane at the point corresponding
to (u,v). However, most importantly, we now never need to refer to the
ambient space R3 again, and can compute everything intrinsically in the
chart, with the same values for the Christoffel symbols Γi

jk, giving

∇e j ek = Γi
jk ei, for i, j,k ∈ {1,2}. (2.80)

Because the covariant derivative is linear in each of its arguments, Eq. 2.80
determines Eq. 6.8 for the covariant derivative ∇v of any vector field v. In a
2D chart, we can thus expand Eq. 6.8 as the matrix[

∇1v1 ∇2v1

∇1v2 ∇2v2

]
=

[
∂1v1 +Γ1

11v1 +Γ1
12v2 ∂2v1 +Γ1

21v1 +Γ1
22v2

∂1v2 +Γ2
11v1 +Γ2

12v2 ∂2v2 +Γ2
21v1 +Γ2

22v2

]
. (2.81)

Evaluating ∇xv = ∇v(x) (Eq. 6.9) in the chart thus becomes a matrix-vector
multiply of the matrix ∇ jvi, times the vector components x j:[

(∇xv)1

(∇xv)2

]
=

[
∇1v1 ∇2v1

∇1v2 ∇2v2

][
x1

x2

]
. (2.82)

Writing the basis {ei} explicitly, this, as usual, means

∇xv = [e1 e2]

[
(∇xv)1

(∇xv)2

]
= (∇xv)1 e1 +(∇xv)2 e2. (2.83)

All six charts for the sphere

Due to the symmetry of all charts, the metric components (Eq. 2.71) and the
Christoffel symbols (Eq. 2.77) are the same in all charts, although above we
have derived them only for the chart x⊥ y.

2.16 Numerical Computation of Partial Derivatives in Charts

We again work with coordinates in Ū ⊂ R2. Each Ū is triangulated, with
mesh vertices {xk} at 2D coordinates

(
u(xk),v(xk)

)
= (uk,vk) ∈ R2. To

compute the partial derivatives ∂1vi and ∂2vi of an R-valued function vi(x)
given at the vertices, we consider the 1-form dvi, with basis {ω i},

dvi = (∂1vi)ω
1 +(∂2vi)ω

2. (2.84)

Approximation in a single triangle

To compute dvi for a single triangle comprising the vertices x0,x1,x2, with
coordinates (u0,v0), (u1,v1), (u2,v2) ∈ R2, and known function values
vi(x0),vi(x1),vi(x2) ∈R, we can solve the 2×2 linear system[

(u1−u0) (v1− v0)

(u2−u0) (v2− v0)

][
∂1vi

∂2vi

]
=

[
vi(x1)− vi(x0)

vi(x2)− vi(x0)

]
, (2.85)

in order to obtain ∂1vi and ∂2vi.
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Approximation in a vertex 1-ring

For a 1-ring around a given vertex x0 (see Fig. 2.16), labeling its vertices
as x0,x1,x2,x3, . . . ,xn−1, we can solve, in the least-squares sense, the over-
determined (n−1)×2 system

(u1−u0) (v1− v0)

(u2−u0) (v2− v0)
...

...
(un−1−u0) (vn−1− v0)


[

∂1vi

∂2vi

]
=


vi(x1)− vi(x0)

vi(x2)− vi(x0)
...

vi(xn−1)− vi(x0)

 . (2.86)

If we write the system above in the abbreviated form

Ad = v, (2.87)

we can solve the 2×2 square system

AT Ad = AT v. (2.88)

That is, we obtain

d = (AT A)−1AT v, (2.89)

corresponding to the normal equations of the least-squares problem.
We can simplify the structure of this computation by computing weights

{(w1
j ,w

2
j)}n−1

j=0 for each vertex x j in the 1-ring of vertex x0.
These weights form an n-tap filter stencil for computing a weighted

average of the 1-ring neighborhood of vertex x0. From them, we can
compute the components ∂1vi,∂2vi of the 1-form dvi at vertex x0 as

∂1vi
∣∣∣
(u0,v0)

= w1
0 vi(x0)+w1

1 vi(x1)+ . . .+w1
n−1 vi(xn−1),

∂2vi
∣∣∣
(u0,v0)

= w2
0 vi(x0)+w2

1 vi(x1)+ . . .+w2
n−1 vi(xn−1).

(2.90)

In order to compute all weights {(w1
j ,w

2
j)}n−1

j=0 in the stencil, we introduce
the 2× (n−1) matrix

W := (AT A)−1AT , (2.91)

with components Wi j, with i the row and j the column index, respectively.
Considering the structure of the (n− 1)× 1 right-hand side above, we

directly obtain

wi
0 = −

n−1

∑
j=1

Wi j, i ∈ {1,2},

wi
j = Wi j, i ∈ {1,2};1≤ j ≤ (n−1).

(2.92)

vi(xj)
(w1

j ,w2
j) 

dvi

x1

x2

x3

x0

xn–1

xj

(u1–u0,v1–v0)

Figure 2.16: 1-ring neighborhood of
a triangle vertex x0 for approximating
1-forms dvi = (∂1vi)ω1 + (∂2vi)ω2 of
R-valued functions vi on M.
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We pre-compute the 2n weights of each 1-ring neighborhood, with n
vertices, storing them with the corresponding center vertex (above: x0).

We note that all filter stencils depend solely on the geometry (the vertex
positions) of the triangle mesh, but not on any specific function vi(x). We
can therefore associate the filter weights with each triangle vertex, and then
use them to compute the partial derivatives of arbitrary functions, e.g., the
v1 and v2 of the previous section, see Eq. 2.81.

We also emphasize that these partial derivatives are the only numerically
approximated quantities. The metric components gi j (Eq. 2.71) and the
Christoffel symbols Γi

jk (Eq. 2.77) are accurately computed analytically.



3 Tensor fields and differential forms

We start by looking at tensors defined in a linear space1 and then extend 1 In our case this will always be the tangent
space at a point of a manifold.this notion to tensor fields on a manifold2. In the following, V is a finite-
2 Where components vary smoothly in each
chart.dimensional linear space and V ∗ its dual space3. There are essentially three
3 See Section 3.1.approaches to defining tensors:

T1 A tensor of type (r
s) is an element of an abstract space, denoted by

V ⊗·· ·⊗V︸ ︷︷ ︸
r copies

⊗V ∗⊗·· ·⊗V ∗︸ ︷︷ ︸
s copies

, (3.1)

and defined as the quotient space of the free linear space on the Carte-
sian product

V ×·· ·×V︸ ︷︷ ︸
r copies

×V ∗×·· ·×V ∗︸ ︷︷ ︸
s copies

(3.2)

by a suitable equivalence relation 4. This approach is very elegant and 4 So that the tensor product has the desired
properties like bilinearity.generic, but also very abstract. It is often used by more mathematically

oriented texts like (Lee, 2012, Chapter 12)5 or (Tu, 2017, §18)6. 5 John M. Lee. Introduction to Smooth
Manifolds. Springer-Verlag, 2nd edition,
2012
6 Loring W. Tu. Differential Geometry:
Connections, Curvature, and Characteristic
Classes. Springer-Verlag, 2017

T2 A tensor of type (r
s) is a multi-linear7 map from the Cartesian product8

7 That is, linear in each entry when the
others are held fixed.
8 Note the reversal of the order of the
spaces V and V ∗ as compared to Equa-
tion 3.2. This will be explained below.

V ∗×·· ·×V ∗︸ ︷︷ ︸
r copies

×V ×·· ·×V︸ ︷︷ ︸
s copies

(3.3)

to the scalar field R. The linear space of all such multi-linear functions
is denoted by

L(V ∗, . . . ,V ∗︸ ︷︷ ︸
r copies

,V , . . . ,V︸ ︷︷ ︸
s copies

;R). (3.4)

This approach is more concrete and is favored by modern Physics texts
like (Frankel, 2011, Chapter 2.4)9 but also older ones like (Bishop and 9 Theodore Frankel. The Geometry of

Physics: An Introduction. Cambridge
University Press, 3rd edition, 2011

Goldberg, 1980, Chapter 2.10)10.
10 Richard L. Bishop and Samuel I. Gold-
berg. Tensor analysis on manifolds. Dover,
1980

T3 A tensor of type (r
s) is a family of numbers (depending on r,s and the

dimension of the space) that transform in a specific way. This approach
corresponds to how tensors were originally thought of and is taken in
classical texts like (Aris, 1990, Chapter 2)11 or (Dubrovin et al., 1984, 11 Rutherford Aris. Vectors, Tensors and the

Basic Equations of Fluid Mechanics. Dover
Publications, Inc., 1990

§17)12.
12 B.A Dubrovin, A.T. Fomenko, and S.P.
Novikov. Modern Geometry - Methods
and Applications: Part I. The Geometry
of Surfaces, Transformation Groups, and
Fields. Graduate Texts in Mathematics.
Springer-Verlag New York, 1984

We adopt the modern view T2 of a tensor as a multi-linear coordinate-
independent map in these notes. The transformation laws of T3 then follow
naturally from the transformation laws of vectors and covectors13 by

13 For covectors see Def. 1.

multi-linearity. The link between the approaches T1 and T2, on the other
hand, is given by the fact that there is a canonical isomorphism between
V ⊗·· ·⊗V ⊗V ∗⊗·· ·⊗V ∗ and L(V ∗, . . . ,V ∗,V , . . . ,V ;R)14. This means 14 (Lee, 2012, Proposition 12.10) calls this

“Abstract vs. Concrete Tensor Products”.
John M. Lee. Introduction to Smooth

Manifolds. Springer-Verlag, 2nd edition,
2012

that whenever we see a symbol like V ⊗·· ·⊗V ⊗V ∗⊗·· ·⊗V ∗, we can think
of it as the space of multi-linear functions L(V ∗, . . . ,V ∗,V , . . . ,V ;R).

The most important concepts covered in this chapter are:
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• Scalar and vector fields as tensor fields

• Contravariant and covariant tensors and transformation laws

• Differential forms

• Cotangent space and cotangent bundle

• Preview of later sessions: metric tensor fields.

3.1 The Dual Space

Both approaches T1 and T2 make heavy use of the dual space V ∗ of a
linear space V , so we look at this first. We start with a result from linear
algebra which looks unimpressive but is fundamental.

Theorem 1. If V is a linear space of dimension n, then any linear map to
any other linear space W is uniquely specified by prescribing n values at a
basis. That is, if {b1, . . . ,bn} is a basis for V , any linear map f : V →W is
uniquely specified by letting

f (b1) = w1

...

f (bn) = wn

(3.5)

for w1, . . .wn ∈W. 15 15 This is often expressed by saying that
there exists a unique linear map f : V →W
with f (bi) = wi, i = 1 . . .n.

To see this we note that if v is in V and f is supposed to be linear we
necessarily have

f (v) = f
(
vibi
)
= vi f (bi) = viwi ∈W . (3.6)

so that we can define f in this way and indeed get a map from V to W with
f (bi) = wi, i = 1 . . .n because

f (bi) = f (δ j
i b j) = δ

j
i f (b j) = δ

j
i w j = wi, i = 1 . . .n. (3.7)

This map is linear because for u,v in V we have

f (u+ v) = f
(
uibi + vibi

)
= f

(
(ui + vi)bi

)
= (ui + vi) f (bi)

= ui f (bi)+ vi f (bi) = uiwi + viwi = f (u)+ f (v).
(3.8)

and

f (αv) = f (α(vibi)) = f ((αvi)bi) = (αvi) f (bi)

= α(vi f (bi)) = α f (vibi) = α f (v)
(3.9)

for α ∈R and v ∈V .
Furthermore, if g is another linear map with g(bi) = wi, i = 1 . . .n we

have

g(v) = g(vibi) = vig(bi) = viwi = vi f (bi) = f (vibi) = f (v) (3.10)

for all v ∈V so that g is actually equal to f and this map is indeed unique.
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Example 1. An important example is when the target linear space W = R,
that is the scalar field of V viewed as a linear space over itself.16 Let’s 16 The linear functions from a linear space

V to its scalar field make up a linear space
themselves, as we will see below. This
space is usually denoted by V ∗ and its
elements are called linear functionals.

start with the simple case of a two-dimensional linear space V with basis
{b1,b2}, to make it even more concrete let’s pick

V = R2 with {b1,b2}= {e1,e2}= {(1,0)ᵀ, (0,1)ᵀ}. (3.11)

We can define two linear functionals ω1 and ω2 in the following way:

ω
1((1,0)ᵀ) = 1, ω

2((1,0)ᵀ) = 0,

ω
1((0,1)ᵀ) = 0 ω

2((0,1)ᵀ) = 1
(3.12)

Extending these linear functionals as in Eq. 3.6 we see that they act on
arbitrary vectors (x,y)ᵀ ∈R2 by

ω
1((x,y)ᵀ) = ω

1(x(1,0)ᵀ+ y(0,1)ᵀ)

= x ·ω1((1,0)ᵀ)+ y ·ω1((0,1)ᵀ)

= x ·1+ y ·0 = x

ω
2((x,y)ᵀ) = ω

2(x(1,0)ᵀ+ y(0,1)ᵀ)

= x ·ω2((1,0)ᵀ)+ y ·ω2((0,1)ᵀ)

= x ·0+ y ·1 = y,

(3.13)

that is, they pick the first and second component of the vector (x,y)ᵀ

respectively.

This last example works in arbitrary dimensions n and we note that,
using the Kronecker delta symbol, we can write the equations defining the
linear functionals for any basis (b1, . . . ,bn) (as in Eq. 3.12) concisely as

ω
i(b j) = δ

i
j, i = 1 . . .n. (3.14)

If a vector v ∈V is expanded in the basis (b1, . . .bn), that is, v = vibi we get

ω
i(v) = ω

i(v jb j) = v j
ω

i(b j) = v j
δ

i
j = vi, i = 1 . . .n. (3.15)

That is, ω i picks the ith component of v with respect to the basis (b1, . . .bn).
If we define addition and scalar multiplication of linear functionals17 by 17 in the usual pointwise way

f + g := f (v)+ g(v), for all v ∈V ,

α f := α f (v). for all α ∈R,v ∈V .
(3.16)

we get a linear space.

Definition 1 (Dual space). Let V ∗ denote the linear functionals on a linear
space V 18 and define addition and scalar multiplication for V ∗ by Eq. 3.16. 18 That is, linear functions from V to the

scalar field R.Then, V ∗ is itself a linear space called the dual space of V and its elements
are called linear functionals or covectors.

It may not be clear at this point what elements of V ∗ look like or how
they can be obtained. However, if we have a basis (b1, . . . ,bn) then we
immediately get n such elements.
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Definition 2 (Dual basis). Let V be a linear space with basis (b1, . . . ,bn).
The n covectors obtained via Eq. 3.1419, which we denote by (ω1, . . . ,ωn), 19 and extended linearly via Eq. 3.6

are called the dual basis of (b1, . . . ,bn).

The name suggests that all linear functionals of V can be obtained as
linear combinations20 of the dual basis. This is justified by the following 20 in a unique way

theorem.

Theorem 2. If V is a linear space of dimension n with basis (b1, . . .bn), then
the dual basis (ω1, . . .ωn)21 is a basis of the dual space V ∗22. Therefore, 21 as given by Definition 2

22 as given by Definition 1V ∗ has dimension n as well.

A basis has the properties that it is linearly independent and spans the
whole space, that is, any element can be written as a linear combination of
the basis elements. Let’s first look at linear independence23. So assume that 23 Elements v1, . . . ,vk of a linear space

are linear independent, if from α1v1 +
. . .αkvk = 0 follows that necessarily
α1 = . . .= αk = 0.

there are αi, . . . ,αn such that αiω
i = 024. If this is the case, we especially get

24 0 here being the zero covector, that is,
αiω

i(v) = 0 (now the real number 0 ∈R)
for all v ∈V .

zero when applying αiω
i to every bi ∈V . It follows that

0 = αiω
i(b1) = αiδ

i
1 = α1

...

0 = αiω
i(bn) = αiδ

i
n = αn

(3.17)

and the ω i are linearly independent.
To see that the ω i span V ∗ let ω be an arbitrary element of V ∗. We have

to show that ω can be written as a linear combination of the ω i assuming
only the linearity of ω . To do this, set vi := ω(bi)25 and note that, since 25 This is a fixed number for each i =

1, . . . ,n since the basis has been chosen.vi = ω i(v)26, we have
26 Equation 3.15, ω i picks the ith compo-
nent

ω(v) = ω(vibi) = vi
ω(bi) = viω

i(v), (3.18)

that is ω = viω
i. In conclusion, we have shown that the ω i are linearly

independent and they span V ∗, which means they are a basis of V ∗27. 27 Which means in particular that every
ω ∈ V ∗ can be written as a unique linear
combination of the ω i.

We note that, if we choose a basis (b1, . . .bn) for a linear space V , we
can define a map

ϕ : V →V ∗

v = vibi 7→
n

∑
i=1

vi
ω

i,
(3.19)

which is then an isomorphism28 from V to V ∗29, but this isomorphism is 28 Use Theorem 1 to show that ϕ is linear
and Theorem 2 that it is injective.
29 with dual basis (ω1, . . .ωn)

not canonical30.31.

30 In the sense that a different basis will
result in a different isomorphism, that is,
the isomorphism depends on the choice of
the basis.
31 The fact that we had to use a sum sign in
the definition of this isomorphism is a hint.

