
Multivariate Probabilistic Range Queries
for Scalable Interactive 3D Visualization

Amani Ageeli, Alberto Jaspe-Villanueva, Ronell Sicat, Florian Mannuss, Peter Rautek, Markus Hadwiger

321

Relative Humidity

0 100

Fig. 1. Probabilistic queries. For the meteorological data set shown on the left (N > 1G cells), on the right we show three consecutive
query results. (1) Without filtering the data; (2) Filtering for temperature in [−24,−8] and relative humidity in [15,20]; 1% false positives
(shown in red). (3) A d = 5-dimensional query, in addition filtering height in [0,4000] and two vector field components. (Inset) We
improve both the query performance and the false positive rate via a hierarchical early-out strategy using a novel concept of supercells.

Abstract—Large-scale scientific data, such as weather and climate simulations, often comprise a large number of attributes for each
data sample, like temperature, pressure, humidity, and many more. Interactive visualization and analysis require filtering according to
any desired combination of attributes, in particular logical AND operations, which is challenging for large data and many attributes.
Many general data structures for this problem are built for and scale with a fixed number of attributes, and scalability of joint queries with
arbitrary attribute subsets remains a significant problem. We propose a flexible probabilistic framework for multivariate range queries
that decouples all attribute dimensions via projection, allowing any subset of attributes to be queried with full efficiency. Moreover,
our approach is output-sensitive, mainly scaling with the cardinality of the query result rather than with the input data size. This is
particularly important for joint attribute queries, where the query output is usually much smaller than the whole data set. Additionally,
our approach can split query evaluation between user interaction and rendering, achieving much better scalability for interactive
visualization than the previous state of the art. Furthermore, even when a multi-resolution strategy is used for visualization, queries are
jointly evaluated at the finest data granularity, because our framework does not limit query accuracy to a fixed spatial subdivision.

Index Terms—High-dimensional filtering, multivariate filtering, output-sensitivity, multivariate attribute queries, progressive culling

1 INTRODUCTION

Large scientific data sets, whether from simulations or measurements,
are a core focus of visualization. However, their size and complexity
make interactive visualization and analysis challenging. Fast rendering
and query evaluation (or filtering) require efficient, scalable data struc-
tures and algorithms. In addition to large sizes due to a large number of
data samples or grid cells, scientific data often comprise many scalar,
vector, and tensor attributes per sample or cell. For example, scalars
such as temperature, pressure, humidity, and salinity in large-scale cli-
mate or weather simulations, or porosity and permeability in subsurface
simulations. Visual analysis requires the efficient filtering of data, often
based on multivariate range queries, to locate and visualize all cells with
a certain combination of attribute values. We refer to data with many at-
tributes as multivariate data living in a high-dimensional attribute space.

• Amani Ageeli, Alberto Jaspe-Villanueva, Ronell Sicat, Peter Rautek, Markus
Hadwiger are with King Abdullah University of Science and Technology
(KAUST), Visual Computing Center, Thuwal, 23955-6900, Saudi Arabia.
E-mail: {amani.ageeli, alberto.jaspe, ronell.sicat, peter.rautek,
markus.hadwiger}@kaust.edu.sa.

• Florian Mannuss is with Saudi Aramco, Dhahran, Saudi Arabia. E-mail:
florian.mannuss@aramco.com.

Manuscript received 31 Mar. 2022; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

We say that this space comprises D attribute dimensions, with our work
targeting scalable visualization of data with large D, e.g., from D = 6
to D = 20 or more. While logical OR operations in range queries over
multiple dimensions are simple because they are separable, i.e., each
attribute can be queried independently, logical AND operations require
checking all attributes whether they jointly fulfill the desired properties.
This is an inherently D-dimensional problem: AND queries must be
evaluated—at least conceptually—in a D-dimensional space. However,
for large D, the curse of dimensionality [69] can quickly become a
problem for query performance as well as for efficient storage.

For visualization purposes, the spatial position and corresponding
visibility of cells,1 as well as their corresponding “locations” in attribute
space are both crucial properties. We distinguish two major conceptual
strategies for evaluating D-dimensional queries for visualization:

1. Evaluate queries in attribute space first: Determine a query result
set, containing all cells for which the query evaluates to true. Only
afterward determine the (potentially) visible subset of cells.

2. Evaluate queries in spatial domain first: Traverse data in a spatial
data structure, such as an octree; often in visibility order. For each
encountered cell (or node with many cells), evaluate the query.