3.2 Tensors as Multi-Linear Maps, and Their Bases

Now that we have the notion of a dual space at our disposal, we can go
on and define tensors. According to T2, a tensor of type (r

s), and corre-
spondingly of order (r + s), on a linear space V with dual space V ∗ is a
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multi-linear function

T : V ∗×·· ·×V ∗︸ ︷︷ ︸
r copies

×V ×·· ·×V︸ ︷︷ ︸
s copies

→R. (3.20)

That is, it acts on r covector arguments and s vector arguments and is linear
in each slot when the other variables are held fixed:32 32 scalar multiplication and addition for

covectors is defined in Eq. 3.16
T(σ1, . . . ,ασ

i +βσ̃
i, . . . ,σ r,v1, . . . ,vs) =

αT(σ1, . . . ,σ i, . . . ,σ r,v1, . . . ,vs)+

βT(σ1, . . . , σ̃ i, . . . ,σ r,v1, . . . ,vs),

(3.21)

and

T(σ1, . . . ,σ r,v1, . . . ,αvi +β ṽi, . . . ,vs) =

αT(σ1, . . . ,σ r,v1, . . . ,vi, . . . ,vs)+

βT(σ1, . . . ,σ r,v1, . . . , ṽi, . . . ,vs)

(3.22)

for α ,β ∈R.

Definition 3. The space of all multi-linear functions as in Eq. 3.20 is
denoted by

L(V ∗, . . . ,V ∗︸ ︷︷ ︸
r copies

,V , . . . ,V︸ ︷︷ ︸
s copies

;R) (3.23)

or short33
33 ! Notation differs here, sometimes

this is written as T(r,s)(V ) or even Ts
r(V ) or

some variation of this.Tr
s(V ). (3.24)

For σ i = vi
jω

j and v j = vi
jei

34 we get because of multi-linearity 34 where (ω1, . . .ωn) is the dual basis to
(e1, . . . ,en)

T
(
σ

1, . . . ,σ r,v1, . . .vs
)
= T

(
v1

i1ω
i1 , . . . ,vr

ir ω
ir ,v j1

1 e j1 , . . .v js
s e js

)
= v1

i1 · · ·v
r
ir v

j1
1 · · ·v

js
s ·T

(
ω

i1 , . . . ,ω ir ,e j1 , . . .e js
)

(3.25)

If V is of dimension n35, we define nr+s functions36 35 and therefore V ∗ as well
36 The Kronecker symbol works for
tuples the same way as for single num-
bers, i.e., it is 1 if (i1, . . . , ir , l1, . . . , ls) =
(k1, . . . ,kr , j1, . . . , js) and 0 otherwise.
In detail, this means that it is 1 if
i1 = k1, . . . , ir = kr and j1 = l1, . . . , js = ls
and 0 otherwise, since two tuples are the
same if their entries are the same .

ei1 ⊗ . . .⊗ eir ⊗ω
j1 ⊗ . . .⊗ω

js(ωk1 , . . . ,ωkr ,el1 , . . . ,els)

= δ
(k1,...,kr , j1,..., js)
(i1,...,ir ,l1,...,ls)

, im, jm,km, lm = 1, . . . ,n
(3.26)

and extend them multi-linearily to elements of L(V ∗, . . . ,V ∗,V , . . . ,V ;R).
We see that

ei1 ⊗ . . .⊗ eir ⊗ω
j1 ⊗ . . .⊗ω

js(σ1, . . . ,σ r,v1, . . .vs)

= v1
i1 · · ·v

r
ir v

j1
1 · · ·v

js
s .

(3.27)

If we set

T i1,...,ir
j1,..., js := T

(
ω

i1 , . . . ,ω ir ,e j1 , . . .e js
)

(3.28)
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we can write37 37 The T i1 ,...,ir
j1 ,..., js are called the components of

T with respect to the basis ei1 ⊗ . . .⊗ eir ⊗
ω j1 ⊗ . . .⊗ω js . We will prove below that
this terminology is justified. In particular,
this means that the space of (r

s) tensors
on an n-dimensional linear space has
dimension nr+s.

T = T i1,...,ir
j1,..., js · ei1 ⊗ . . .⊗ eir ⊗ω

j1 ⊗ . . .⊗ω
js . (3.29)

Pfuh. This still seems to be hopelessly abstract, so lets take a look at an
example.

Example 2. A (1
1) tensor takes the form

T : V ∗×V →R (3.30)

since it is a member of the space L(V ∗,V ;R). If V is a two-dimensional
linear space, we fix a basis (e1,e2)38 and define four multi-linear functions, 38 which defines the dual basis (ω1,ω2)

lets call them h1
1,h1

2,h2
1,h2

2 for now39, by 39 we will see below that these are just
the nr+s = 21+1 = 4 functions defined in
Eq. 3.26h1

1(ω
1,e1) = 1 h1

1(ω
1,e2) = 0

h1
1(ω

2,e1) = 0 h1
1(ω

2,e2) = 0
(3.31)

h1
2(ω

1,e1) = 0 h1
2(ω

1,e2) = 1

h1
2(ω

2,e1) = 0 h1
2(ω

2,e2) = 0
(3.32)

h2
1(ω

1,e1) = 0 h2
1(ω

1,e2) = 0

h2
1(ω

2,e1) = 1 h2
1(ω

2,e2) = 0
(3.33)

h2
2(ω

1,e1) = 0 h2
2(ω

1,e2) = 0

h2
2(ω

2,e1) = 0 h2
2(ω

2,e2) = 1
(3.34)

extend them multi-linearly to σ = v jω
j and v = viei

40 and compute 40 so hi
j ∈ L(V ∗,V ;R), i, j = 1,2

h1
1(σ ,v) = h1

1
(
viω

i,v je j
)
= vi · v j ·h1

1
(
ω

i,e j
)
= v1 · v1

h1
2(σ ,v) = h1

2
(
viω

i,v je j
)
= vi · v j ·h1

2
(
ω

i,e j
)
= v1 · v2

h2
1(σ ,v) = h2

1
(
viω

i,v je j
)
= vi · v j ·h2

1
(
ω

i,e j
)
= v2 · v1

h2
2(σ ,v) = h2

2
(
viω

i,v je j
)
= vi · v j ·h2

2
(
ω

i,e j
)
= v2 · v2

(3.35)

We see that hi
j picks the product of the ith component of σ and the jth

component of v. We set

ei⊗ω
j := hi

j (3.36)

and write the defining Eqs. 3.31 – 3.34 concisely as41 41 compare Eq. 3.26

ei⊗ω
j(ωk,el) = δ

(k,l)
(i, j) . (3.37)

We then have

ei⊗ω
j(σ ,v) = vi · v j. (3.38)

Setting T i
j := T(ω i,e j) this lets us write42 42 We can also write this in matrix form as

vi · v j ·T i
j =

[
v1 v2][v1 ·T 1

1 + v2 ·T 1
2

v1 ·T 2
1 + v2 ·T 2

2

]
=
[
v1 v2][T 1

1 T 1
2

T 2
1 T 2

2

][
v1
v2

]
.

T(σ ,v) = T i
j · ei⊗ω

j(σ ,v). (3.39)

or short

T = T i
j · ei⊗ω

j. (3.40)
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Theorem 3. If V is a linear space of dimension n with basis (e1, . . . ,en),
then

ei1 ⊗ . . .⊗ eir ⊗ω
j1 ⊗ . . .⊗ω

js , im, jm,km, lm = 1, . . . ,n (3.41)

is a basis of the space of (r
s) tensors

Tr
s(V ) = L(V ∗, . . . ,V ∗︸ ︷︷ ︸

r copies

,V , . . . ,V︸ ︷︷ ︸
s copies

;R). (3.42)

In particular this space has dimension nr+s.

It is important to realize that, although the notation ei1 ⊗ . . .⊗ eir ⊗ω j1 ⊗
. . .⊗ω js might look rather abstract, it simply denotes a multi-linear function
taking vectors and covectors as arguments and producing a real number.

Transformation Rules

To derive the transformation rules for tensors, we start with a linear space
V 43 of dimension n and fix a basis (e1, . . . ,en). This determines the dual ba- 43 again, think of the tangent space at a

point of a manifoldsis (ω1, . . . ,ωn) as well as a basis for each space of (r
s) tensors on V 44. We

44 as in Theorem 3
have seen in Section 2.6 that, if we change basis ẽ j = ẽi

j ei the components

of a vector v = vi ei change by ṽi = ei
j v j, where

[
ei

j
]
=
[

ẽi
j
]−1. Corre-

spondingly, if we use the dual basis, covectors acting on the transformed
basis vectors are defined by

ω̃
i (ẽ j) = δ

i
j. (3.43)

But we also have that

δ
i
j = δ

j
i = ω

j (ei) = ω
j (ei

j ẽi
)
= ei

j ω
j (ẽi) (3.44)

so that we get

ω̃
i (ẽ j) = ei

j ω
j (ẽi) . (3.45)

Extending by linearity we see that ω̃ i = ei
j ω j. Finally, we have also seen in

Section 2.6 that the components of covectors with respect to the dual basis
transform by ṽ j = ẽi

j vi. We summarize this discussion in Table 3.1.
Then, if we change the basis in this way, the components of a (r

s) tensor
change in the following way:

T̃ i1,...,ir
j1,..., js = T

(
ω̃

i1 , . . . , ω̃ ir , ẽ j1 , . . . ẽ js
)

= T
(

ei1
k1

ω
k1 , . . . ,eir

kr
ω

kr , ẽ l1
j1

el1 , . . . ẽ ls
jsels

)
= ei1

k1
· · ·eir

kr
· ẽ l1

j1
· · · ẽ ls

js ·T
(

ω
k1 , . . . ,ωkr ,el1 , . . .els

)
= ei1

k1
· · ·eir

kr
· ẽ l1

j1
· · · ẽ ls

js ·T
k1,...,kr
l1,...,ls .

(3.46)

In this generic form this still looks a bit complicated, so let’s look at a
few specific examples.
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basis vectors basis covectors
ẽ j = ẽi

j ei ω̃ i = ei
j ω j

vector components covector components
ṽi = ei

j v j ṽ j = ẽi
j vi.

Table 3.1: Summary of transformation rules
for vectors and covectors, as well as vector
and covector components.

(0
1) Tensors: 1-Forms or Covectors

For a (0
1) tensor, Eq. 3.20 takes the form

T : V →R. (3.47)

That is, (0
1) tensors are just linear functionals, 1-forms, or covectors as

defined in Def. 1. We usually denote a 1-form by σ instead of T and
expand it in the dual basis as σ = vi ω i, where we have set vi := Ti. If we
change basis according to Table 3.1, so that the components of σ change by
ṽ j = ẽi

j vi, this is consistent with T̃j1 = ẽl1
j1

Tl1 according to Eq. 3.46.

(1
0) Tensors: Vectors

For a (1
0) tensor, Eq. 3.20 takes the form

T : V ∗→R. (3.48)

We note that, defined this way, T is an element of V ∗∗45, the dual space of 45 actually (V ∗)∗, but since there is only
one way to interpret this, it is usually
simply denoted by V ∗∗

the dual space of V . It might be confusing why we call it a vector, which is
just an element of V .

This can be explained in the following way. For a vector v define an
element ι(v) ∈ V ∗∗ by ι(v)(σ) := σ(v). We see that ι(v) is indeed a
mapping46 V ∗ → R, that is, an element of V ∗∗. We therefore get another 46 when σ ,ω are elements of V ∗, which is a

linear space by Definition 1, we have

ι(v)(aσ + bω) = (aσ + bω)(v)
= aσ(v)+ bω(v)
= aι(v)(σ)+ bι(v)(ω).

mapping

ι : V →V ∗∗

v 7→ ι(v)
(3.49)

which is linear47 and injective48. Since V ∗∗, being the dual space of V ∗ has 47 For σ ∈ V ∗ we get ι(av+ bw)(σ) =
σ(av + bw) = aσ(v) + bσ(w) =
aι(v)(σ)+ bι(w)(σ). Since this holds for
all σ ∈ V ∗ this means that ι(av+ bw) =
aι(v)+ bι(w).
48 if ι(v) = 0 then σ(v) = 0 for all σ ∈V ∗,
this is only possible if v = 0

the same dimension as V ∗ which in turn has the same dimension as V , this
mapping is also surjective and therefore an isomorphism. Since it further
only depends on the vector space structure of V 49, ι is called canonical and

49 no choices, like picking a basis, have to
be made

is used to identify V with V ∗∗.
One immediate consequence is, that we can now also call (e1, . . . ,en)

the dual basis of (ω1, . . . ,ωn) since ι(ei)
(
ω j
)
= ω j(ei) = δ

j
i . That is,

(ι(e1), . . . , ι(en)) is actually the dual basis of (ω1, . . . ,ωn), but we can
identify it with (e1, . . . ,en) via the canonical isomorphism ι .

This means that we can think of a vector v alternatively as a real-valued
linear map that takes a 1-form as input, defined by v(σ) := σ(v).
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(1
1) Tensors

For a (1
1) tensor, which is a bi-linear map of one covector and one vector

argument to a scalar, Eq. 3.20 takes the form

T : V ∗×V →R. (3.50)

According to Theorem 3

(e1⊗ω
1,e1⊗ω

2, . . . ,en−1⊗ω
n,en⊗ω

n) (3.51)

is a basis of the space of all (1
1) tensors. That is, we can expand an arbitrary

(1
1) tensor as

T = T i
jei⊗ω

j (3.52)

and under a change of basis these components transform as

T̃ i
j = ei

kẽl
jT

k
l (3.53)

according to Eq. 3.46.
An important property of (1

1) tensors is that we can interpret them as
a linear map of vectors, and vice versa50 , that is, a linear map can be 50 Mathematically, this means that there

is a canonical isomorphism between
L(V ), the space of linear maps on V , and
T1

1(V ) = L(V ∗,V ;R), the space of (1
1)

tensors on V .

interpreted as a (1
1) tensor.

We show this in detail. First, if we are given a linear map A : V →V , we
can define

TA : V ∗×V →R

(σ ,v) 7→ σ(Av)
(3.54)

which is bi-linear and real-valued, that is, a (1
1) tensor.

On the other hand, if we are given a (1
1) tensor T, we define

ATv : V ∗→R

σ 7→ T(σ ,v),
(3.55)

which is a linear functional on V ∗, that is, an element of V ∗∗. Using the
(inverse of) the canonical isomorphism defined in Eq. 3.49 we obtain a
linear map by w := Av := ι−1 (ATv). To actually compute this map, we
expand ATv in the basis (ι(e1), . . . , ι(en)) of V ∗∗, that is, ATv = a jι(e j) for
some coefficients a j and note that

ATv(ω i) = a j
ι(e j)(ω

i) = a j
ω

i(e j) = a j
δ

i
j = ai. (3.56)

But by definition we also have that ATv(ω i) = T(ω i,v) and we can compute

w = Av = ι
−1 (ATv) = ι

−1(ai
ι(ei)) = ai

ι
−1(ι(ei)) = T(ω i,v)ei. (3.57)

We see that we in this way get a linear map51 51 Note, that ATv denotes the map defined
by Eq. 3.55 and AT denotes a new map.

AT : V →V

v 7→ w = ι
−1 (ATv) ,

(3.58)

Further, the components of w = wiei are just given by

wi = T(ω i,v) = v jT(ω i,e j) = T i
jv

j (3.59)
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for v = v je j. This means, that the linear map AT has the same components as
the (1

1) tensor T.
Further52, 52 To avoid confusion with the map ATv we

write (AT)v for the map AT applied to the
vector v.T(AT)(σ ,v) = σ((AT)v) = σ

(
ι
−1 (ATv)

)
= σ

(
T(ω i,v)ei)

)
= T(ω i,v)σ(ei) = T(ω i,v)v jω

j(ei)

= T(ω i,v)v jδ
j
i = T(ω i,v)vi = T(viω

i,v)

= T(σ ,v).

(3.60)

That is, these identifications of (1
1) tensors with linear maps are indeed

inverses of each other.

Remark 1. We note that an expression such as T i
j ei⊗ω j is often used

simply as a linear map T, acting on a vector v, and giving a result vector
T(v), by writing53 53 the problem here is that the expression

(T i
j ei ⊗ω j) (v) is imprecise because

ei⊗ω j actually takes a covector and a
vector as arguments, to make this precise
we have to use the argument above

T(v) = (T i
j ei⊗ω

j) (v) ,

= T i
j ei ω

j(v) = T i
j ω

j(v) ei,

= T i
jv

j ei.

(3.61)

We note that when the 1-form ω j is applied to the vector argument v, the
tensor product ⊗ simply turns into a regular product. This behavior is part
of the definition of the tensor product. It corresponds to the fact that the
contraction ω j(v) has turned the (1

1) tensor T into a (1
0) tensor T(v), i.e.,

a vector. Correspondingly, the remaining basis is solely the basis {ei} for
vectors. We note that the first-order tensor T(v) can be interpreted directly
as a vector, or still be interpreted as a scalar-valued function acting on the
argument of a covector (as one definition of a vector in tensor analysis). For
example, we get the scalar that is the i’th component of the vector T(v)
referred to the basis {ei}, by computing

T(v)
(
ω

i) := ω
i(T(v))= ω

i(T i
jv

j ei
)
= T i

jv
j
ω

i(ei
)
= T i

jv
j. (3.62)

When “executed” for all “rows” i, the final expression T i
jv

j is a matrix-
vector multiplication of components. However, in the entire derivation
above, the notation has helped us avoid mixing components of different
variance and the corresponding bases. Overall, tensor notation is a powerful
way of using basis vectors and 1-forms, and tensors referred to components,
in a general context, simplifying the use of arguments of different variance
(covariant, contravariant) and higher-order tensors.

A concrete example of a (1
1) tensor is the definition of the covariant

derivative ∇v of a vector field v in Eqs. 6.8 and 6.9 below. However, we
note that in that context, “covariant” refers to “general covariance,” not to
covariant arguments54.

54 See for example the discussion
in (Frankel, 2011, p. 430) or (Lee,
2018, p. 89) .

Theodore Frankel. The Geometry of
Physics: An Introduction. Cambridge
University Press, 3rd edition, 2011; and
John M. Lee. Introduction to Riemannian
Manifolds. Springer-Verlag, 2nd edition,
2018

(0
2) Tensors

For a (0
2) tensor55, which is a bi-linear map of two vector arguments to a

55 or a covariant second-order tensor
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scalar, Eq. 3.20 takes the form

T : V ×V →R. (3.63)

According to Theorem 3

(ω1⊗ω
1,ω1⊗ω

2, . . . ,ωn−1⊗ω
n,ωn⊗ω

n) (3.64)

is a basis of the space of all (0
2) tensors. That is, we can expand an arbitrary

(0
2) tensor as

T = Ti jω
i⊗ω

j (3.65)

and under a change of basis these components transform as

T̃i j = ẽl
i ẽ

k
jTlk (3.66)

according to Eq. 3.46. An important example of a covariant second-order
tensor56 is the metric tensor g, referred to a basis {ω i⊗ω j} it is usually 56 a (0

2) tensor

expanded as gi j ω i⊗ω j.

(2
0) Tensors

For a (2
0) tensor57, which is a bi-linear map of two covector arguments to a 57 or a contravariant second-order tensor

scalar, Eq. 3.20 takes the form

T : V ∗×V ∗→R. (3.67)

According to Theorem 3

(e1⊗ e1,e1⊗ e2, . . . ,en−1⊗ en,en⊗ en) (3.68)

is a basis of the space of all (2
0) tensors. That is, we can expand an arbitrary

(2
0) tensor as

T = T i jei⊗ e j (3.69)

and under a change of basis these components transform as

T̃ i j = ei
le

j
kT lk (3.70)

according to Eq. 3.46. An important contravariant second-order tensor58 58 a (2
0) tensor

is the inverse metric g−1, which is usually expanded in a basis {ei⊗ e j} as
gi j ei⊗ e j.

0-Tensors

For a 0-tensor, or a (0
0) tensor, it seems unclear how to interpret Eq. 3.20:

T :?→R (3.71)

However, being strict, we can say that a 0-tensor takes zero vectors and zero
covectors and produces a number. So it is just a number depending on no
input. This seems to be a useless concept, but for tensor fields we will see
that 0-tensor fields just correspond to smooth functions on the manifold.
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3.3 Tensor Fields on Manifolds

Now that we know how tensors are defined in one linear space, e.g., in
the tensor space at one individual point x ∈M of the manifold M, we can
extend this construction to a whole tensor field on the manifold M. As a
coordinate-free geometric construct, each of these tensor fields is a section
of the corresponding tensor bundle, without referring to a particular basis.

However, analogously to vector fields on the manifold M, we can choose
tensor basis fields in local neighborhoods U ⊂ M that then allow us to
describe tensor fields in U in components referred to that basis. For a tensor
field, these component functions are required to vary smoothly from point
to point on the manifold.

That is, where above we have used a single basis, for example at one
specific point x ∈M, such as a basis ei for vectors, i.e., (1

0) tensors, or a basis
ei⊗ω j for (1

1) tensors, etc., we now simply extend this approach to smoothly
varying tensor basis fields on M, where the basis tensors vary (smoothly)
from point to point of the manifold, and we refer tensors to these basis
fields via smoothly varying component functions.

(1
0) Tensor fields: Vector fields

As above, as coordinate-free geometric constructs, vector fields are in fact
sections of the tangent bundle T M, i.e., a vector field v is a map

v : M→ T M. (3.72)

However, to refer vector fields (i.e., sections of the tangent bundle) to
coordinates, we choose n linearly-independent basis vector fields ei in a
neighborhood U . At every point x ∈U ⊂M, i.e., in the corresponding linear
space TxM, this gives us a linearly-independent basis ei(x). A specific
vector field can then be given in components referred to these basis vector
fields, which at any point x means

v(x) = vi(x)ei(x). (3.73)

(0
1) Tensor fields: Differential 1-forms

As above, as coordinate-free geometric constructs, 1-form (covector) fields
are in fact sections of the cotangent bundle T ∗M, i.e., a 1-form (covector)
field ω is a map

ω : M→ T ∗M. (3.74)

However, to refer 1-form (covector) fields (i.e., sections of the cotangent
bundle) to coordinates, we choose n linearly-independent basis 1-form
(covector) fields ω i. At every point x ∈M, i.e., in the corresponding linear
space T ∗x M, this gives us a linearly-independent basis ω i(x). A specific
1-form (covector) field can then be given in components referred to these
basis 1-form (covector) fields, which at any point x means

ω(x) = vi(x)ω
i(x). (3.75)
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We can visualize 1-form (covector) fields using a “stack” visualization in
each cotangent space, as depicted in Fig. 3.1 for two example cotangent
spaces at two different points on the manifold M = S2.

Figure 3.1: Gradient 1-forms d f on a
manifold M, here visualized with a “stack”
(isolines of the linearized function f ) in
each (co)tangent space, for the color-coded
scalar function f : M→R on the manifold
M = S2 shown here.

(r
s) Tensor fields

For higher-order tensors, of different type (variance), we simply extend the
above approach. Each tensor field is a section of the corresponding tensor
bundle. In coordinates, we obtain higher-order tensor basis fields using the
tensor product. For general (r

s) tensor fields that means that59

59 compare Equation 3.29

T(x) = T i1,...,ir
j1,..., js(x) ·

(
ei1 ⊗ . . .⊗ eir ⊗ω

j1 ⊗ . . .⊗ω
js
)
(x). (3.76)

where the component functions T i1,...,ir
j1,..., js(x) vary smoothly from point to

point.
For example, for a (0

2) tensor field we need to choose basis tensor fields
ω i⊗ω j, for a (1

1) tensor field we need to choose basis tensor fields ei⊗ω j,
and so forth. As a specific example the (0

2) covariant metric tensor field g is
then given at a point x ∈U ⊂M by

g(x) = gi j(x) (ω i⊗ω
j)(x). (3.77)

0-Tensor fields

We can now also understand the interpretation of 0-tensor fields as smooth
functions. Such a 0-tensor field is simply

T(x) = T (x), (3.78)

since it takes no inputs60. It is just a smooth function on the manifold. 60 and therefore requires no indices

3.4 Differential Forms

Differential k-forms are (0
k) tensor fields that are completely anti-symmetric,

i.e., on exchange of the order of any two vector arguments, the sign of the
resulting scalar changes.

Differential forms are the most important construct in exterior calculus,
and are the natural mathematical entities that constitute integrands, i.e.,
mathematical objects to be integrated.61 61 In a future version of these notes, we are

planning to extend this part significantly.
For the time being, however, this is left as
future work.Further Reading

For a detailed description, including the general concept of tensor bundles
over a manifold M, we refer to the books by Spivak 62 and Frankel 63. 62 Michael Spivak. A Comprehensive

Introduction to Differential Geometry (5
volumes). Publish or Perish Press, 3rd
edition, 1999
63 Theodore Frankel. The Geometry of
Physics: An Introduction. Cambridge
University Press, 3rd edition, 2011





4 Riemannian metrics and connections

In this chapter, we introduce (Riemannian) metric tensor fields, and the cor-
responding concepts of connections and parallel transport. As an important
example we discuss the Levi-Civita connection, i.e., the on a Riemannian
manifold uniquely-defined connection that is both compatible with the met-
ric and torsion-free. While connections and covariant derivatives are very
related, and are sometimes seen as a single larger concept, in this session
we will emphasize the concept of connection first, and covariant derivatives
will be covered in Covariant derivatives and Lie derivatives.

Important concepts that we will cover are Riemannian manifolds and
Riemannian metrics, connections and parallel transport, the Levi-Civita
connection, torsion and compatibility of a connection with the metric.

4.1 Riemannian Metrics

So far, we have looked at manifolds that have a differential structure, which
allows us to do calculus on these manifolds. We cannot, however, define
geometric notions1 yet, what is missing is a special second-order tensor 1 such as lengths of vectors or curves or

angles between vectorsfield2, to turn the smooth manifold into a Riemannian manifold.
2 the metric tensor fieldCoordinate-free definition. A (Riemannian) metric g on a manifold M

defines an inner product on each tangent space TxM. This is usually written
as 〈x,y〉 := g(x,y〉 for x,y ∈ TxM. Specifically, g is

1. symmetric, that is

〈x,y〉= 〈y,x〉 (4.1)

for all x,y ∈ TxM,

2. bilinear, that is

〈ax+ by,z〉= a〈x,z〉+ b〈y,z〉= 〈z,ax+ by〉 (4.2)

for all x,y,z ∈ TxM, and all a,b ∈R, and

3. positive definite, that is

〈x,x〉 ≥ 0 (4.3)

for all x ∈ TxM with 〈x,x〉= 0 if and only if x = 0.

Furthermore, g is required to be smooth in the sense that in all charts the
coordinate functions are smooth. Consequently, g is a covariant second-
order tensor field.

Example 3. 1. The length of a vector v is defined by

‖v‖ :=
√
〈v,v〉. (4.4)
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2. The angle between two vectors v and w is defined by

cosθ :=
〈v,w〉
‖v‖‖w‖

(4.5)

3. The length ` of a curve c : [t1, t2]→M is defined by

` :=
∫ t2

t1
‖c′(t)‖dt. (4.6)

The metric tensor on a Riemannian manifold, however, has another
important consequence. It allows us to identify a tangent space with its dual
space.
Identification with the dual space. On a generic manifold, although a
tangent space and its dual are isomorphic3, there is no isomorphism that is 3 since they have the same dimension

in some sense singled out4. If we have a metric tensor5, this tensor provides 4 compare Equation 3.19 and the discussion
thereafter
5 that is, a Riemannian manifold

such a specific isomorphism,
For a vector x define a covector ωx by ωx(y) = 〈x,y〉, one writes6

6 pronounced x flat, the motivation for the
musical notation comes from the fact, that
in a chart the indices of components are
effectively lowered, see below

ωx = x[.
On the other hand, for a covector ω there is a unique vector xω such

ω(y) = 〈xω ,y〉, one writes xω = ω].
That is, the operators [ and ] provide an isomorphic identification of

each tangent space of a Riemannian manifold with its dual space.
Computation in a chart. If we define gi j := 〈ei,e j〉, we get

g(x,y) = 〈x,y〉= 〈xiei,y je j〉= xiy j〈ei,e j〉= xiy jgi j

= ω
i(x)ω j(y)gi j = gi j(ω

i⊗ω
j)(x,y),

(4.7)

since {ω i} is dual7 to {ei}, i.e., ω i(e j) = δ i
j, and the tensor product of two 7 this also means that ω i(x) = xi if x = xiei,

that is, ω i reads off the ith component of x
in the basis ei

covectors is simply their product. That is, the gi j are the components of the
metric tensor g with respect to the basis ω i⊗ω j, g = gi jω

i⊗ω j.
We can write xiy jgi j in matrix notation as

xT gy. (4.8)

Inverse metric. Given a vector x = xi ei, the map y 7→ g(x,y) defines a
covector (or 1-form). From Eq. 4.7, we get

g(x,y) = gi jxi
ω

j(y), or

(y 7→ g(x,y)) = gi jxi
ω

j.
(4.9)

This means that the components of the covector are simply gi jxi. If we set
x j := gi jxi, we can write the covector8 as x jω

j. Thus, using the metric to 8 that is, ωx = x jω
j , or ωx = x[

convert a vector into a covector, we have effectively lowered the index of
the components.

The matrix g with components gi j is invertible with inverse g−1, whose
components are denoted by gi j. This means that

g jkgki = gikgk j = δ
i
j, (4.10)

or in matrix notation

gg−1 = g−1 g = I, (4.11)
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with I the identity matrix. Given the components x j of a covector9 ω , we 9 ω = x jω
j

now obtain the components of the corresponding vector by raising the
index10: xi = gi jx j. See Lee (Lee, 2018, p. 26)11 for more details. 10 that is xω = xiei or xω = ω]

11 John M. Lee. Introduction to Riemannian
Manifolds. Springer-Verlag, 2nd edition,
2018Example 4. As an example we look at the gradient of scalar fields on the

plane again. Let f : M→R with M = R2. On a generic smooth manifold12 12 without a Riemannian metric

there is no gradient vector, all we have is the differential d f of f , and its
representation in components13 13 using the dual basis of covectors

d f =
∂ f
∂xi dxi =

∂ f
∂x

dx+
∂ f
∂y

dy. (4.12)

If we use Cartesian coordinates we use the chart14 ϕ : R2→R2 given by 14 note, that the first R2 is seen as a
manifold, where the chart provides the
differential structure, and the second R2

as the parameter space where we can use
multi-variable calculus, especially partial
derivatives

ϕ = idR2 , that is, ϕ((x,y)) = (x,y). Then, ϕ−1 = idR2 as well and we get
the coordinate basis vectors15

15 compare Equation ??e1 = ∂∂∂ 1 =
∂

∂x1 =
∂

∂x
=

∂

∂x
ϕ
−1 (x,y) = (1,0),

e2 = ∂∂∂ 2 =
∂

∂x2 =
∂

∂y
=

∂

∂y
ϕ
−1 (x,y) = (0,1).

(4.13)

We compute the components of the metric tensor and its inverse as

gi j =

(
1 0
0 1

)
, gi j =

(
1 0
0 1

)
. (4.14)

Figure 4.1: Coordinate basis vectors in
Cartesian and polar coordinates.

To convert the differential of f 16 to the gradient vector, we have to use

16 which is a covector

the inverse metric, which is just the identity in this case, to raise the indices
and get the components for the gradient vector as

∇ f =
∂ f
∂x

e1 +
∂ f
∂y

e2. (4.15)

That is, in this case the components of the gradient vector are just the
partial derivatives as well.

If we use polar coordinates17, however, things change. First, we use the 17 it is important to note, that we are still on
the same flat manifold, the plane, we are
just using different coordinates

chart18 ϕ((x,y)) = (
√

x2 + y2, arctan y
x ) and its inverse19 ϕ−1((r,θ )) =

18 on a suitable domain
19 note that we now also clearly distinguish
between points on the manifold, denoted by
x and y, and the parameter domain, denoted
by r and θ

(r cosθ ,r sinθ ). We get for the coordinate basis vectors

e1 = er = ∂∂∂ 1 =
∂

∂x1 =
∂

∂ r
=

∂

∂ r
ϕ
−1 (r,θ ) = (cosθ , sinθ ),

e2 = eθ = ∂∂∂ 2 =
∂

∂x2 =
∂

∂θ
=

∂

∂θ
ϕ
−1 (r,θ ) = (−r sinθ ,r cosθ ).

(4.16)

Finally, the components of the metric tensor and its inverse in this chart
are given20 by 20 cos2 θ + sin2

θ = 1!

gi j =

(
1 0
0 r2

)
, gi j =

(
1 0
0 1

r2

)
. (4.17)

That is the gradient vector in polar coordinates is given by21 21 to be precise, we should write this as

∇ f |p =
∂ f
∂ r

∣∣∣∣
p

er +
1
r2

∂ f
∂θ

∣∣∣∣
p

eθ .

for p = (x,y), since the coordinate basis
vectors now are different for different
points, see Figure 4.1

∇ f =
∂ f
∂ r

er +
1
r2

∂ f
∂θ

eθ . (4.18)
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4.2 The Directional Derivative

Although the metric tensor provides a way to define geometric notions, it
does not allow us yet to take the directional derivative of a vector field22, 22 or higher order tensor fields

for example. The notion that is missing is called a connection, and it is a
structure that has to be provided. On a Riemannian manifolds it will turn
out that there is a unique connection23, the Levi-Civita connection. The 23 with certain properties, see below

motivation for this connection is that is generalizes directional derivatives
in Euclidean space. So to understand connections better we first take a
closer look at the directional derivative in Euclidean space, using multi-
variable calculus, and then see how to generalize it to curved manifolds.

Let a ∈ Rn, that is, a = (a1, . . . ,an). Then24, Xp = ai∂ /∂xi
∣∣

p is a 24 Einstein summation convention!

differential operator Dxp , the directional derivative in direction a at p. Then,
setting xi = pi + tai, we can differentiate a scalar field in the following way:

DXp f = lim
t→0

f (p+ ta)− f (p)
t

=
d
dt

∣∣∣∣
t=0

f (p+ ta)

=
∂ f
∂xi

∣∣∣∣
p
· dxi

dt

∣∣∣∣
t=0

=
∂ f
∂xi

∣∣∣∣
p
·ai

=

(
ai ∂

∂xi

∣∣∣∣
p

)
f = Xp f .

(4.19)

Figure 4.2: A vector field in the plane can
be differentiated by moving all vectors to
one point and differentiating them there
(top). On the sphere it is not clear how to
do this (bottom).

We can also differentiate a vector field Y = bi∂ /∂xi in Euclidean space,
by simply moving all vectors to the point p, which just means that we can
differentiate the component functions:

DXpY =
(
Xpbi) ∂

∂xi

∣∣∣∣
p

(4.20)

However, on curved manifolds it is not all clear how to do this, since we
do not know how to move vectors from one tangent space to another (see
Figure 4.2).