For strategy #1, common solutions that scale well to large D are, e.g., R-
trees [22] or kd-trees [6]. For a data set consisting of N cells, these scale
roughly between D · logN and D ·Na, a = 1− 1

D [29]. However, for
large D several scalability problems remain for interactive visualization:

1We will refer to items to query mainly as cells, with D attributes each. In
addition to geometric grid cells, the same applies to voxels and point samples.

�������������� ��������

Local Filters

��

��

�

...

++++++++ ++++ ++ ++++++++ ++++++++

++++++++++++ ++ ++ +++ ++ + +++ +++++

++++++ +++ + ++++ ++ + ++ ++ +++

�
 �� ��

����
��

�
�����

�����	�����

���� ...

�����	����������

�

�

Per Query Update
...

���	�������������������

�

��

��

OR OR OR

�

��

��
Query
ranges Aggregate

��������

...

������	���

������������
������������

���������

Intersection
count

� ­���

������

������������
��������

�
�
�
�
�
�

�
�

������������ ��

���������

Visibility Visible
query result

Query global filter

������

Probabilistic
query result

False positives
removed

Per Camera Update

�

�

�����������

Fig. 2. Overview. Our approach consists of three main stages: (1) Given data with D attribute dimensions Ai, a pre-processing stage computes D
one-dimensional projections of the set of all cells into local filters. No D-dimensional data structure is used. Each local filter comprises multiple range
bins, where each bin is implemented as a Bloom filter. (2) d-dimensional (d ≤ D) query evaluation at run time aggregates range bins of d local filters
into a single global filter implemented as a counting Bloom filter. (3) During rendering, octree nodes query the global filter in visibility order to obtain a
binary occupancy state per node. We use a supercell ID per node to speed up this process, and all states are cached for progressive query updates.

• For large D, trees in attribute space, such as R-trees, become very
large, which often prevents storage in GPU memory, and each
single tree traversal for query evaluation is hard to parallelize.

• Many queries only touch a subset d ≤ D of all attributes. The
entire D-dimensional tree must be in memory, and it is not feasible
to load or stream a lower-dimensional subset of the tree. Query
time is also similar or slower than querying all D dimensions [55].

Alternatives avoiding these drawbacks build on bitmap indices [57, 67].
However, these scale roughly with D ·N (or d ·N), which can become a
major problem for large data due to linear scaling with the data size N.

Strategy #2 above enables leveraging view-dependence to query at-
tributes only for the potentially visible set (PVS) of cells inside the view
frustum and not occluded, as determined by occlusion culling. We de-
note the number of cells in the PVS by Ñ (see Table 1). While this helps,
since often Ñ ≪ N, scanning, i.e., checking all d ≤ D attributes of each
cell, scales with d · Ñ (worst case still Ñ = N), accessing actual attribute
data in memory.2 Using spatially aggregated attribute information, e.g.,
per octree node, can help. However, for coarse approaches, such as
a (min,max) value pair per attribute, queries become very inaccurate
for nodes with many cells. Aggregating more accurate information,
such as a joint D-dimensional histogram per node, scales exponentially
with D in memory and in query time. Potential solutions are exploit-
ing histogram sparsity [36]; or using integral histograms [48], which
improve query time, but use more memory and still scale exponentially.

Combining both strategies above is not straightforward. For exam-
ple, storing an attribute space tree, such as an R-tree, in every node of a
spatial hierarchy is not feasible. In this paper, we propose a novel ap-
proach for scalable multivariate query evaluation (Fig. 1) that achieves
an efficient combination of both strategies. Our approach mainly scales
with the expected output cardinality |Q|, of any query Q, and the visible
output (PVS), instead of with the input size N or the dimensionality D.

First, we use strategy #1: Evaluating a query Q starts in attribute
space (Fig. 2, center), by using d ≤ D pre-computed 1D projections3

(Fig. 2, left). The idea of projections is similar to bitmap indices [57,67].
However, we achieve scalability independent of the input size N, via
fixed-size4 probabilistic hash tables (Bloom filters). To also incorporate
strategy #2, during rendering a single hash table independent of both N
and d ≤ D is queried during PVS determination (see Fig. 2, right).5

The major properties and contributions of our method are:
• Although we evaluate D-dimensional joint (logical AND) queries,

we store and aggregate only D separate 1D projections. This also
enables including or excluding any subset of d dimensions from
a query, facilitating streaming and out-of-core approaches.

2We note that accurate filtering does not permit an easy multi-resolution
solution to reduce Ñ further: Ultimately, queries must refer to individual cells.

3There are D separate projections; each with a size independent of N.
4The size is chosen for expected query cardinality |Q|, not for input size N.
5It is a single global hash table, irrespective of the dimensionality d or D.