To generalize the directional derivative to arbitrary manifolds, we note
that we can extend Equation 4.20 to whole vector fields by defining it
pointwise:

(DXY )p = DXpY (4.21)

This defines an operator25 25 X(Rn) denotes all vector fields on Rn

D : X(Rn)×X(Rn)→ X(Rn),

(X ,Y ) 7→ D(X ,Y ) = DXY
(4.22)

where we write DXY instead of D(X ,Y ).26. We now apply a common 26 the reason is that it is not completely
symmetric, see below, but also to make the
meaning of the arguments clear, DXY is the
directional derivative of Y in direction X

strategy in mathematics to generalize something. We look for properties
of the notion we want to generalize and see if we can find something more
general with the same properties. If this more general notion also fits the
original one, we consider it a generalization.
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Properties of the directional derivative

Define multiplication of a vector field by a smooth function pointwise:
( f X)p := f (p)Xp. The directional derivative has the following properties:

1. It is R-linear in X and Y : For all a,b ∈R and X ,Y ,Z ∈ X(Rn)

DaX+bY Z = aDX Z + bDY Z

DZ(aX + bY ) = aDZX + bDZY
(4.23)

2. It is F-linear in X : For all27 f ∈C∞(Rn) and X ,Y ∈ X(Rn) 27 C∞(Rn) denotes all smooth functions on
Rn

D f XY = f DXY (4.24)

3. The Leibniz rule holds in Y : For all f ∈C∞(Rn) and X ,Y ∈ X(Rn)

DX ( fY ) = (X f )Y + f DXY (4.25)

4.3 Connections

This way of looking at the directional derivative lets us now define con-
nections28. That is, a (linear or affine)29 connection on a manifold M is an 28 that is, generalizations of the directional

derivative to arbitrary manifolds
29 although there are subtle mathematical
differences between these two notions, they
need not concern us here

R-bilinear map

∇ : X(M)×X(M)→ X(M) (4.26)

with the properties

1. It is F-linear in X : For all f ∈C∞(Rn) and X ,Y ∈ X(Rn)

∇ f XY = f ∇XY (4.27)

2. The Leibniz rule holds in Y : For all f ∈C∞(Rn) and X ,Y ∈ X(Rn)

∇X ( fY ) = (X f )Y + f ∇XY (4.28)

4.4 Parallel Transport

Figure 4.3: Parallel transport in the plane.

Figure 4.4: Parallel transport on a curved
manifold.

Let γ : I→M be a curve in the manifold. A connection determines a parallel
transport operator

Pγ

t0t1 : Tγ(t0)M→ Tγ(t1)M (4.29)

We could also go in the other direction and define a parallel transport
operator which then in turn defines a connection:

∇XY |p = lim
h→0

Pγ

h0Yγ(h)−Yp

h
(4.30)

where γ(0) = p. See Lee (Lee, 2018, p. 108)30 for details. This parallel 30 John M. Lee. Introduction to Riemannian
Manifolds. Springer-Verlag, 2nd edition,
2018

transport operator now allows us to move vectors to one tangent space, so
we can differentiate a vector field. However, we still have the problem that
there exist many different connections on a manifold31. We therefore apply 31 and therefore different notions for

directional derivatives, parallel transport, or
geodesics

the same strategy as before and look at more properties of the directional
derivative and see if they narrow down our choice for a connection.
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Other properties of the directional derivative

1. The first property we look at is called torsion, it measure how much the
directional derivative commutes, that is, what is the difference between
DXY and DY X . It turns out that in Euclidean space this is always given
by the Lie bracket [X ,Y ]. So one defines the torsion T of a connection as

T (X ,Y ) := DXY −DY X− [X ,Y ] = 0 (4.31)

and says that the Euclidean connection has zero torsion.

2. We can also define curvature using only the connection, and it is always
zero as well:

R(X ,Y ) := [DX ,DY ]−D[X ,Y ] = DX DY −DY DX −D[X ,Y ] = 0 (4.32)

that is

R(X ,Y )Z := 0 (4.33)

3. To motivate the last property, we note that so far the two notions of
metric and connection are completely independent of each other. We
certainly want to have some kind of compatibility of the two. It turns out
that the directional derivative is compatible with the metric in Euclidean
space in the sense that it obeys a kind of product rule:

DZ〈X ,Y 〉= 〈DZX ,Y 〉+ 〈X ,DZY 〉 (4.34)

4.5 The Levi-Civita Connection

If we now want to use these properties on curved manifolds, we certainly
have to drop the property of zero curvature. It turns out, however, that,
when we require a connection to have zero torsion which is compatible with
the metric, there is a unique such connection. This connection is called the
Levi-Civita32 connection. 32 or sometimes Riemannian connection

So to summarize, on a Riemannian manifold M there is a unique connec-
tion, this is now written as ∇, with the properties

1. Zero torsion: For all33 X ,Y ∈ X(M) 33 X(M) now denotes all vector fields on
the manifold M

T (X ,Y ) := ∇XY −∇Y X− [X ,Y ] = 0 (4.35)

2. Compatibility with the metric: For all X ,Y ,Z ∈ X(M)

∇Z〈X ,Y 〉= 〈∇ZX ,Y 〉+ 〈X ,∇ZY 〉 (4.36)

Computation

In a chart with coordinate basis vector fields ei = ∂∂∂ i =
∂

∂xi we can look at all
combinations

∇e j ek. (4.37)
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These are vectors which can be expressed as linear combinations of the
coordinate basis vectors again:

∇e j ek = Γi
jkei. (4.38)

The symbols Γi
jk corresponding to the unique Levi-Civita connection for a

given metric g on M are called the Christoffel symbols. We now can write
in a chart34 for vector fields X = a je j and Y = bkek

34 if we use Cartesian coordinates, the
Christoffel symbols all all zero, so this ex-
pression results in the usual differentiation
of the coordinate functions∇XY =

(
X(bk)+ a jbkΓi

jk

)
ei. (4.39)

The Christoffel symbols can also be derived intrinsically from the compo-
nents gi j of g, referred to the same basis (and its dual)35, via 35 This equation is specified for the use of a

coordinate basis ei = ∂∂∂ i, with [ei,e j ] = 0,
and its dual coordinate basis ω i = dxi.

Γi
jk =

1
2

gim (∂kgm j + ∂ jgmk−∂mg jk) . (4.40)

See, e.g., the book by do Carmo 36. The components gi j give the metric g 36 Manfredo Perdigao do Carmo. Rieman-
nian Geometry. Birkhäuser, 1992referred to the basis {ω i⊗ω j}, and gi j is its inverse g−1, i.e., gikgk j = δ i

j,
referred to the basis {ei⊗ e j}.





5 Smooth maps between manifolds, isome-
tries

Smooth maps (including diffeomorphisms1) between manifolds, denoted 1 Other important smooth maps are
embeddings, immersions, and submersions,
which, unlike diffeomorphisms, are not
bijective. We touch on these maps, but
mainly focus on diffeomorphisms.

φ : M→ N, (5.1)

including the special case N = M, are crucial for many important appli-
cations in flow visualization and continuum mechanics, in particular for
characterizing deformations of fluids and solids, as well as for defining ref-
erence frame transformations and the corresponding concept of objectivity.
Moreover, a smooth map between two manifolds induces the corresponding
pushforward as well as the corresponding pullback operations.

For each x ∈M, the pushforward dφ (or φ∗) is a linear map, also called
the differential, from the tangent space at x ∈ M, i.e., TxM, to the corre-
sponding tangent space at φ (x) ∈ N, i.e., Tφ (x)N. This map enables “pushing
forward” individual tangent vectors to other points, where the “source”
point and the “destination” point are connected by the map φ , and in the
case of diffeomorphisms enables pushing forward entire vector fields.

We further introduce the corresponding pullback φ ∗, which can always
“pull back” covariant tensor fields, including differential forms. This
includes the important application of pullback metrics, i.e., the pullback
of a second-order covariant metric tensor field, which enables a general
characterization of isometries and infinitesimal isometries.

In contrast to smooth maps that are not diffeomorphisms, if φ is indeed
a diffeomorphism2, we can push forward (and pull back) whole vector 2 A smooth map φ is called a diffeomor-

phism if it is (1) bijective, i.e., it is both
one-to-one and onto, and (2) if it also has a
smooth inverse φ−1.

fields from the manifold M to the manifold N, and vice versa. Moreover,
for diffeomorphisms, pushforwards and pullbacks enable mapping tensor
fields of mixed type (mixed variance) between manifolds, by applying
the pushforward and the pullback operations, respectively, to each tensor
argument (vector or 1-form, i.e., covector) individually.

The most important concepts covered in this chapter are:

• Diffeomorphisms.

• Pushforwards and pullbacks.

• Pullback metrics.

• Active deformations.

• Isometries and infinitesimal isometries.

• Flows and flow maps of vector fields.
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Figure 5.1: Pushforward and pullback
of a diffeomorphism φg are linear maps
between the tangent spaces TxM and
Tφg(x)M, and cotangent spaces T ∗

φg(x)
M

and T ∗x M, respectively. The pushforward
(dφg)x maps a tangent vector x ∈ TxM to the
vector (dφg)x (x) ∈ Tφg(x)M. The pullback
φ∗g maps a covector (1-form) ω ∈ T ∗

φg(x)
M

to the covector (1-form) φ∗g ω ∈ T ∗x M.

5.1 Notation

There are various notations for pushforwards and pullbacks. A very com-
mon notation used in mathematics is to write

smooth map: φ , pushforward: φ∗, pullback: φ
∗, (5.2)

for the smooth map (including diffeomorphisms), the corresponding
pushforward, and the corresponding pullback, respectively. Because the
pushforward is the differential of a smooth map, these three entities are
often also written as

smooth map: φ , pushforward: dφ , pullback: φ
∗, (5.3)

again for the smooth map (including diffeomorphisms), the corresponding
pushforward, and the corresponding pullback, respectively.

5.2 Diffeomorphisms

A smooth map φ : M → N that is smooth and bijective, i.e., one-to-one
and onto, and that has an inverse map φ−1 : N → M that is also smooth,
is called a diffeomorphism between the manifolds M and N.3 The special 3 If such a map exists, the manifolds M

and N are called diffeomorphic.case where M = N is also included in this definition, and is particularly
important for active deformations of a manifold M and for reference frame
transformations, i.e., where we have φ : M→M.

Sometimes we denote diffeomorphisms by maps φg, where g ∈ G is an el-
ement of a transformation group (a Lie group) G, for example all rotations
of three-dimensional Euclidean space, where G = SO(3), and each g is a
3×3 rotation matrix. The map φg is then the diffeomorphism corresponding
to the transformation described by g, i.e., we have an isomorphism between
the group G and the group of diffeomorphisms φg, for example all maps

φg : M→M. (5.4)

Figure 5.2: A diffeomorphism φg always
has a smooth inverse φg−1 .

The inverse diffeomorphism then corresponds to the inverse group element
g−1 ∈ G, where we then have the inverse maps

(φg)
−1 = φg−1 . (5.5)
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Local diffeomorphisms

We can also define diffeomorphisms only locally, in order to restrict the
region of definition, for example to the neighborhood of a given point.
Local diffeomorphisms are particularly important for the flows of vector
fields. If a vector field is not complete, i.e., when it cannot be integrated for
all time (where stream or path lines enter and exit the domain boundary, for
example), then the flow of the vector field only gives local diffeomorphisms,
instead of diffeomorphisms of the entire manifold.

5.3 Pushforwards and Pullbacks

Pushforwards

A smooth map φ : M→ N induces for each x ∈M a linear map

(dφ )x : TxM→ Tφ (x)N,

x 7→ (dφ )x(x),
(5.6)

Figure 5.3: Diffeomorphisms on smooth
manifolds link tangent spaces.

Figure 5.4: Pushforward of a tangent
vector, induced by the diffeomorphism.

Figure 5.5: Due to the inverse, we can
pushforward vectors in both directions.

called the differential or pushforward, from the tangent space at x ∈M, i.e.,
TxM, to the tangent space at φ (x) ∈ N, i.e., Tφ (x)N. While the map φ does
not have to be a diffeomorphism, i.e., it does not have to be one-to-one or
onto (for example for embeddings, immersions, or submersions), diffeo-
morphisms and the special case where M = N are of course included in this
definition. This is illustrated geometrically in Fig. 5.4 for a diffeomorphism
φ : M→M: Choosing a smooth curve through the point x ∈M defines a tan-
gent vector v ∈ TxM. The map φ maps this smooth curve to another smooth
curve through the point φ (x) ∈M, defining the corresponding tangent vector
(dφ )x(v) ∈ Tφ (x)M. Now, the pushforward of a smooth map corresponds
exactly to this mapping of curves, but it allows pushing forward individual
tangent vectors to other points on the manifold without having to explicitly
consider the curves to which they are tangent.

Pushforwards of diffeomorphisms

If a smooth map φ happens to be both one-to-one and onto, with smooth
inverse φ−1, i.e., when the smooth map φ is a diffeomorphism, then it
uniquely defines another vector field with the tangent vectors being the
pointwise pushforwards. This is not possible with an arbitrary smooth
map φ , as this fails to define tangent vectors at points not hit by φ (when
φ is not onto), or might define tangent vectors ambiguously at points hit
several times (when φ is not one-to-one). That is, we can use a map φ to
pushforward whole vector fields precisely when φ is a diffeomorphism.

Pullbacks

The analogous concept to the pushforward of a vector field is the pullback
of a covector (1-form) field. The pullback φ ∗ of a 1-form (covector) field is

(φ ∗)x : T ∗
φ (x)M→ T ∗x M,

ω 7→ (φ ∗)x(ω).
(5.7)
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Figure 5.6: Pullback of a 1-form ω .

Since (φ ∗)x(ω) is a 1-form (covector), in order to define it we have to
specify how it acts on a vector x ∈ TxM. We simply use the pushforward and
the fact that ω is a 1-form (covector) in the cotangent space at φ (x):

(φ ∗)x(ω)(x) := ω((dφ )x(x)). (5.8)

In contrast to vector fields, 1-forms (covector fields) always pull back to
1-forms (covector fields), even when the map φ is not a diffeomorphism.

5.4 Pullback Metrics

Given a smooth map φ from a differential manifold M to a Riemannian
manifold (N,h), with a metric tensor field h given on N, the pullback
metric g := φ ∗h defines a metric on the manifold M, i.e., via the pullback
metric we obtain the Riemannian manifold

(M,g) := (M,φ ∗h). (5.9)

The pullback metric is defined via the pushforward of both argument
vectors, i.e., we define

φ
∗h : TxM×TxM→R,

(v,w) 7→ φ
∗h(v,w) := h ((dφ )x(v), (dφ )x(w)) .

(5.10)

For brevity, we can then define a metric g on M as

g(v,w) := φ
∗h(v,w). (5.11)

Here, h is a metric on the manifold N, and g := φ ∗h is a metric on the
manifold M, defined as the pullback metric of h, pulled back from N to M.

Figure 5.7: Pullback metric and isometries.
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5.5 Active Deformations

We can model active deformations as diffeomorphisms φ , with

φ : M→M,

x 7→ φ (x),
(5.12)

where the metric g on M is fixed. A general active deformation is not an
isometry (see below). However, it can be the special case of an isometry
defined via an active transformation, however without deformation.4

4 An active transformation that is an
isometry, for example, would be a rotation
of Rn, or any other isometry (translations
and rotations) of Euclidean space.

A simple instructive example is a scaling of “space” (in the form of a
manifold M = Rn), and considering the transformation properties of the
gradient 1-form d f , and comparing with the (wrong) transformation of the
gradient vector ∇ f (if it is transformed like a regular vector).

5.6 Isometries and Infinitesimal Isometries

A smooth map φ : M→ N, where both (M,g) and (N,h) are given Rieman-
nian manifolds, is an isometry, if we have5 5 It is crucial to note that, here, we compare

an existing metric g to the pullback metric
φ∗h. (Instead of defining the metric g to be
identical to the pullback metric.)

g = φ
∗h. (5.13)

Alternatively, we can also write this directly with inner products on M
and N, respectively, where for all pairs of vectors v and w we must have〈

v,w
〉

x =
〈
(dφ )x(v), (dφ )x(w)

〉
φ (x). (5.14)

As a direct consequence, if φ is an isometry we also have

‖v‖x = ‖(dφ )x(v)‖φ (x). (5.15)

We note that the map φ can be an embedding or an immersion, or a diffeo-
morphism, for example. If the map φ is a diffeomorphism, we would say
that if it is also an isometry, then the manifolds M and N are, with respect to
the metric, “the same” Riemannian manifold.

Infinitesimal isometries

If we have a one-parameter group of diffeomorphisms φt , i.e., we have
t 7→ φt , we can take the derivative with respect to the parameter t, and in
this way obtain a vector field on the manifold N. If the diffeomorphisms φt

are isometries, than the corresponding vector fields are called infinitesimal
isometries, because they are the derivatives of isometries. This particular
kind of vector field is also called a Killing vector field.

5.7 Mapping Tensor Fields between Manifolds

Because all tensors are multi-linear maps taking an ordered list of vec-
tor and 1-form arguments, tensors of arbitrary order and variance can be
mapped between manifolds by simply using the constructions of the push-
forward (for vector arguments) and the pullback (for 1-form arguments) for
each argument individually. However, one has to be careful that several of
the following constructions can only be defined for diffeomorphisms, and
not for general smooth maps, between manifolds, because they require the
map to be smoothly invertible.
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Figure 5.8: Pushforward of vector field on
tangent bundle (for diffeomorphisms).

Pullbacks of 1-forms and k-forms (through any smooth map)

As above, the pullback φ ∗g ω of a 1-form (field) ω is

(φ ∗g ω)
(
v
)

:= ω
(

dφg(v)
)
. (5.16)

This definition can always pull back entire 1-form fields, and not just an
individual 1-form at a specific point, even for smooth maps that are not
diffeomorphisms.

For k-forms, i.e., differential forms acting on k vector arguments, we
simply use an analogous definition to the above, where each vector argu-
ment is separately pushed forward by the same map dφg. That is, we get the
pullback as

(φ ∗g ω)
(
v1, . . . ,vk

)
:= ω

(
dφg(v1), . . . ,dφg(vk)

)
. (5.17)

Pushforwards of vector fields (through diffeomorphisms)

In contrast to smooth maps that are not diffeomorphisms, where we can
only pushforward individual vectors from one tangent space to another
tangent space, for a diffeomorphism φt we can pushforward an entire vector
field as

dφg : T M→ T N, (5.18)

v 7→ dφg(v). (5.19)

This means that we have defined a vector feld via the point-wise mapping

(dφg(v))φg(x) :=
(

dφg
)

x(v). (5.20)

In this way, the diffeomorphism in fact maps a vector field as a section of
one tangent bundle, i.e., v : M→ T M, to the corresponding vector field as a
section of another tangent bundle, i.e., dφg(v) : N→ T N.

Pullbacks of vector fields (through diffeomorphisms)

For diffeomorphisms φt , instead of using the pushforwards of the corre-
sponding inverse diffeomorphisms φ

−1
t , we can also choose to use the

equivalent pullback φ ∗t , in order to “map back” vectors from points φt(x) to
points x by defining

(φ ∗t v)x :=
(

dφ
−1
t
)

φt (x)
(v). (5.21)
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Mapping mixed tensors (through diffeomorphisms)

For diffeomorphisms φg, the pushforward and pullback directly generalize
to general maps for (r

s) tensor fields T
(
ω1, . . . ,ωr,v1, . . . ,vs

)
, with r 1-form

(covector) arguments ω j, and s vector arguments vi, because any tensor
T is a multi-linear function of these arguments6. We can thus apply the 6 For brevity, we list the arguments in this

order, but the analogous applies for an
argument list of contravariant and covariant
arguments in any order.

definition for vectors argument-wise. We can write this pullback as

φ
∗
g T. (5.22)

Writing this out fully with the diffeomorphism φg, corresponding to a
transformation g ∈ G, and its corresponding inverse transformation φg−1 , we
get the pullback of an arbitrary (r

s) tensor field T as

φ
∗
g T
(
ω

1, . . . ,ωr,v1, . . . ,vs
)
=

T
(
φ
∗
g−1ω

1, . . . ,φ ∗g−1ω
r,dφg(v1), . . . ,dφg(vs)

)
.

(5.23)

Using the action g· of the transformation group element g ∈ G, and the
corresponding inverse action g−1·, we can also write this more succinctly as

φ
∗
g T
(
ω

1, . . . ,ωr,v1, . . . ,vs
)
=

T
(
g−1 ·ω1, . . . ,g−1 ·ωr,g ·v1, . . . ,g ·vs

)
.

(5.24)

We emphasize, however, that evaluating this pullback is only possible for
diffeomorphisms, because we need the inverse φg−1 . For a diffeomorphism
this inverse is guaranteed to exist and it is smooth.

For non-invertible maps, the pullback of tensors of mixed variance is not
defined.

Mapping linear maps (through diffeomorphisms)

The special case of the pullback of a (1
1) tensor field T, i.e., a bi-linear map

that maps one 1-form (covector) and one vector to a scalar, which can also
be seen as a linear map from one input vector to one corresponding output
vector, is given by

φ
∗
g T
(
ω ,v

)
= T

(
φ
∗
g−1ω , dφg(v)

)
,

= T
(
g−1 ·ω , g ·v

)
.

(5.25)

For a diffeomorphism φg, we can also write the pullback φ ∗g of T, inter-
preted as a linear map v 7→ T(v) from vector to vector, as

(φ ∗g T)x : TxM→ TxM,

v 7→ (φ ∗g T)x(v) := dφ
−1
g
(
T
(

dφg(v)
))

.
(5.26)

Again, while pullbacks in general are defined for smooth maps that need
not be diffeomorphisms, the above definitions require the map φg to be a
diffeomorphism (guaranteed to have an inverse) to allow mapping back
vectors in the inverse direction φ−1

g .

Example: Pullback of vector fields and linear maps on the sphere

For an isometry φt , the pullback φ ∗t of a vector field v on the sphere is

φ
∗
t v = (B∗)′RT (t)Bv. (5.27)
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The pullback φ ∗t of a second-order tensor field T on the sphere is

φ
∗
t T = (B∗)′RT (t)B T B′R(t)B∗. (5.28)

The R(t) are 3D rotation matrices determining the corresponding isometry
φt of the sphere. The 3×2 matrices B, B∗ map vectors v, at φt(x), and v∗,
at x, respectively, from two components referred to tangent space bases
embedded in R3, {b1,b2}, at φt(x), and {b∗1,b∗2}, at x, respectively, to their
embedding in R3. The corresponding 2×3 matrices B′, (B∗)′ perform the
“inverse” operation, mapping 3D vectors, tangent to the sphere, back from
three to two components, again referred to the bases {b1,b2}, {b∗1,b∗2},
respectively7.

7 In case the vectors are given embedded
in R3, instead of as intrinsic 2D vectors,
and the tensors T are likewise given
embedded in 3D, the above matrices B, B∗,
B′, (B∗)′ simply become identity matrices.

5.8 Example: Rotation-Invariant Vortices

One nice example where using the concept of the pullback metric allows
one to gain additional insight into an existing visualization method are the
rotation-invariant vortices for flow visualization by Günther et al. 8. 8 Tobias Günther, Maik Schulze, and

Holger Theisel. Rotation invariant vortices
for flow visualization. IEEE Transactions
on Visualization and Computer Graphics,
22(1):817–826, 2016

The idea of this approach is to “transform rotations to translations” by
setting up local diffeomorphisms for local neighborhoods that “rectify”
a polar coordinate system in R2, without the point (0,0), to a Cartesian
coordinate system in R2. The original approach does not employ the
concept of a pullback metric. However, it can be reformulated as follows:

• Set up an active deformation with local diffeomorphisms φ that map
points in R2−{(0,0)} referred to polar coordinates to corresponding
points in R2 referred to Cartesian coordinates9. See Fig. 5.9.

9 We can simply do this by defining
φ (r,θ ) := (x(r,θ ),y(r,θ )), with the
functions x(r,θ ) = r, and y(r,θ ) = θ .
Conceptually, the map φ must be a local
diffeomorphism to avoid the discontinuity
in the angle function θ : We can define this
map only locally. We do this by simply
choosing the polar axis, where the angle
θ = 0 with the corresponding discontinuity,
to be outside the local neighborhood where
we define φ . However, we note that we will
not even have to do this explicitly, because
we will not use the map φ directly, and in
the connection that we derive below, the
discontinuity in θ does not occur.

• Define the metric in the original space as the corresponding pullback
metric φ ∗h, where h is the standard Euclidean metric for R2.

• Compute the metric connection that is compatible with the pullback
metric φ ∗h, the pullback connection, on R2. This will not be the stan-
dard Euclidean connection, but will be compatible with the Riemannian
manifold (R2,φ ∗h), i.e., it will be a non-Euclidean “polar connection.”

Figure 5.9: Active deformation φ between
polar and locally-defined “Cartesian”
(r,θ ) coordinates, “rectifying” the polar
coordinate system. Note that the local
diffeomorphism φ must be defined such
that the discontinuity where the angle
function θ = 0 is not included in the domain
of definition. However, for any other
neighborhood we simply choose the polar
axis with θ = 0 somewhere else.

The entire computation above can be “condensed” into simply modify-
ing the computation of the velocity gradient tensor ∇v, by defining the
Christoffel symbols Γi

jk, for the non-Euclidean “polar connection” (∇)polar,
to be zero in polar coordinates. If we want to work directly in Cartesian
coordinates, this non-Euclidean connection can be evaluated directly by
simply subtracting the contribution of the Christoffel symbols Γi

jk of the
Euclidean connection in polar coordinates, i.e., with the standard Γ1

22 = −r,
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and Γ2
12 = Γ2

21 =
1
r , with application of the corresponding change of basis

given by a coordinate Jacobian J, from the partial derivatives. This gives10 10 Without writing the basis ei⊗ω j

(∇v)polar =

[
∇xvx ∇yvx

∇xvy ∇yvy

]
=

[
∂xvx ∂yvx

∂xvy ∂yvy

]
−J−1

[
0 −r vθ

1
r vθ 1

r vr

]
J.

(5.29)

Here, J is the Jacobian matrix of the coordinate change from Cartesian to
polar coordinates, i.e., at a position r =

√
x2 + y2, θ = atan2(y,x), we have

J(r,θ ) =

[
cosθ sinθ

− 1
r sinθ

1
r cosθ

]
, and

[
vr

vθ

]
= J

[
vx

vy

]
. (5.30)

This approach allows one to directly use the components (vx,vy) and the
partial derivatives ∂xvx,∂yvx,∂xvy,∂yvy from a Cartesian coordinate system.

This reformulation now allows one to gain additional insight:

• Because the metric (and, correspondingly, the metric connection) is
modified, (R2,φ ∗h) is not a Euclidean space, although it is a flat space.
(The latter can be seen by directly computing the curvature of the metric
connection defined above, or by observing that parallel transport in the
whole domain of definition, i.e., R2−{(0,0)}, is path-independent.)

• Concepts determined by the connection, such as parallel transport of
vectors and geodesics, are accordingly modified, and do not agree with
the corresponding behavior in Euclidean R2. See Fig. 5.10.

Figure 5.10: Parallel transport compatible
with pullback metric of active deformation.

Example. We can now look at the example of the vector field v = aeθ =

−ayex + axey, describing a rotation with angular velocity a in the counter-
clockwise direction. See the red vectors in Fig. 5.10. For this field, we have
for the derivatives ∂xvx = ∂yvy = 0, and ∂yvx = −a,∂xvy = a. For the “polar”
velocity gradient in Cartesian coordinates, we therefore get, at any position
(x,y), (r,θ ),

(∇v)polar =

[
0 −a
a 0

]
−J−1

[
0 −r a
1
r a 0

]
J,

=

[
0 −a
a 0

]
−

[
0 −a
a 0

]
= 0.

(5.31)

Thus, this field is parallel-transported with respect to the pullback metric
φ ∗h, because its velocity gradient is identically zero. See Fig. 5.10.

5.9 Flows of Vector Fields

In this section, we briefly summarize the standard concepts of the flow of a
vector field, as well as the corresponding linear map called the differential
or push-forward, as they are typically defined in differential geometry. For
details, we refer to the books by Lee 11, and Marsden and Hughes 12. We 11 John M. Lee. Introduction to Smooth

Manifolds. Springer-Verlag, 2nd edition,
2012
12 Jerrold E. Marsden and Thomas J.R.
Hughes. Mathematical Foundations of
Elasticity. Dover Publications, Inc., 1994

follow the notation of Marsden and Hughes.
The flow of a time-independent vector field u on a manifold M is a map

φ : J×M→M, (5.32)
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for a suitable interval J ⊆ R, such that t 7→ φ (t,x) is the unique maximal
integral curve of u through x ∈ M. That is, φ maps a point x to its image
along the integral curve of u after time t, which we also denote by φt(x).

Important properties of φ are:

• The map φt : M→M is a (local) diffeomorphism for all t ∈ J.

• For all t1, t2 ∈ J, x ∈M, φt2(φt1(x)) = φt1+t2(x), φ0(x) = x. The inverse of
φt is φ−t , i.e., φ

−1
t (φt(x)) = φ−t(φt(x)) = x. φ is an action of the additive

group R on M, φt is a one-parameter group.

• The linear map dφt : TxM→ Tφt (x)M, called the differential of φt , or the
(pointwise) push-forward, is an isomorphism between the two tangent
spaces at each x ∈ M and φt(x) ∈ M, for each t ∈ J. dφt maps tangent
vectors to all possible curves through a point x ∈M to the corresponding
tangent vectors of the images of these curves under the diffeomorphism
φt , through the point φt(x) ∈M.

When the vector field u is time-dependent, the corresponding time-
dependent flow

ψ : J× J×M→M, (5.33)

maps a point x ∈ M to its image along the integral curve from time s to
time t 13, which we denote by ψt,s(x). 13 John M. Lee. Introduction to Smooth

Manifolds. Springer-Verlag, 2nd edition,
2012

The map ψ has similar properties to the map φ :

• The map ψt,s : M→M is a (local) diffeomorphism for all s, t ∈ J.

• For all s, t1, t2 ∈ J, x ∈ M, ψt2,t1(ψt1,s(x)) = ψt2,s(x), ψs,s(x) = x. The
inverse of ψt,s is ψs,t , i.e., ψ

−1
t,s (ψt,s(x)) = ψs,t(ψt,s(x)) = x.

• The linear map dψt,s : TxM→ Tψt,s(x)M, called the differential (the push-
forward) of ψt,s, is an isomorphism between the tangent spaces at each
x ∈M and ψt,s(x) ∈M, for each s, t ∈ J. dψt,s maps tangent vectors to
all possible curves through a point x ∈M to the corresponding tangent
vectors of the images of these curves under the diffeomorphism ψt,s,
through the point ψt,s(x) ∈M.

We note that the notation ψt,s(x) can of course also be consistently used for
the case of time-independent flow. In that case, ψt,s(x) = φt−s(x).

5.10 Example: Flow Maps

The flow map of a time-dependent vector field v(x, t) is given by14 14 We note that, with the notation used
in the previous section, we simply have
F t

t0 = ψt,t0 . In fact, there exist many
different (but equivalent) notations for the
concept of a flow map (or, likewise, the
flow of a vector field), for both steady and
unsteady vector fields.

F t
t0 : M→M,

x0 7→ F t
t0(x0) =: x(t;x0).

(5.34)

This simply denotes the diffeomorphism F t
t0(x0) : x0 7→ x(t;x0), mapping

from the manifold M to itself, mapping points x0 at time t0 to points x at
time t, defined by for each point x0 following the path line through x0, at
time t0, until time t, at which time the path line passes through the point x.
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Flow map gradients

From a flow map F t
t0 , as above, for a vector field given in Euclidean space,

the corresponding spatial gradient is often computed15, and often specifi-

15 For example, in FTLE computations, and
in the definition and computation of many
other Lagrangian concepts.

cally denoted in the case of Euclidean space by

∇F t
t0 . (5.35)

This gradient is often called the flow map gradient, or sometimes—
especially in elasticity—the deformation gradient of a diffeomorphism16. 16 We note that, here, both the time t0 as

well as the time t are held fixed, in order to
obtain a specific diffeomorphism of which
the flow map gradient is computed.

However, more generally, also including non-Euclidean manifolds,
this deformation gradient in fact requires the more general concept of the
pushforward or differential of the diffeomorphism F t

t0 , as described above17. 17 In contrast to covariant derivatives, and
the corresponding connection, using the ∇

operator in this context is not appropriate
for diffeomorphisms on general manifolds,
in particular on curved manifolds. See the
book by Marsden and Hughes (Marsden
and Hughes, 1994) for a discussion of
why, despite wide-spread usage of the
term, the deformation gradient is in fact
(quote) “not a gradient at all, but is simply
the derivative of the deformation.”

Jerrold E. Marsden and Thomas J.R.
Hughes. Mathematical Foundations of
Elasticity. Dover Publications, Inc., 1994

As above, for any diffeomorphism φ , the corresponding pushforward is a
map between tangent bundles that is usually written as the map dφ , or φ∗.
For the specific diffeomorphism F t

t0 , we will denote this map by dF t
t0 :

dF t
t0 : T M→ T M,

v 7→ dF t
t0(v).

(5.36)

The pushforward defined on the entire tangent bundle is in general not a
linear map. Considered point-wise, however, i.e., at each point x0, it is a
linear map between tangent spaces. We can write this linear map as(

dF t
t0

)
x0

: Tx0M→ TxM,

vx0 7→ dF t
t0(vx0).

(5.37)

In the last row of the latter equation, the notation vx0 refers to a single
vector (not a vector field) in the tangent space Tx0M located at the point x0.

Now, having defined the flow map gradient as the pushforward of a
specific diffeomorphism, because pushforwards are defined for any smooth
manifold we in this way have obtained a general map dF t

t0 that can be used
on any manifold for the same computations as those using the flow map
gradient ∇F t

t0 in Euclidean space.





6 Covariant derivatives and Lie deriva-
tives

In this chapter, we discuss how the covariant derivative generalizes the
directional derivative of tensor fields in Euclidean space with Cartesian
coordinates to arbitrary manifolds with arbitrary coordinates. We introduce
the (intrinsic) velocity gradient tensor ∇v as the covariant derivative of a
vector field v on a given manifold M, directly corresponding to the metric
on M (if a metric connection is used). See Sec. 6.1.

In contrast, the Lie derivative is independent of the metric on M. It
measures the rate of change of a tensor field on a manifold M with respect
to the flow generated by a given vector field on M. An important application
that combines both derivatives is that isometries can be quantified by
computing the Lie derivative of the metric. We also introduce how the Lie
derivative can be computed from the Levi-Civita connection. See Sec. 6.3.

Example applications are computing derivatives of vector fields in non-
Cartesian coordinate systems, e.g., polar coordinates, or in intrinsically
curved spaces, extrinsic vs. intrinsic computations, determining vortices
from velocity gradients in non-Cartesian coordinates, Killing vector fields
as infinitesimal isometries, Killing vector fields and covariant derivatives on
the sphere, and observed time derivatives and objectivity 1. 1 Markus Hadwiger, Matej Mlejnek,

Thomas Theußl, and Peter Rautek. Time-
dependent flow seen through approximate
observer Killing fields. IEEE Transactions
on Visualization and Computer Graphics,
25(1):1257–1266, 2019

6.1 Covariant Derivatives

The covariant derivative (also called an affine connection) generalizes
the directional derivative of tensor fields in Euclidean space to arbitrary
manifolds (Tu, Chapter 6) 2. 2 Loring W. Tu. Differential Geometry:

Connections, Curvature, and Characteristic
Classes. Springer-Verlag, 2017

Coordinate-free definition

We define the (intrinsic) covariant derivative ∇v, of a vector field v, on a
given manifold M with the following properties:

1. The map (v,w) 7→ ∇wv is R-bilinear, that is

∇aw1+bw2v = a∇w1v+ b∇w2v, and

∇w(av1 + bv2) = a∇wv1 + b∇wv2
(6.1)

for all a,b ∈R.