• Our method is output-sensitive with respect to both the cardinality
of the query result as well as to the on-screen visibility (the PVS).

• We query full-resolution data, but introduce supercells for efficient
early-out during spatial hierarchy traversal, significantly reducing
both query time and the false positives of probabilistic hashing.

2 RELATED WORK

Multivariate and multifaceted data are very common in visualization ap-
plications [27], requiring corresponding data structures and algorithms.

Multivariate histograms facilitate query-driven visualization [57]
of such data, enabling users to select interesting subsets by specifying
multi-attribute range queries, such as (30 < temperature < 50) AND
(15 < humidity < 30). However, multivariate or multi-dimensional
histograms for joint distributions of multiple attributes often suffer
from the curse of dimensionality [69], because they grow exponentially
as BD, for D attribute dimensions with B histogram bins each. Lu
and Shen [36] introduce a multivariate histogram representation for
query-driven visualization on local data blocks. They apply a data
space transformation to large yet sparse multivariate histograms, trans-
forming them into smaller multi-dimensional arrays, which are encoded
using a dictionary-based approach. Wei et al. [62, 63] use compressed
bitmap indices [65] to perform local histogram matching in multi-field
datasets. Sparse PDF maps [24] and sparse PDF volumes [53] also
compactly encode joint probability density functions of data, by fitting
high-dimensional Gaussian basis functions. Histogram (or PDF) encod-
ings are used in various applications, such as fuzzy isosurfacing [59,61],
uncertainty visualization [33], range distribution queries [15], or to re-
duce artifacts in multi-resolution volume rendering [53, 68].

Table 1. Terminology used in this paper.

term explanation
D # attribute dimensions Ai (e.g., temp., pressure, ...).
d dimensionality d ≤ D of current query Q.
Ai attribute dimension i, with i ≤ D. One value per cell.

cell individual grid cell (regular grid: voxel), with cell ID.
local filter one for each attribute Ai; comprises several range bins.
range bin cells in subrange of specific Ai; Bloom filter per bin.

global filter one counting Bloom filter for all d ≤ D queried Ai.
N # cells in input data. Uniform 3D volume: N := M3.
Ñ # cells in view-dependent potentially visible set (PVS).
Q query / query result set (an arbitrary set of cell IDs).
|Q| # cells in query: cardinality of query result set.
Qi attribute range [Qmin

i ,Qmax
i] of query for attribute Ai.

m # bits/counts in a Bloom filter (size of bit/count vector).
k # hash functions for a Bloom filter.

node node of spatial 3D subdivision (e.g., octree node).
supercell all cells in a node are jointly assigned one supercell ID.

Fig. 3. False positives. The global filter representing the query result
set is queried using probabilistic hashing. While this leads to some false
positives (left; shown in red), they can be removed by scanning the
already significantly reduced number of cells in the query result (right).

Bitmap indices [14, 43, 54, 57, 66, 67] have been used widely for
performing multivariate range queries. Given N data items with V
possible values, a bitmap index will have one bitmap with N bits for
each possible value v. In each bitmap, the n-th bit is set if the n-th data
item’s value is equal to that of the bitmap’s associated value v. Range
queries can be performed by applying a logical OR operation on the
bitmaps of the values within the queried range. Multivariate data with D
attributes require D ·V bitmaps, each of size N. Range queries can be
performed by applying a logical AND operation to the intermediate
results of individual attribute range queries. To reduce storage cost of
bitmap indices, several compression methods have been proposed such
as Byte-aligned Bitmap Code [1, 3] and Word-Aligned Hybrid [66], to
name just a few. Stockinger et al. [58] used binning to reduce the size of
the bitmap index when applied to attributes with high cardinality, e.g.,
floating point scientific data. Dextrous data explorer (DEX) [57] is an
implementation of bitmap indexing specifically applied to query-driven
visualization, e.g., for isosurface extraction and multi-attribute filtering.

Span space [34, 35] methods can be used to optimize isosurface
extraction from scalar volumes, or to quickly search for cells that fall
within a given min-max range. Near optimal isosurface extraction
(NOISE) [35] uses kd-trees [6], and isosurfacing in span space with
utmost efficiency (ISSUE) [51] uses 2D regular lattices for fast span
space search. Subsequent work uses octrees [52,64] and max-trees [60]
in order to extract the isosurface and perform spatial filtering of volu-
metric data. Fiber surfaces [12] extract surfaces from bivariate data.

R-trees and similar data structures are widely used in database
management systems for multivariate range queries [4, 22, 50, 56].
The R-tree, introduced by Guttman [22], is a hierarchy of nested D-
dimensional minimum bounding regions. Range queries are performed
via recursive traversal of the tree to find intersections with the bounding
region of the query. Kratky et al. [28], demonstrated the inefficiency of
R-trees for narrow range queries, i.e., for small min-max differences,
due to a high probability of false positive intersections. They further
discuss how for such queries the R-tree efficiency decreases as the
dimension of the indexed space increases. Representations based on
R-trees often also suffer from the curse of dimensionality, with memory
requirements and query times often becoming unfeasible with higher
dimensions [55]. The BB-tree [56] is a main memory index structure
for performing multi-dimensional range queries. It has been shown to
be faster than R*-tree [4], kd-tree [6], PH-tree [70], and brute force
scanning, for multivariate range queries up to a selectivity of 20%.

Range trees and similar data structures [7,38] also enable efficient
multivariate range queries, although they can be prohibitive in terms of
pre-processing and storage requirements [8]. Similarly, kd-trees [6] and
quadtrees have been used for minimizing the search space of 2D range
queries in spatial data [49]. Kd-trees have also been used to interactively
query and explore time series [71], or 3D curve data sets [37].

Approximate techniques can greatly speed up range queries, often
in the form of approximate nearest neighbor search [2, 26] and selectiv-
ity estimation [45,47]. The former techniques often employ random pro-
jections [40,41] of data points to lower dimensions to address the curse
of dimensionality. The latter selectivity estimation techniques [45, 47]

aim to estimate the cardinality or size of the results of a multivariate
query to optimize query execution plans in databases. These methods
often employ variants of multi-dimensional histograms [21, 42, 47],
which can be encoded as multi-resolution wavelets [39].

Bloom filters are a compact, probabilistic data structure for test-
ing the membership of an item in a set [10]. They can report false
positive results, but no false negatives. Bloom filters are widely used
for database indexing [11], but have also enabled efficient culling of
segmented volume data [9]. There exist many variants, such as count-
ing Bloom filters [46], spectral bloom filters [16], and tree-structured
Bloom filters [17, 20]. Similar data structures with deletions [18] and
data locality [5] have also been proposed. An example for performing
range queries is the multi-dimensional segment Bloom filter (MDSBF)
of Hua et al. [25]. Similar to bitmap indices [67], Bloom filters can
also benefit from bit string compression, for example using roaring
bitmaps [13, 31, 32]. In our work, we use a recent compression algo-
rithm [30] leveraging modern SIMD processors for fast de/compression.

3 ALGORITHM

Our approach consists of the three main conceptual stages depicted in
Fig. 2. The first stage is a pre-computation for the entire input data set.
Only the subsequent two stages are executed at run time. The second
stage is view-independent, and only needs to be executed whenever
a new query is specified by the user. Only the third stage is executed
during rendering, e.g., for each new camera transformation. However,
even in the third stage all query computations are cached and do not
need to be re-computed for any new view unless the query changes.

3.1 Overview and Processing Stages
The major goals, data structures, and algorithms of each stage of our
approach are as follows. Details are described in subsequent sections.

Pre-processing: Local filters. For a given data set, we pre-compute
a representation of the D-dimensional attribute space. However, instead
of computing a D-dimensional data structure, we only compute D one-
dimensional projections, one for each attribute A1, . . . ,AD (Fig. 2, left).
We call the data structure for each attribute Ai a local filter, each of
which spanning the range of the corresponding attribute Ai, from the
minimum value to the maximum value of Ai. For each attribute Ai we
adaptively subdivide its range into bi range bins B1

i , . . .B
bi
i . Each bin

represents a set of cell IDs, whose attribute values map to the corre-
sponding range. However, instead of storing an actual set or a bitmap
for each bin, which would scale with the data size N, we hash cell IDs
into a Bloom filter [10] for each bin. A Bloom filter is a hash table
comprising a bit vector of m bits for probabilistic membership queries.
In our approach, m is chosen according to the expected cardinality |Q|
of queries Q, instead of according to the input data size N.

View-independent query evaluation: Global filter creation. To
evaluate a query Q for an attribute range {Qi = [Qmin

i ,Qmax
i]}d

i=1, in
d ≤D dimensions, we first proceed as follows. For each attribute Ai, we
determine the range bins of the corresponding local filter overlapping
the range [Qmin

i ,Qmax
i] (Fig. 2, center), and compute a bitwise OR of

all m Bloom filter hash table bits. Then we sum the result over all
attributes Ai into a single global filter for all attributes (Fig. 2, center).
The global filter is also implemented as a probabilistic hash table.
However, in contrast to the local filters, the global filter is a counting
Bloom filter [19], with each count ≤ d (Fig. 4). The crucial insight
here is that the resulting counts allow determining the set of cell IDs
that are in the d-dimensional intersection of all d ≤ D query ranges,
corresponding to a logical AND, although no d- or D-dimensional data
structure or computation is used. Fig. 4 illustrates this approach.