2. The map w 7→ ∇wv (or ∇v(w)) is linear with respect to smooth functions,
that is

∇w( f v1 + gv2) = f ∇wv1 + g∇wv2 (6.2)

for all smooth functions f ,g on M.

3. The map v 7→ ∇wv is a derivation, i.e., it satisfies the Leibniz rule

∇w( f v) = (w f )v+ f ∇wv (6.3)
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for all smooth functions f on M.

If we write Eq. 6.1 as

∇v(aw1 + bw2) = a∇v(w1)+ b∇v(w2), (6.4)

and define

∇v : T ∗x M×TxM→R,

(ω ,w) 7→ ω
(
∇v(w)

)
,

(6.5)

it follows that ∇v is a multi-linear map, and thus a (1
1) tensor (field) (see

Sec. 3.2). In addition, on a (Riemannian) manifold with a metric g, there is
a unique covariant derivative (Theorem 6.6) 3 that is 3 Loring W. Tu. Differential Geometry:

Connections, Curvature, and Characteristic
Classes. Springer-Verlag, 20171. compatible with the metric, that is4
4 This is often written in the equivalent,
but less intuitive, form ∇u〈v,w〉 =
〈∇uv,w〉+ 〈v,∇uw〉 (Lee, Proposition
5.5) .

John M. Lee. Introduction to Riemannian
Manifolds. Springer-Verlag, 2nd edition,
2018

∇g = 0, and (6.6)

2. torsion-free, that is

∇vw−∇wv− [v,w] = 0. (6.7)

The notation [v,w] gives the Lie bracket of the vector fields v and w. This
unique connection is called the Levi-Civita connection.

Computation in a chart

Referred to a coordinate basis {ei⊗ω j}, the (intrinsic) velocity gradient ∇v
as a covariant derivative is given by

∇v =
(
∇ jvi)ei⊗ω

j :=
(

∂ jvi +Γi
jkvk
)

ei⊗ω
j. (6.8)

The tensor ∇v evaluated in direction x is the vector (see Sec. 3.2),

∇v(x) = ∇xv =
(

∂ jvi +Γi
jkvk
)

ω
j(x)ei. (6.9)

The Christoffel symbols Γi
jk, corresponding to the (unique) Levi-Civita

connection for a metric g on M, can be derived intrinsically from the
components gi j of g, referred to the same basis (and its dual), via

Γi
jk =

1
2

gim (∂kgm j + ∂ jgmk−∂mg jk) . (6.10)

See, e.g., the book by do Carmo 5. gi j is the metric g referred to the basis 5 Manfredo Perdigao do Carmo. Riemannian
Geometry. Birkhäuser, 1992{ω i⊗ω j}, and gi j is its inverse g−1, i.e., gikgk j = δ i

j, referred to the basis
{ei⊗ e j}.

Relation to Cartesian tensors

The tensor ∇v only consists solely of partial derivatives when (1) affine or
Cartesian coordinates are used; and thus (2) the manifold is intrinsically
flat, such as M = Rn with the standard Euclidean metric. Only then do
the Christoffel symbols on M vanish. The above intrinsic formulation can
be used on abstract manifolds M, without any known immersion into a
Euclidean ambient space. However, even when an immersion of M into a
higher-dimensional ambient space Rm is known, such as for a two-manifold
embedded as a curved surface in R3, it is extremely useful for intrinsic
(lower-dimensional) computations.
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6.2 Example: Killing Fields in the Plane and on the Sphere

Killing vector fields on manifolds correspond to the infinitesimal isometries
of a manifold, i.e., to the derivatives of isometries. Any isometry6 can thus 6 The meaning of an isometry of a manifold

is determined by the metric g defined
on the manifold. A vector field w is an
infinitesimal isometry, if we have Lwg = 0.
The differential operator L denotes the Lie
derivative defined in Sec. 6.3.

be obtained by integrating a (time-dependent) Killing vector field.
Each Killing field is characterized by the fact that the covariant deriva-

tive ∇w of any Killing field w is anti-symmetric.7 We can state this as

7 The general statement is given as Killing’s
equation ∇iw j +∇ jwi = 0.

〈∇w(x),x〉 = 0, for all tangent vectors x. If we consider a basis {ei}k
i=1

of Killing fields, where for each basis element we have 〈∇ei(x),x〉 = 0,
the linearity of the covariant derivative immediately gives that each linear
combination of these basis vector fields will again be Killing. For example,
if we have w = ae1 + be2 + ce3, we immediately know that 〈∇w(x),x〉= 0.

Fig. 6.1 depicts four example Killing vector fields in the plane R2.

 

=

e₁ e₂ e₃

+ w = a  × b  × + c  ×

Figure 6.1: The set of all Killing vec-
tor fields in the plane forms a three-
dimensional vector space. (Together with
the Lie bracket operation, they form a Lie
algebra; see Sec. 7.4.) As for any three-
dimensional vector space, any vector in the
space can be referred to a basis comprising
three basis vectors. Here, we are referring
to a vector space of vector fields in the
plane, and therefore the three basis vectors
are three basis vector fields in the plane.
Here, we show one particular example
basis. Each Killing field corresponds to the
main property that its velocity gradient, as
determined by the covariant derivative ∇w,
is anti-symmetric, i.e., 〈∇w(x),x〉= 0.

The set of all Killing fields in R2 forms a three-dimensional vector
space.8 Thus, because the vector fields e1,e2,e3 are linearly independent,

8 In R3, the set of all Killing fields forms
a six-dimensional vector space. (Corre-
sponding to three degrees of freedom for
translation, plus three degrees of freedom
for rotation, respectively.)

they form a basis for all Killing fields in R2. Therefore, we can write any
Killing field w in R2 as w = ae1 + be2 + ce3, with coefficients a,b,c ∈R.

As another example, Fig. 6.2 depicts four different Killing vector fields
on the sphere. Because the set of all Killing fields on the sphere again
forms a three-dimensional vector space,9 and because the three vector fields

9 Corresponding to three degrees of
freedom of rotations of the sphere.

e1,e2,e3 shown in the figure are again linearly independent, they again
form a basis for all Killing vector fields, this time on the sphere, such as the
example Killing field w shown in the figure.

Corresponding to infinitesimal isometries also means that in the plane
there exists an isomorphism between all Killing fields and all derivatives of
Euclidean isometries in the plane, i.e., the derivatives of all 2D translations
and rotations, which can bee seen to correspond to linear and angular
velocities, respectively.

Likewise, there exists an isomorphism between all Killing vector fields
on the sphere and all derivatives of isometries of the sphere, which are the
infinitesimal rotations of the sphere. There is also an isomorphism between
all Killing fields on the sphere and all anti-symmetric 3×3 matrices (bottom
row of Fig. 6.2). This is explained fully by Lie theory, and the relationship
to matrix Lie groups, as described in Sec. 7.4.

Figure 6.2: The set of all Killing vec-
tor fields on the sphere forms a three-
dimensional vector space. (Together with
the Lie bracket operation, they form a Lie
algebra; see Sec. 7.4.) As for any three-
dimensional vector space, any vector in the
space can be referred to a basis comprising
three basis vectors. Here, we are referring
to a vector space of vector fields on the
sphere, and therefore the three basis vectors
are three basis vector fields on the sphere.
Here, we show one particular example
basis. Each Killing field corresponds to the
main property that its velocity gradient, as
determined by the covariant derivative ∇w,
is anti-symmetric, i.e., 〈∇w(x),x〉= 0.
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Covariant derivatives of basis Killing fields in the plane

For the example in Fig. 6.1, we construct the following three linearly-
independent basis Killing fields in R2, where the vectors at any point x =
(x̂, ŷ) ∈R2, with respect to a Cartesian coordinate system in R2, are

e1(x̂, ŷ) =

[
1
0

]
, e2(x̂, ŷ) =

[
0
1

]
, e3(x̂, ŷ) =

[
0 −1
1 0

][
x̂− x̂0

ŷ− ŷ0

]
. (6.11)

For the field e3, we have to choose a “center point” (x̂0, ŷ0). Corresponding
to vector fields given on a rectangular domain D = [xa,xb]× [ya,yb] ⊂R2,
we define (x̂0, ŷ0) := 1

2 (xa + xb,ya + yb).10 10 We note that this basis is an orthogonal
basis, which can be confirmed by comput-
ing inner products between the basis vector
fields (an inner product between functions).

Each basis element must be a Killing field. To confirm, we compute

∇e1 = 0, ∇e2 = 0, ∇e3 =

[
0 −1
1 0

]
. (6.12)

Therefore, we have, for all i ∈ {1,2,3},

〈∇ei(x),x〉= 0, (6.13)

for all vectors x ∈ TxM, at all points x ∈M = R2.
Using this basis, we can therefore write any Killing field w on M = R2 as

w = ae1 + be2 + ce3, with three coefficients (a,b,c). We note that, due to
this particular choice of basis, (a,b) have the meaning of a linear velocity
vector (given with two Cartesian components), and the third coefficient c
has the meaning of angular velocity.11 In fact, the linear velocity is the 11 As for any vector space, other bases are

of course also possible. Here then, however,
no single coefficient would be the angular
velocity. See Fig. 7.8.

same constant vector at all points x ∈R2.

Covariant derivatives of basis Killing fields on the sphere

For the example in Fig. 6.2, we construct the following three basis Killing
fields for the sphere S2 := {(x̂, ŷ, ẑ)|x̂2 + ŷ2 + ẑ2 = 1} embedded in R3,
where the vectors at any point x = (x̂, ŷ, ẑ), as elements of the tangent space
embedded in R3 at that point, are given by

e1(x̂, ŷ, ẑ) =

0 0 0
0 0 −1
0 1 0


x̂

ŷ
ẑ

 ,

e2(x̂, ŷ, ẑ) =

 0 0 1
0 0 0
−1 0 0


x̂

ŷ
ẑ

 ,

e3(x̂, ŷ, ẑ) =

0 −1 0
1 0 0
0 0 0


x̂

ŷ
ẑ

 .

(6.14)

Using this basis, we can write any Killing field w on M = S2 as w = ae1 +

be2 + ce3, with three coefficients (a,b,c). We note that, due to the above
choice of basis, the coefficients (a,b,c) determine a 3D angular velocity
vector, and ω2 := a2 + b2 + c2 is the corresponding (squared) angular
velocity (magnitude). Since 〈∇ei(x),x〉= 0 (equivalent to Killing’s equation)
is intrinsically defined in each tangent space, to see that the 2D tensors ∇ei
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are anti-symmetric, we must compute the covariant derivatives ∇ei at
all x ∈ S2. Using a right-handed orthonormal basis in each tangent plane to
the sphere, they are

(∇ei)x =

[
0 −cosϕi(x)

cosϕi(x) 0

]
. (6.15)

Here, the angle ϕi(x) ∈ [0,π ] is the colatitude12 of the point x away from 12 Where zero degrees is at the “north pole”
instead of at the “equator.”the “north pole” of the respective ei, i.e., x̂ = 1 for e1, ŷ = 1 for e2, ẑ = 1

for e3. Therefore, we again have 〈∇ei(x),x〉= 0, for all i ∈ {1,2,3}, and for
all vectors x ∈ TxM, at all points x ∈M = S2.

6.3 Lie Derivatives

The Lie derivative measures the rate of change of a tensor field on a mani-
fold M with respect to the flow (Sec. 5.9) generated by a vector field on M.
For a time-independent tensor field t, the Lie derivative Lu t with respect to
a vector field u with flow φt , is defined, at x ∈M, as

(
Lu t

)
x :=

d
dt

∣∣∣∣
t=0

dφ−t
(
tφt (x)

)
. (6.16)

Here, dφt is the differential of the flow φt , and φ−t = φ
−1
t . When t is a vector

field v, the Lie derivative Luv is the same as the Lie bracket. See Frankel
(Ch. 4) 13 between the two vector fields, i.e., Luv = [u,v]. See Fig. 6.3. 13 Theodore Frankel. The Geometry of

Physics: An Introduction. Cambridge
University Press, 3rd edition, 2011

For any given torsion-free connection on a manifold M, such as the
Levi-Civita connection corresponding to a given metric, the Lie bracket,
and thus the Lie derivative, is then (cf. Eq. 6.7)

Lu v = ∇v (u)−∇u (v) . (6.17)

If the field t is time-dependent, the definition of the Lie derivative must be
extended to the time-dependent Lie derivative 14, which is 14 Jerrold E. Marsden and Thomas J.R.

Hughes. Mathematical Foundations of
Elasticity. Dover Publications, Inc., 1994(

Lu t
)

x :=
d
dt

∣∣∣∣
t=s

ψ
∗
t,s

(
tψt,s(x)

)
=

(
∂ t
∂ t

+Lu t
)

x
, (6.18)

at the point x ∈M, at time s. The pullback ψ∗t,s is given by ψ∗t,s = dψs,t .

Figure 6.3: The Lie derivative measures
the rate of change of a tensor field (shown
here: a vector field, i.e., a first-order tensor
field, of tangent vectors of curves depicted
in black) with respect to the flow of a given
vector field (shown here: the vector field
whose integral curves are depicted in blue).
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6.4 Example: Observed Time Derivative

An example for the use of the Lie derivative in visualization is the definition
of the observed time derivative. Originally given by Hadwiger et al. 15 for 15 Markus Hadwiger, Matej Mlejnek,

Thomas Theußl, and Peter Rautek. Time-
dependent flow seen through approximate
observer Killing fields. IEEE Transactions
on Visualization and Computer Graphics,
25(1):1257–1266, 2019

flat (Euclidean) spaces (in 2D and 3D), because it is a Lie derivative it is
also well-defined for curved spaces 16. On any smooth manifold (with or

16 P. Rautek, M. Mlejnek, J. Beyer, J. Troidl,
H. Pfister, T. Theußl, and M. Hadwiger.
Objective observer-relative flow visual-
ization in curved spaces for unsteady 2d
geophysical flows. IEEE Transactions on
Visualization and Computer Graphics, 27
(2):283–293, 2021

without a metric, flat or curved), it is given by the differential operator

D

Dt
:=

∂

∂ t
+Lu. (6.19)

This operator gives the derivative of a time-dependent tensor field17 with

17 This naturally includes scalar fields, in
which case the observed time derivative
coincides with the material time derivative
∂ /∂ t +u ·∇. For higher-order tensor fields
(including vector fields), however, the
observed time derivative and the material
time derivative are not the same.

respect to the flow of a given vector field, here denoted by u. A crucial
point is that the semantic meaning of the field u is that of an observer
velocity field describing (infinitesimal) reference frame motion.

Fig. 6.4 shows an unsteady (i.e., time-dependent) 2D velocity vector
field relative to two different observers (i.e., reference frames). On the left,
the reference frame motion is given by an observer velocity field relative
to which the observed time derivative, relative to this observer motion, is
minimized. On the right, the same velocity field is shown relative to the
input reference frame, relative to which the vortex structures developing
behind a circular obstacle are hard to discern.

Figure 6.4: The observed time derivative
is a specific time-dependent Lie derivative,
with respect to the flow of an observer
velocity field. The latter property gives this
derivative its special meaning: Measuring
the rate of change of a vector field, with
respect to time, with respect to a specific
observer motion: The motion determined
by the observer velocity field. Here, each
top image visualizes the 2D flow depicted
in the bottom image in 3D space-time (the
vertical axes map to time), respectively.

We can obtain the time derivative of any input flow field v, as observed
relative to the reference frame motion determined by an observer velocity
field u, by applying the operator above to the relative velocity field (v−u),

D

Dt
(v−u) =

∂v
∂ t
− ∂u

∂ t
+∇v (u)−∇u (v) . (6.20)

On the right-hand side, we have simply expanded the (autonomous) Lie
derivative, which for vector fields is identical to the differential-geometric
Lie bracket, as given by Eq. 6.17.

As we will see below, since the definition of the Lie derivative is inde-
pendent of the metric, the observed time derivative as just defined can also
be used directly in curved spaces without changing the definition (Sec. 6.6).



COVARIANT DERIVATIVES AND LIE DERIVATIVES 75

6.5 Lie Derivatives in Curved Spaces

Lie derivatives are independent of the metric g defined on the manifold M.
For a vector field v, this can be seen by expanding

Lu v = ∇v (u)−∇u (v) ,

=
(
∇ jviu j−∇ juiv j)ei,

=
((

∂ jvi +Γi
jkvk)u j−

(
∂ jui +Γi

jkuk)v j
)

ei,

=
(

∂ jviu j +Γi
jkvku j−∂ juiv j−Γi

jkukv j
)

ei,

=
(
∂ jviu j−∂ juiv j)ei.

(6.21)

That is, all terms with Christoffel symbols Γi
jk cancel out. This property

always holds, given that the connection is torsion-free, which means that
the symmetry Γi

jk = Γi
k j holds (for {ei} a coordinate basis). This applies in

our framework, because we are using the Levi-Civita connection, which, by
definition, is both metric-compatible and torsion-free.

Figure 6.5: Lie dragging (“advecting”) a
curve with the flow of a vector field on
the manifold determines how individual
tangent vectors are Lie-dragged. These are
exactly the tangent vector fields whose Lie
derivative, relative to this flow, is zero.