View-dependent query evaluation: Global filter querying. The
global filter computed in the previous stage is view-independent and
contains all information about the query result irrespective of the spa-
tial hierarchy used for rendering, such as an octree.6 Therefore, in
the rendering stage we need to (selectively) query and propagate the
information from the global filter into the spatial hierarchy. We do this

6Without restricting generality, we use and refer to an octree as the spatial
hierarchy used for rendering. Any other spatial subdivision would also work.

A
ttribute 2

Attribute 1

����������

query
region

����������

��

�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

������������������
���������

ID1
ID2
ID3

ID15

......

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

	 �

Actual
count

Probabilistic
count

�
�
�
�
�
�
�

�
�
0
�
�
�
�

�
�
�
�
�
�
�

Local
filters

Global
filter

	 �

�����

ID4 in query
ID11 in query

��������
 ������

� �
�

� �

�

� �

��

��

��

�� �� ��

Fig. 4. Joint query as intersection of projections. Each cell in the
input data (here, N = 15 cells) is a point in a D-dimensional (here, D =
2) attribute space (left). Our local filters store 1D projections, which
are intersected by counting how often each cell is contained in a 1D
projection (center right). For a d-dim. AND query (d ≤ D), only cells of
total count d are in the query: They are in the intersection of d projections.
Instead of storing N cell counts, we obtain a probabilistic count from the
global filter, which is a counting Bloom filter of size m ≪ N (right; k = 2).

in a view-dependent and progressive manner. (However, note that our
local and global filters do not depend on any specifics of the spatial
hierarchy or rendering.) In essence, every octree node needs a binary
occupancy state whether the current query Q evaluates to true for any
cell7 located within the spatial extent of the node. We compute the
occupancy state of octree nodes in two major ways (for interior nodes,
the state accurately reflects entire subtrees; see also Algorithm 1):

1. First, we employ an early-out strategy during octree traversal,
using the concept of supercell IDs (see below) that are queried
against the global filter in the same way as individual cell IDs are.
In many cases, this already determines an occupancy state of false
for an entire subtree, without having to continue tree traversal.

2. Where early-out fails, ultimately an octree leaf node is reached.
We then iterate over all cell IDs contained in the leaf node, and for
each ID query the hash table comprising the global filter to obtain
the occupancy state of the cell. This is an operation independent
of D, and solely depends on the number k of hash functions used
by the Bloom filter (see below). The occupancy state of an octree
leaf node is then the bitwise OR of the states of the individual
cells. The occupancy states of interior octree nodes are then
computed by propagating the state of the leaf nodes up the tree,
again performing a bitwise OR operation in each step.

The above two strategies are combined with standard view frustum and
occlusion culling: Only subtrees/nodes that are within the view frustum
and are not culled according to occlusion culling are visited. In total,
this amounts to a lazy evaluation strategy combing two output-sensitive
aspects: Individual cells are only queried if they are (1) potentially
visible; and (2) early-out (depending on the query output) has failed.

Supercells. The essential idea of supercells is that each correspond-
ing supercell ID represents all full-resolution cells within the spatial
extent of a given octree node, without corresponding to any multi-
resolution down-sampling. Despite this, supercell IDs are inserted into
the local filters in almost the same way that regular cell IDs are. Nev-
ertheless, this simple addition of supercell IDs to the filter hash tables
allows a very efficient, conservative early-out from octree traversal,
skipping processing for whole subtrees of the spatial hierarchy, without
any false negatives in the query evaluation. See Sec. 4.2 for the details.

Eliminating false positives. For a completely accurate occupancy
state, we have one remaining problem: The implementation of the
global filter as a Bloom filter can produce false positives (see Sec. 3.3).
That is, the state of cells, and due to propagation also that of octree
nodes, can be true although it should be false. Moreover, due to binning
in each local filter, false positives also arise from cells that are in a

7This always refers to individual cells, not to a less-accurate down-sampled
(multi-resolution) representation. Our approach targets full-resolution accuracy.

range bin that overlaps the query range, but that are in fact outside
the query range (Fig. 4). However, it also depends on the application
whether this problem actually needs to be addressed explicitly:

• If our method is essentially used as a fast culling strategy, because
cells are rendered via a transfer function that maps any cell outside
the query range to full transparency, nothing needs to be done.