To make parsing the tensor expressions above easier, we note that an
expression like ∂ jvi can be seen as a matrix of partial derivatives, with
row index i and column index j, and ∂ jviu j is equivalent to matrix-vector
multiplication with a column vector u j with row index j. We also give the
explicit expansion and summations for the 2D case:

Lu v =∇v (u)−∇u (v) ,

=

(
∑

j=1,2

(
(∂ jv1)u j− (∂ ju1)v j))e1+(

∑
j=1,2

(
(∂ jv2)u j− (∂ ju2)v j))e2.

(6.22)
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6.6 Example: Observed Time Derivative in Curved Spaces

As we have derived in the previous section, Lie derivatives are independent
of the metric defined on a given manifold. Therefore, the definition of the
observed time derivative given in Eq. 6.19 is also independent of the metric,
and is therefore defined for any manifold on which an observer velocity
field u is given.

Analogously to the example for unsteady 2D flow in the plane given
above, we can therefore also minimize the observed time derivative on
curved surfaces. This enables following a flow feature, such as a hurri-
cane, over time by minimizing the observed time derivative on the sphere
representing the Earth’s surface, as depicted in Fig. 6.6.

time

Figure 6.6: The observed time derivative in
curved spaces is the same time-dependent
Lie derivative as in flat space, because its
definition is independent of the metric.
Minimizing it therefore also makes an
arbitrary unsteady input vector field, such
as here on the sphere, as steady as possible:
Features such as the hurricane shown in
the center here appear as evolving in place
instead of moving over the Earth’s surface.

The visualization in Fig. 6.7 contrasts the two perspectives: In the upper
two images, a hurricane is moving across the Earth while the reference
frame fixed to the Earth is shown as not moving. In contrast, in the bottom
images, the reference frame is co-moving with the hurricane, and therefore
the Earth is moving underneath the hurricane in that reference frame.

(a) (b)

(c) (d)

Figure 6.7: Feature-centric visualization.
(a,b) A flow feature such as the hurricane
shown here moves relative to the Earth’s
surface, holding the Earth’s reference
frame in place. (c,d) The reference frame
is now co-moving with the hurricane:
The hurricane seems to evolve in place,
whereas now the Earth seems to be moving
underneath, in the opposite direction as the
hurricane’s motion depicted in (a,b).



7 Lie groups and Lie algebras

This chapter is an introduction to Lie theory from the point of view of con-
tinuous symmetry or transformation groups. For computational purposes
we emphasize matrix Lie groups and their derivatives, which comprise the
Lie algebra of the Lie group. We further cover the exponential map which
maps elements from the Lie algebra, called infinitesimal generators, to the
Lie group. Finally, we introduce the important concept of a group action
and demonstrate how Lie theory, with Lie groups or their Lie algebras
acting on a manifold, can be used in visualization algorithms, for example
in reference frame optimization.

Important concepts that we will cover are Lie groups and Lie algebras,
the exponential map, group actions, and reference frame transformations
and objectivity.

Example applications are how to use Lie theory to extend the definition
of objectivity to non-Euclidean spaces with non-trivial continuous isome-
tries, e.g., the sphere 1, and how to find good reference frames, e.g., to 1 P. Rautek, M. Mlejnek, J. Beyer, J. Troidl,

H. Pfister, T. Theußl, and M. Hadwiger.
Objective observer-relative flow visual-
ization in curved spaces for unsteady 2d
geophysical flows. IEEE Transactions on
Visualization and Computer Graphics, 27
(2):283–293, 2021

make a vector field as-steady-as-possible, in this context.

7.1 Groups and Lie Groups

A group G is a set with an operation2 ◦ : G×G→ G with the properties 2 “composition”, it is important that
◦(g,h) = g ◦ h is another element of the
same group G1. Associativity: For all g,h, j ∈ G

(g◦h) ◦ j = g◦ (h◦ j), (7.1)

2. Existence of a neutral element: There is an e ∈ G so that for all g ∈ G

g◦ e = e◦g = g. (7.2)

3. Existence of inverses: For all g ∈ G there is another element denoted by
g−1 ∈ G so that

g◦g−1 = g−1 ◦g = e. (7.3)

If the composition has to be made explicit, we write (G,◦) for the group.

Example 5. 1. The real numbers with addition (R,+), but also the
rational numbers (Q,+) or even the integers (Z,+) are all groups.

2. Often groups are part of a larger mathematical structure. For example,
any field (like R or C) with only addition as operation3 is a group. 3 that is, we disregard multiplication

So both (R,+) and (Q,+), seen as part of the fields (R,+, ·) and
(Q,+, ·), are groups.

3. If we leave away zero4 from a field and look only at multiplication, we 4 which has no inverse

also get a group. That is, both (R\{0}, ·) and (Q\{0}, ·) are groups.
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4. Any linear space V with only the vector addition, that is (V ,+), is a
group.

5. The most important examples of groups for us are the invertible matri-
ces with matrix multiplication5. These groups are usually written as 5 from Linear Algebra we know that matrix

multiplication is associative, the neutral
element is given by the identity matrix, and
each matrix has by definition an inverse

GL(n)6 for n×n matrices.

6 which stands for general linear group

A Lie group now is a group which is also a manifold, such that the
group operation as a function on the manifolds is smooth. This definition,
although very concise, is also very generic and abstract7. We will use a 7 it is favored by more mathematically

inclined texts like for example (Lee, 2012,
Chapter 7)

John M. Lee. Introduction to Smooth
Manifolds. Springer-Verlag, 2nd edition,
2012

slightly less generic, but still extensive enough, concept, that of a matrix
Lie group.

Definition 4. A Matrix Lie group is a closed subgroup of the group of
invertible matrices.

G being a subgroup of GL(n)8 means that it is a group itself9. So one 8 the group of invertible matrices of size
n×n
9 with the same group operation, that is,
matrix multiplication

usually has to check that for any two matrices A,B ∈ G their product AB is in
G as well, and that the identity is in G10.

10 every element of G will have an inverse,
since it is also in GL(n) by definition and
therefore invertible

The property of G being closed in GL(n) is a generic topological prop-
erty. In more concrete terms it means that if Mn is a sequence of matrices
in G and it converges to some matrix M, then M is either in G or not invert-
ible. Since convergence can be checked component-wise, this property is
usually easily verified with concrete matrix Lie groups as in the following
examples.

Example 6. 1. The translation group of the plane11 can be represented by 11 the plane being situated at z = 1

the following matrices 1 0 tx
0 1 ty
0 0 1

 (7.4)

.

Figure 7.1: The translation group of the
plane is just another plane.

This shows that this matrix Lie group is just another plane.

2. Similarly for the rotation group of the plane, which is just a circle:(
cos t sin t
−sin t cos t

)
(7.5)

Figure 7.2: The rotation group of the plane
SO(2) is just a circle.

3. These two matrix Lie groups can be combined to the affine group of the
plane:12

12 the plane is again situated at z = 1 cos t sin t tx
−sin t cos t ty

0 0 1

 (7.6)
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Example 7. Lets work out in detail that the translation group of Exam-
ple 6.1, lets denote it by G here, is actually a matrix Lie group. Firstly,
the identity matrix is obviously13 in G. Secondly, if we have a convergent 13 for tx = ty = 0

sequence in G, say 1 0 (tx)n

0 1 (ty)n

0 0 1

 , (7.7)

then obviously (tx)n converges to some tx and (ty)n to some ty, so the limit is
in G as well. Thus, G is a matrix Lie group.

Note that, since a Lie group is also a manifold, it has a tangent space at
each point14. A tangent space of a smooth manifold is just a linear space, 14 that notion has no meaning for a generic

group!however, since a Lie group is also a group, this tangent space inherits a very
special structure from the group operation. It is even a Lie algebra.

7.2 Lie Algebras

In mathematics, an algebra usually denotes a linear space which has an
additional operation15. A good example is the matrix algebra, where 15 usually called multiplication

matrices can be added and linear combinations be taken, but matrices can
also be multiplied. In this case, the multiplication is associative and the
algebra called an associative algebra. A Lie algebra is a slightly different
kind of algebra, especially the multiplication is in general not associative.
The definition is as follows.

Definition 5. A Lie algebra is a linear space (vector space) V with an
additional operation16 16 in this case called the Lie bracket

[·, ·] : V ×V →V

(X ,Y ) 7→ [X ,Y ],
(7.8)

with the properties:

1. Bi-linearity: For all X ,Y ∈V and α ,β ∈R

[αX +βY ,Z] = α [X ,Z]+β [Y ,Z] (7.9)

[Z,αX +βY ] = α [Z,X ]+β [Z,Y ] (7.10)

2. Skew-symmetry: For all X ,Y ∈V 17 17 this implies that [X ,X ] = 0 for all X ∈V

[X ,Y ] = −[Y ,X ] (7.11)

3. Jacobi identity: For all X ,Y ,Z ∈V

[[X ,Y ],Z]+ [[Y ,Z],X ]+ [[Z,X ],Y ] = 0 (7.12)
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Example 8. The group of rotations of R3, called18 SO(3) is a three 18 which stands for special orthogonal
groupdimensional manifold sitting in the space of 3× 3 matrices19. This can
19 which is nine dimensional

probably not be visualized directly, but the situation is the same as for a
surface in three dimensional space, as depicted in Figure 7.3.

Figure 7.3: The rotation group SO(3) as a
submanifold of R3×3.

Obviously,

c1(t) =

 cos t sin t 0
−sin t cos t 0

0 0 1

 (7.13)

is a smooth curve through the identity, that is c1(t) ∈ SO(3) for all t and

c1(0) =

1 0 0
0 1 0
0 0 1

= I. (7.14)

Its derivative is given by

c′1(t) =

−sin t cos t 0
−cos t −sin t 0

0 0 0

 (7.15)

and thus

X1 := c′1(0) =

 0 1 0
−1 0 0

0 0 0

 (7.16)

is a tangent vector at the identity I of SO(3), as depicted in Figure 7.4.

Figure 7.4: A tangent vector to SO(3).

With the analogous curves20

20 the opposite signs in c2 are convention

c2(t) =

cos t 0 −sin t
0 1 0

sin t 0 cos t

 and c3(t) =

1 0 0
0 cos t sin t
0 −sin t cos t

 (7.17)

we get two more tangent vectors

X2 =

0 0 −1
0 0 0
1 0 0

 and X3 =

0 0 0
0 0 1
0 −1 0

 . (7.18)

These three tangent vectors are linearly independent, since from21 21 0 here denotes the zero matrix

0 = αX1 +βX2 + γX3 =

 0 α −β

−α 0 γ

β −γ 0

 (7.19)

it follows that α = β = γ = 022. Thus, since SO(3) is a three-dimensional 22 this the real number zero

manifold, X1,X2,X3 constitute a basis of the tangent space of SO(3) at the
identity I and thus of the Lie algebra so(3), as depicted in Figure 7.5.

Figure 7.5: The tangent space of SO(3),
that is, the Lie algebra so(3).

The Lie bracket is given by

[X ,Y ] = XY −Y X (7.20)



LIE GROUPS AND LIE ALGEBRAS 81

7.3 The Exponential Map

So we have seen how to move from the Lie group to its Lie algebra23. We 23 by finding curves through the identity
and differentiating themwill also need a way to move back to the Lie group. This is done with the

exponential map,
Abstractly and generically, the exponential map is a mapping from a Lie

algebra g to the corresponding Lie group G, i.e.,

exp : g→ G, (7.21)

X 7→ exp(X). (7.22)

In case of a matrix Lie group it is defined for a matrix X in the Lie algebra,
like the exponential map for real numbers, by the power series

exp(X) = eX :=
∞

∑
k=0

Xk

k!
= I +X +

X2

2!
+

X3

3!
+ . . . , (7.23)

where I is the identity matrix.

Example 9. For example, for G = SO(2), the rotation group of the plane24, 24 see Example 6.2

and its Lie algebra25 g = so(2), if we choose the basis vector (matrix) 25 which are the skew-symmetric 2× 2
matricesX ∈ so(2)

X =

(
0 −1
1 0

)
, (7.24)

we can compute

(tX)0 =

(
1 0
0 1

)
,

(tX)1 =

(
0 −t
t 0

)
,

(tX)2 =

(
−t2 0

0 −t2

)
,

(tX)3 =

(
0 t3

−t3 0

)
,

(tX)4 =

(
t4 0
0 t4

)
= t4(tX)0,

(7.25)

Figure 7.6: The exponential map maps the
tangent space so(2) at the identity of SO(2)
to SO(2). It is only a local diffeomorphism,
if you move away too far from the identity
you will wrap around and the mapping will
not be bijective anymore.

and conclude that (tX)k+4 = t4(tX)k by induction. Thus,

exp
(
tX
)
= etX

=

(
1− t2

2! +
t4

4! − . . . −t + t3

3! −
t5

5! + . . .

t− t3

3! +
t5

5! − . . . 1− t2

2! +
t4

4! − . . .

)

=

(
cos t −sin t
sin t cos t

)
∈ SO(2).

(7.26)

See Figure 7.6. For G = SO(3), and its Lie algebra g = so(3), with
essentially the same calculations, we get for the basis vectors (matrices)
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Xi ∈ so(3)

X1=

0 0 0
0 0 −1
0 1 0

 , X2=

 0 0 1
0 0 0
−1 0 0

 , X3=

0 −1 0
1 0 0
0 0 0

 , (7.27)

the corresponding exponentials

exp
(
tX1
)
=

1 0 0
0 cos t −sin t
0 sin t cos t

 ∈ SO(3),

exp
(
tX2
)
=

 cos t 0 sin t
0 1 0

−sin t 0 cos t

 ∈ SO(3),

exp
(
tX3
)
=

cos t −sin t 0
sin t cos t 0

0 0 1

 ∈ SO(3).

(7.28)

7.4 Example: The Lie Algebra of Observer Motions

For an application of these abstract concepts of Lie groups and Lie algebras
we want to show how to use them to explore 2D time-dependent flow with
observers26. The core idea here is, since observers are transformations 26 for details we refer to

Xingdi Zhang, Markus Hadwiger,
Thomas Theußl, and Peter Rautek. Interac-
tive exploration of physically-observable
objective vortices in unsteady 2d flow.
IEEE Transactions on Visualization
and Computer Graphics (Proceedings
IEEE VIS 2021), 28(2):1–1, 2022. DOI :
10.1109/TVCG.2021.3115565

of space, we can exploit the linear structure of the Lie algebra of these
transformation to, for example, interpolate between different observers.

In the following figure27 we see a time-dependent flow on a sphere28.

27 taken from the paper
28 visualized with path lines, which are,
for visualization purposes, moving away
orthogonally from the sphere over time.

On the left, the flow seems to be very chaotic. On the right, an observer
was chosen who centers on a vortex. In between, the two observer are
interpolated which shows that the chaotic movement on the left can be seen
as resulting from the movement of an observer.

In flow visualization and continuum mechanics, we can model any possible
observer (i.e., reference frame) motion as an element29 of the correspond- 29 In terms of the vector space structure, an

abstract vector as a mathematical object.
Here, these objects are vector fields.

ing Lie algebra. This Lie algebra therefore comprises all possible observer
motions.30 In the framework presented by Zhang et al., 31 each Lie algebra 30 Usually, we want physically-realizable

observer motions. Disregarding special and
general relativity, they are rigid motions in
Euclidean space, including rotations of a
sphere embedded in the ambient space R3,
e.g., modeling the surface of the Earth.
31 Xingdi Zhang, Markus Hadwiger,
Thomas Theußl, and Peter Rautek. Interac-
tive exploration of physically-observable
objective vortices in unsteady 2d flow.
IEEE Transactions on Visualization
and Computer Graphics (Proceedings
IEEE VIS 2021), 28(2):1–1, 2022. DOI :
10.1109/TVCG.2021.3115565

element is in fact a whole Killing vector field w on the underlying man-
ifold M, where M constitutes the domain where the input vector field as
well as any Killing field describing observer motion are given. For example,
M = R2 or M = S2. See Fig. 7.7 for an illustration of the case M = R2.

The vector space structure means that a Lie algebra has a basis, i.e., a
spanning set of k linearly-independent basis vectors (basis vector fields) for
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an k-dimensional Lie algebra. The Lie algebras of all rigid motions for the
manifolds M = R2 and M = S2, respectively, are each three-dimensional
as a vector space. (This makes these two cases nicely uniform for observer
motions, despite otherwise many differences between planes and spheres.)

 

=

e₁ e₂ e₃

w(t)

t

+ (t)(t)w(t) = a  × b  × + c(t)  ×

Figure 7.7: The set of all Killing vec-
tor fields in the plane forms a three-
dimensional vector space, and, together
with the Lie bracket operation, forms a
three-dimensional Lie algebra. As for
any three-dimensional vector space, any
vector in the space can be referred to a
basis comprising three basis vectors. Here,
we are referring to a vector space of vec-
tor fields in the plane, and therefore the
three basis vectors are three basis vector
fields in the plane. Here, we show one
particular example basis {ei} on the man-
ifold M = R2, from which we can obtain
an arbitrary Killing field w, by simply
specifying three real coefficients (a,b,c),
or an arbitrary time-dependent Killing
field w(t), by simply specifying three real
coefficients (a(t),b(t),c(t)) for every
time t, respectively. In the latter case, this
means we specify a reference frame motion
via a function t 7→ (a(t),b(t),c(t)).

This implies that any element of such a Lie algebra, i.e., any infinitesimal
rigid motion, can be referred to three basis vectors (here, basis vector
fields), giving three corresponding real coefficients (per time t, for time-
dependent rigid motions, corresponding to time-dependent Killing fields):32

32 A time-dependent Killing vector
field w(t) is simply a Killing field wT
for each fixed time T : wT := w(T ),
and 〈∇wT (x),x〉 = 0. Writing out
points x ∈ M explicitly, we can write
the same as wT (x) := w(x,T ).

w(x, t) = a(t)e1(x)+ b(t)e2(x)+ c(t)e3(x). (7.29)

This expression is a linear combination of three basis vector fields with
three real coefficients: Here, one triplet (a(t),b(t),c(t)) per time t.33

33 It is nice that the basis itself does not
need to be time-dependent: All time-
dependence is encoded in the coefficient
function t 7→ (a(t),b(t),c(t)).

Scalar multiplication: Scalar times Lie algebra element

The scalar multiplication for the vector space structure, e.g., ae1, where e1

denotes a vector field on M, is defined pointwise in each tangent space via
standard scalar multiplication in each tangent space:

(ae1)(x) := ae1(x). (7.30)

That is, in each tangent space TxM at a point x ∈M, the basis vector in that
tangent space, i.e., e1(x), is multiplied by the same coefficient a.

Vector addition: Addition of two Lie algebra elements

Likewise, the vector addition for the vector space structure is also defined
by pointwise addition of vectors in each tangent space:

(e1 + e2)(x) := e1(x)+ e2(x). (7.31)

Linear independence of the Lie algebra basis

It is important to realize that the linear independence of our Lie algebra
basis needs to be verified as the linear independence of vector fields, not
as that for individual vectors in some tangent space. (Otherwise, in a two-
dimensional tangent space, for instance, more than two vectors would
always be linearly dependent; but we have three linearly independent basis
vector fields.) That is, linear independence of three basis fields ei,e j,ek is
given if there are no coefficients λ , µ ∈R such that

ei = λe j + µek, (7.32)
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for every (cyclic) permutation of (i, j,k) = (1,2,3). This equation must be
read such that for fixed λ , µ ∈R, for all points x ∈M, the vectors in each
tangent space TxM would have to be

ei(x) = λe j(x)+ µek(x). (7.33)

For M = R2 and the basis given by Eq. 6.11 (depicted in Fig. 7.7), this
is trivial to see for ei = e3. However, it is also not hard to see in the other
cases. For M = S2 and the basis given by Eq. 6.14 (depicted in Fig. 7.9),
we can imagine choosing two basis fields to reproduce a non-zero vector of
the third basis field at some point, and then considering the “pole” of the
third field, where the third field has a critical point (i.e., the vector in the
tangent space at that point is zero), but the linear combination that we just
considered gives a non-zero vector. (That is, linear independence is given as
long as the poles, i.e., the critical points, do not coincide.)

Time dependence

While above we have considered the individual scalar multiplications,
vector (field) additions, and linear independence, neglecting the time-
dependence of vector fields on M, i.e., we have mainly considered

w(x) = ae1(x)+ be2(x)+ ce3(x), (7.34)

everything trivially extends to time-dependent Killing fields with time-
dependent coefficients t 7→ (a(t),b(t),c(t)), giving Eq. 7.29 above, i.e.,

w(x, t) = a(t)e1(x)+ b(t)e2(x)+ c(t)e3(x).

All basis Killing fields ei are time-independent, and therefore we can di-
rectly compute the partial (Eulerian) time derivative of any time-dependent
infinitesimal observer motion as the time-dependent vector field34 34 It is important to note here that this

means that the entire time derivative, which
is a vector field and not a single vector,
can nevertheless be computed by simply
computing the time derivatives of the
functions a(t),b(t),c(t), respectively.

∂w
∂ t

(x, t) =
da(t)

dt
e1(x)+

db(t)
dt

e2(x)+
dc(t)

dt
e3(x). (7.35)

From this expression, we can immediately see that this time derivative is
again a Killing field, because it is a linear combination of the same basis.

Together with the fact that the Lie bracket of two Killing fields is also
always a Killing field (because the Lie bracket is an operation in the Lie
algebra), and the definitions of the observed time derivative operator
(Eq. 6.19), and the observed time derivative of a relative velocity field
(Eq. 6.20), respectively, we can furthermore see that these observed time
derivatives again yield Killing vector fields, if both the observed motion as
well as the reference frame motion are rigid motions, respectively.35 35 This can come up, for example, when

computing a change of reference frame.It is also useful to observe the following relationship, resulting directly
from the linearity of the covariant derivative,

∇w(x, t) = a(t)∇e1(x)+ b(t)∇e2(x)+ c(t)∇e3(x). (7.36)
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Alternative basis

Although the basis depicted in Fig. 7.7 (cf. Eq. 6.11) is probably more in-
tuitive (and it lends itself more intuitively to defining an isomorphism with
the matrix Lie algebra se(2) illustrated in Eq. 7.43 below), because any set
of three linearly independent Killing vector fields must be a basis for the
vector space of Killing fields in the plane, the three linearly independent
Killing fields depicted in Fig. 7.8 also comprise a basis.

 

=

e₁ e₂ e₃

w(t)

t

+ (t)(t)w(t) = a  × b  × + c(t)  ×

Figure 7.8: Alternative basis for all Killing
vector fields (and, thus, all infinitesimal
rigid motions) in the plane. As any other
basis, this particular basis can represent
all infinitesimal translations and rotations,
although the “translation component” is not
easily apparent from looking at these basis
vector fields (they all have ∇ei 6= 0).

We can give this basis {ei} explicitly by defining the vectors at points x =
(x̂, ŷ) ∈R2, with respect to a Cartesian coordinate system in R2, as

ei(x̂, ŷ) =

[
0 −1
1 0

][
x̂− x̂0(i)
ŷ− ŷ0(i)

]
,

[
x̂0(i)
ŷ0(i)

]
∈R2, i ∈ {1,2,3}. (7.37)

Here, for linear independence, the three “center” points (x̂0(i), ŷ0(i))T need
to be chosen in general position, i.e., such that none of the points coincide,
and no point lies on the line defined by the other two points.

While this alternative basis might at first seem to be “missing” an
infinitesimal translation component, because it is a basis (for this three-
dimensional Lie algebra) it is guaranteed to be able to represent all infinites-
imal translations and rotations, just as the basis in Fig. 7.7 is, albeit of
course with different coefficients (a,b,c) for a given Killing field w.36

36 We note, however, that in contrast to the
basis given in Eq. 6.11, this alternative
basis is not an orthogonal basis, which can
be confirmed by computing inner products
between the basis vector fields (as the
inner product between functions). Non-
orthogonality also corresponds to the fact
that when one basis vector field is changed,
more than one coefficient changes.

One easy way to compute the coefficients (a,b,c) with respect to this
alternative basis is to compute the coefficients (a,b) by projecting the vec-
tor w(x), at the spatial point x ∈R2 where the field e3 has its critical point,
into the tangent space basis e1(x) and e2(x), of the tangent space TxM
(M = R2) at the same point x, and then computing the coefficient c such that
the angular velocity of the Killing field w (which can be read off from ∇w)
is ω = a+b+ c. That is, after we know (a,b), we compute c = ω−a−b.37 37 One illustrative example field w to

consider is one with ω = 0, i.e., ∇w = 0.
Naturally, the approach given here results
in coefficients (a,b,c), such that w(x) =
ae1(x) + be2(x) + ce3(x) = v, at any
point x, for a constant velocity vector v.

Observer motions on the sphere

We can directly use the same approach as above for observer motions on
the sphere, with the important real-world example of fluid flow on the
Earth’s surface modeled as a sphere. Fig. 7.9 shows a basis {ei} for the
three-dimensional Lie algebra of observer motions on the sphere, i.e., all
infinitesimal rotations,38 comprising three basis Killing fields on the sphere. 38 These are all infinitesimal isometries of

the sphere. Through integration, we can
therefore obtain all rotations of the sphere.

Apart from the manifold M = S2 being the sphere, and all vector fields
correspondingly being vector fields defined on this manifold, everything
else works exactly the same as above, most importantly Eq. 7.29.

Here, we also illustrate that we can define an isomorphism between the
Lie algebra of all Killing vector fields on S2 and the matrix Lie algebra of
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Figure 7.9: As in the plane, the set of all
Killing vector fields on the sphere forms a
three-dimensional Lie algebra. However,
a basis of this vector space comprises
three linearly independent basis vector
fields on the sphere. The top row shows
four elements of the Lie algebra of Killing
fields on the sphere. The three vector fields
e1,e2,e3 are linearly independent and
therefore form a basis for the space of all
Killing fields. Here, w = ae1 + be2 + ce3.
Each Killing field is isomorphic to an
anti-symmetric 3×3 matrix. If we choose
the particular isomorphism shown here for
E1,E2,E3, the entire isomorphism is given,
due to linearity: W = aE1 + bE2 + cE3.

all anti-symmetric 3×3 matrices. Accordingly, for the vector space structure
of the latter, we likewise have (see Fig. 7.9, bottom row)

W = aE1 + bE2 + cE3. (7.38)

Where for the Lie algebra of Killing vector fields, the Lie bracket is the
differential geometric Lie bracket39 between vector fields, i.e., [v,w] = Lvw, 39 A differential operator that maps two

vector fields to a vector field.the corresponding Lie bracket of the matrix Lie algebra of anti-symmetric
3×3 matrices is simply the matrix commutator40 40 Simply mapping two (anti-symmetric)

matrices to a (anti-symmetric) matrix.

[V ,W ] = VW −WV , (7.39)

where the right-hand side is simply matrix multiplication and subtraction,
and the left-hand side is the resulting anti-symmetric 3×3 matrix.

Finally, we note that the particular isomorphism is determined by
(arbitrarily41) choosing an isomorphism between three basis vector fields 41 As long as linear independence is

preserved.and three linearly independent anti-symmetric matrices, respectively. That
is, the isomorphism depicted in Fig. 7.9 is just one example of such an
isomorphism.42 After the isomorphism between the bases is chosen, the 42 Simply imagine different rotations of

the sphere for choosing basis elements.
However, any other choice is also valid, as
long as the basis vector fields as well as
the basis matrices are linearly independent,
respectively.

correspondence for any other vector field and matrix, respectively, follows
directly from the linearity of the vector space structure.

From Lie algebra to Lie group

Given the description of observer motions via derivatives,43 as elements of 43 All these derivatives are evaluated at the
identity element e of the corresponding Lie
group.

a Lie algebra, we can obtain the corresponding integrated observer motions,
as elements of a Lie group. That is, we integrate Lie algebra elements to
obtain the corresponding Lie group element. We often also say that we
integrate a path through the Lie algebra, i.e., a function

t 7→ X(t) ∈ g, (7.40)

where each X(t) is an element of a given Lie algebra g, and the correspond-
ing integral is an element g ∈ G of a Lie group G.

Analogously, we can also speak of a path through a Lie group, which is
a function

t 7→ g(t) ∈ G, (7.41)

where each g(t) is an element of a given Lie group G. We can start integrat-
ing a path t 7→ X(t) at the identity element e ∈ G, with g(0) = e, and the Lie
group element g(t) is obtained by integrating from X(0) to X(t). For the
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case where X(t) = X , for a fixed Lie algebra element X , this integration can
be obtained directly from the exponential map described in Sec. 7.3, with

g(t) := exp(tX). (7.42)

Where the Lie algebra of Killing vector fields in the plane is isomorphic to
the Lie algebra of infinitesimal rigid motions in the plane, often denoted by
se(2),44 the corresponding integrated motions form the Lie group SE(2).45

44 The Lie algebra of the special Euclidean
group in 2D, i.e., derivatives (evaluated
at the identity group element e) of rigid
motions without reflections in the plane.

45 The Lie group of rigid motions without
reflections: The special Euclidean group.

The Lie algebra se(2) is isomorphic to all 3×3 matrices of the form46

46 The elements (a,b) in this matrix
correspond to a linear velocity, and the
element c corresponds to angular velocity.0 −c a

c 0 b
0 0 0

 , a,b,c ∈R, (7.43)

and the Lie group SE(2) is isomorphic to all 3×3 matrices of the form47 47 The arrangement in the matrix is
identical to how rotations and translations
are represented in computer graphics using
homogeneous coordinates.

cosφ −sinφ x
sinφ cosφ y

0 0 1

 , φ ∈ [0,2π);x,y ∈R. (7.44)

For observer motions on the sphere, the Lie algebra of Killing vector fields
on the sphere is isomorphic to the Lie algebra of infinitesimal rigid motions
(rotations) of S2, which is so(3),48 with the corresponding integrated mo- 48 The Lie algebra of the special orthogonal

group in 3D.tions forming the Lie group SO(3).49 The Lie algebra so(3) is isomorphic
49 The special orthogonal group in 3D,
i.e., all rotations without reflections in 3D,
isomorphic to all invertible 3×3 matrices
with unit determinant.

to all 3×3 anti-symmetric matrices, i.e., all matrices of the form50

50 The elements (a,b,c) in this matrix
correspond to a 3D angular velocity vector.

 0 −c b
c 0 −a
−b a 0

 , a,b,c ∈R, (7.45)

and the Lie group SO(3) is isomorphic to all 3× 3 rotation matrices, i.e.,
all orthogonal 3× 3 matrices with determinant +1, also called the proper
orthogonal matrices.51 51 If reflections were also included (in-

cluding orthogonal matrices with deter-
minant −1), we would get the orthogonal
group O(3).

Because of these isomorphisms, we call the Lie groups above matrix
Lie groups, and the identity elements e in the matrix Lie groups SE(2) and
SO(3), respectively, are simply the 3×3 identity matrices.

7.5 Lie Group Actions

Another important concept here is that of a Lie group action. Lie groups
themselves are abstracts objects, but we want to actually use them in
practice, usually together with some manifold52. A group action Φ, more 52 which represents the space under

considerations, for example the plane, 3D
space, or the sphere

specifically a smooth left action, of a Lie group G on a manifold M now
does exactly this. It is a smooth map53

53 that is, it takes an element of a Lie group
and an element of a manifold and produces
another element of the manifold, one says
that g acts on x

Φ : G×M→M,

(g,x) 7→Φ(g,x),
(7.46)

such that

1. Φ(e,x) = x, for all54 x ∈M, and 54 where e is the identity of G, and one
says that the identity acts the way that the
identity is supposed to act2. Φ(g,Φ(h,x)) = Φ(gh,x), for all g,h ∈ G and x ∈M,
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By setting φg(x) := Φ(g,x) the properties of the group action can be written
in the more concise form

φgφh = φgh and φe = idM . (7.47)

It follows55 that φg−1 = (φg)
−1 and the map 55 since φgφg−1 = φgg−1 = φe = idM

φg : M→M,

x 7→ φg(x)
(7.48)

is a diffeomorphism for every g ∈ G56. 56 since both φg and φg−1 are smooth by
definition

Example 10. For a specific example we can look at the situation where
we use rotation matrices to rotate the plane, say. On the one hand we can
multiply a matrix with a point:(

m11 m12

m21 m22

)(
x
y

)
(7.49)

but we can also multiply the matrices, and we know from computer graph-
ics that applying two rotation matrices to a point one after the other is the
same as multiplying the matrices first and then apply them to the point, that
is (

m11 m12

m21 m22

)[(
n11 n12

n21 n22

)(
x
y

)]

=

[(
m11 m12

m21 m22

)(
n11 n12

n21 n22

)]
.

(
x
y

) (7.50)

And of course multiplying a point by the identity matrix results in just that
point. So in this context

1. Multiplying two matrices corresponds to the Lie group operation.

2. Multiplying a matrix with a point corresponds to the action of the Lie
group on the manifold.

7.6 Example: Objectivity

As an application we use this abstract concept of Lie group actions to shed
some light on the concept of objectivity. Objectivity is usually defined to
be invariance under rotations and translations of the reference frame 57. A 57 Clifford Truesdell and Walter Noll. The

Nonlinear Field Theories of Mechanics.
Springer-Verlag, 1965

common criterion, for a vector field for example, to be objective is, that
if one reference frame x∗ is connected to another reference frame x by a
time-dependent translation and rotation, that is

x∗ = c(t)+Q(t)x, (7.51)

then the vector field v∗ in the transformed reference frame is linked to the
vector field v via a time-dependent rotation in each tangent space, via58

58 It is crucial, though, that the vector v∗ is
defined in the vector space at the point x∗,
whereas the vector v is defined in the vector
space at the point x.
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v∗ = Q(t)v. (7.52)

We can reformulate this criterion using the Lie group action of the isometry
group of the underlying space by writing59 59 or short v∗ = gv, that is g acting on v, to

make the connection to Equation 7.52 more
clear, but it is important to note that the
meaning of this shorthand notation is that
given in Equation 7.53

v∗
φg(x) = (dφg)x (v). (7.53)

That is, the change of reference frame is now encoded in the Lie group
action of φg. This reformulation has two advantages:

1. Because we are only using generic notions like manifolds and Lie group
actions, this definition works in any space with a non-trivial isometry
group.60 60 for example the sphere

2. We also gain some geometric insight: Objectivity is invariance under the
action of the differential of the isometry group.61 61 in the sense that tensor fields are simply

pushed forward by that differential
For more details on this generalization, how to define objectivity in general
spaces, like the sphere, and how to find good reference frames in general
spaces, we refer to the papers by Rautek et al. 62 and by Zhang et al. 63. 62 P. Rautek, M. Mlejnek, J. Beyer,

J. Troidl, H. Pfister, T. Theußl, and M. Had-
wiger. Objective observer-relative flow
visualization in curved spaces for unsteady
2d geophysical flows. IEEE Transactions on
Visualization and Computer Graphics, 27
(2):283–293, 2021
63 Xingdi Zhang, Markus Hadwiger,
Thomas Theußl, and Peter Rautek. Interac-
tive exploration of physically-observable
objective vortices in unsteady 2d flow.
IEEE Transactions on Visualization
and Computer Graphics (Proceedings
IEEE VIS 2021), 28(2):1–1, 2022. DOI :
10.1109/TVCG.2021.3115565
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