• In the case where the query must be completely accurate, e.g.,
because no transfer function is used, or it is only applied to some
but not all attributes in a query, and therefore all cells in the query
result might be rendered, false positives need to be eliminated.

Fig. 2 depicts a visualization with false positives (Fig. 2, top right
image), and with false positives removed (Fig. 2, bottom right image).
We eliminate false positives by simply iterating over all cells contained
in a visible octree leaf node with an occupancy state of true. We re-
evaluate the query by scanning each cell to accurately update the node’s
occupancy state. If no transfer function is used, at this time a bitmask
containing the occupancy state of each individual cell in the leaf node
can also be computed to cache which cells should not be rendered.

Because the set of these cells is already reduced drastically compared
to the whole data set, this update strategy is usually fast. Furthermore,
we can again employ a lazy evaluation strategy: We eliminate false
positives progressively node by node, until all nodes have been updated.
Each node also needs to be updated only once. Once the occupancy
state is final, it is cached and re-used in all subsequent rendering frames.

For fast interaction, we can also consider the following property: It
is interesting to note that, due to the random hashing that we employ,
the spatial pattern of where cells corresponding to false positives are
located appears similar to a white noise distribution. This makes it quite
easy for the user to ignore visible false positives during interaction,
while still being able to understand the essential characteristics of the
data set without confusion. See Fig. 5 for an illustration of this effect.

Caching of occupancy state. Although we compute the occupancy
states in the spatial hierarchy in a view-dependent, output-sensitive
manner, once the final state of any node has been computed, it does
not change for different views until the query itself, and thus the global
filter, are changed. We therefore cache the occupancy state in each
octree node, avoiding unnecessary re-computation. See Algorithm 1.

3.2 Query Representation and Characteristics
We target general d-dimensional range queries (d ≤ D) consisting of
a combination of specified ranges in each of d relevant attributes Ai,
where a given expression consisting of logical AND, OR, and NOT
operations should be evaluated to determine which cells are members of
the output result (set) of a query. Any more complicated expression can
be built from simple building blocks. However, the major computational
challenge is efficiently evaluating logical AND queries, because they
(conceptually) must be evaluated jointly in d-dimensional attribute
space, whereas logical OR queries are intrinsically one-dimensional.

Query result. The result of any query Q is a subset of cell IDs,
of the total set of N possible cell IDs comprising the input data set.
That is, N is the cardinality of the input, and we denote the cardinality
of the subset comprising the query result by |Q| ≤ N. We target full-
resolution query evaluation. That is, no down-sampled multi-resolution

Fig. 5. Spatial distribution of false positives. Due to probabilistic
hashing, false positives occur randomly throughout space, making them
easy to ignore during interaction. (Left) True and false positives; (center)
false positives highlighted in red; (right) false positives eliminated.

ADA2A1

...++++++++ ++++ ++ ++++++++ ++++++++ ++++++++++++ ++ ++ +++ ++ + +++ +++++ ++++++ +++ + ++++ ++ + ++ ++ +++

Bloom
 filters

R
ange bins

Local Filters

�
�

�

�

�

�

�

�

�

�

�

�
�

�

�

� �

�
�

�
�

�

�

�

�

�

�

�

�

...

Query Ranges

��

��

��

A1

A2

AD

Local Filters in Query Ranges
OR

Global Filter
OROR

= = =

Aggregate

3
1

1

2

3

3

1
1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1
1

1

1

1

1

1

1

1

1

1
1

1

1

1

Query global �lter

true positive
false positive
negative
negative
negative

k = 2
(Count == 3)?

AND Query

Fig. 6. Bloom filter usage in local and global filters. (Left) Five example cell IDs are inserted into the Bloom filters comprising the range bins of
the local filters. Each Bloom filter is a bit vector of size m ≪ N. (Center) At run time, only the bit vectors of bins in the query ranges Qi need to be
accessed. (Right) Over each attribute Ai in the query Q, a bitwise OR gives the probabilistic union of cell IDs in Qi. Finally, all Qi are summed into
the global filter, a single counting Bloom filter of size m ≪ N. False positives can occur with probabilities determined by the Bloom filter configuration.

aggregation of “lower-resolution” cells is used for query evaluation
or to increase performance at a loss of accuracy. (For rendering, any
multi-resolution approach can be used at the same time, if desired.)

AND queries. A cell ID is in the query result (set) of an AND query,
as given by the global filter, when the count values of the k hash table
entries (see below) corresponding to the cell ID all are equal to d, for a
d-dimensional query in attribute space, with d ≤ D. (See Algorithm 1.)

OR queries. A cell ID is in the query result (set) of an OR query,
as given by the global filter, when the count values of the k hash table
entries (see below) corresponding to the cell ID all are non-zero.

NOT queries can be evaluated by inverting the desired range of a
query, and building a composite query for the resulting attribute ranges.

Query characteristics and scalability. Although the query car-
dinality is only really limited by the data size, i.e., |Q| ≤ N, most
meaningful queries result in a much smaller |Q| ≪ N. Moreover, |Q|
typically grows slower than N with increasing data size. In particular,
we especially target high-dimensional queries, and since logical AND
operations correspond to set intersections, the higher the dimension-
ality d of a query is, the smaller the cardinality |Q| usually becomes.
In our method this is reflected by the use of Bloom filters. Their size
is determined by a fixed length m, which we choose according to the
expected query size |Q|. Our approach therefore scales with |Q| instead
of with N, essentially making it largely independent of the data size N.

3.3 Bloom Filters: Probabilistic Set Membership
A Bloom filter [10] is a probabilistic representation of a set of elements,
with probabilistic membership queries. Set elements are hashed into
a hash table bit vector of length m bits.8 A Bloom filter requires the
choice of k hash functions, e.g., k = 2 or k = 3. Inserting an element
into the filter is done by setting k bits, determined by applying the k hash
functions to the element, to one. Set membership is queried by again
hashing an element k times, and checking whether all corresponding k
bits in the Bloom filter are set to one. Due to possible collisions, false
positives can occur with a certain probability, depending on the choice
of m and k, as well as on the number of inserted elements n (Eq. 2). A
crucial property of Bloom filters in our context is that false negatives (an
element is reported as not in the set, although it in fact is) are guaranteed
to not occur. This makes Bloom filters very well suited for conservative
culling: Skipping computation when set membership is guaranteed to
be false, and at worst performing an unnecessary computation when
set membership as given by the filter is true, although it in fact is false.

Bloom filters are very space efficient when the “universe” U of all
possible elements—in our case all N possible cell IDs—is large, and
the cardinality n of the set actually in the Bloom filter—in our case in
particular the query result cardinality |Q|—is small. That is, when

n = |Q| ≪ N = |U |. (1)

The second case of importance in our context is the number of cell IDs
in a given range bin of a local filter (see below). Probabilistically, the
expected false positive rate of Bloom filters can be estimated by [11]

rfp =
(

1− e−k n/m
)k

. (2)

8For brevity, here we refer to a vector of m bits. In the case of a counting
Bloom filter, such as our global filter, the vector consists of m integer counts.

Here, m is the length of the hash table bit vector,9 k is the number of
hash functions, and n is the number of inserted elements, e.g., n = |Q|.
It is crucial that Eq. 2 is completely independent of the universe size |U |,
which gives our approach the desired property that it depends on and
scales with the expected query cardinality |Q|, instead of data size N.

We note that the expected false positive rate for set intersections is
higher when Bloom filters of individual sets are combined, as we also
do, compared to a direct Bloom filter computation from the exact (but
for us unknown) intersected set [11]. Thus, in our approach the proba-
bilistic estimate for increasing d, and correspondingly decreasing |Q|,
decreases less than given by Eq. 2 with n = |Q|. The false positive rate
is bounded by the smallest set [11]. The worst case thus is n = |Qi|, for
the smallest query |Qi|. However, in practice we observe significantly
decreasing false positive rates when d grows (see Table 3 and Fig. 12).

3.4 Local Filters: 1D Attribute Space Projections
Our approach employs 1D projections, where all D attribute dimensions
are treated separately and independently. For each attribute Ai, we build
a local filter comprising multiple Bloom filters (Fig. 6, left). In the
pre-processing stage, for each local filter we split the value range
of each attribute Ai into a number of range bins, covering the entire
range from minimum to maximum value of Ai occurring in the data
set. The width of each range bin is adaptively chosen such that the
resulting cardinality of cells with an attribute value Ai within the bin’s
range is roughly constant. We compute this in a hierarchical fashion,
subdividing the query range at the median position approximated via
cumulative histograms; then proceeding recursively for the subranges
below and above the median, respectively. This approach seamlessly
adapts to non-uniform cell attribute value distributions. In addition, we
avoid exceeding a pre-scribed percentage of the total range for any bin.

After the bin boundaries have been chosen, one Bloom filter of size
m bits is constructed for each range bin. For each attribute Ai, all range
bins together comprise the local filter of that attribute. In total, we
pre-compute D local filters, each comprising bi Bloom filters (i ≤ D).

3.5 Global Filter: Set Intersection via Counting
Our global filter is a single counting Bloom filter. That is, the global
filter comprises a single vector of m integer counts, irrespective of the
query or data attribute dimensionalities d (≤ D) and D, respectively.

To compute the global filter for a given query Q, we sum the d values
of each of the m local Bloom filter bits that result from the logical OR
of all range bin bit vectors within the query range Qi, for all d attributes
Ai (i ≤ d), see Fig. 6. That is, we compute the global filter as

global filter
[

j
]
=

d

∑
i=1

local filteri
[

j
]
, for all j ∈ [1,m], (3)

where

local filteri
[

j
]
= ORb max

b=b min local filter range bini,b
[

j
]
. (4)

We note that the size m is required to be the same for all our Bloom
filters (global and local): The number of vector entries must match.

9In our global filter, the vector comprises m integer counts instead of bits.
However, all other arguments, in particular the false positive rate, stay the same.

��� ����

��� ����

���� ���

��� ���

��

��

Cells in
Supercell

��

��

� ��� ��� ��� ��� �

� ��� ��� ��� ��� �

in query
��

in querySupercell

Cell none in query

G
ranularity in query

��

�

�����
����
	����
�� �����

Fig. 7. Attribute co-occurrence granularity. Because joint queries
depend on spatial locations where attribute values occur jointly, they
depend on the granularity at which spatial “co-occurrence” is determined.
Queries may give overly conservative answers depending on granularity:
From single cell, to supercell granularity of 23ln3 cells, l ≥ 0. Here, n = 2.
(Also note that we refer to 3D cell arrangements, but show only 2D here.)

Membership query. The summation above results in set member-
ship information from which both AND as well as OR query results can
be obtained: (1) A cell is in the joint d-dimensional query result of an
AND query, if its count in the global filter at all k corresponding hash
positions is equal to the dimensionality d: Set intersection results from
counting dimensionalities (Fig. 4). Counting also enables incremental
filter updates (see below). (2) A cell ID is in the query result of an
OR query, if its count in the global filter at all k corresponding hash
positions is non-zero, i.e., when each count is at least one.

Scalability. Because the number of hash functions k is a small
constant (we use k = 2 or k = 3), this method is faster than scanning
over d actual attribute values. The number of accesses is restricted to
the constant number k, instead of increasing with query dimensionality
d ≤ D. For Ñ cells in the PVS, only k · Ñ instead of D · Ñ checks are
required. Thus, our scalability is independent of the dimensionality D.
Moreover, checking d actual attributes requires accessing full attribute
data in memory, whereas only querying the global filter repeatedly
accesses the same hash table, which is beneficial for automatic memory
cache utilization. All operations are also trivial to parallelize.

Query updates. Whenever the query is changed, the global filter is
either computed from scratch or updated incrementally, by subtracting
or adding the corresponding vector local filteri[] (Eq. 4) from the pre-
vious vector global filter[] (Eq. 3), i.e., the previous vector of counts.

It is important to note that our usage of a counting Bloom filter
results in the same major properties as those of a regular Bloom filter
(in particular, the false positive rate in Eq. 2), except that m integer
counts are allocated instead of m bits, in contrast to the standard usage
of counting Bloom filters [46]. The major reason for this is that we
increase or decrease counts by adding or subtracting an entire Bloom
filter bit vector of some attribute Ai to or from the global filter. In
contrast, a standard counting Bloom filter adds or subtracts individual
elements. Our “element” to add or subtract is an entire bit vector.

Counting global filter vs. counting Bloom filter. Instead of a reg-
ular Bloom filter, as used in all local filter range bins, for the single
global filter we essentially employ a counting Bloom filter [46], but in
detail with a different usage and corresponding properties. Counting
enables us to perform incremental query updates: Any attribute dimen-
sion Ai that has already been inserted into the global filter can also be
subtracted out again, by simply subtracting the bit vector of an entire
attribute Ai. This subtraction is not possible in a standard Bloom filter,
but, unlike in our global filter, can also incur problems such as false
negatives in standard counting Bloom filters, where individual elements
are removed. Together with the trivial addition of attributes (by adding
the bit vector of an entire Ai), this enables arbitrary incremental changes
to an already computed global filter for faster interactive updates.

Overall, our global filter has four crucial differences to the standard
usage and corresponding properties of counting Bloom filters:

• Counting is done such that each attribute Ai is treated together:
Individual elements (or range bins) of one Ai cannot be removed
from the global filter, but entire attributes can be removed exactly.

• Related to this fact, unlike standard counting Bloom filters, dele-
tion of any attribute Ai cannot result in false negatives to occur.

������ ������������� �����������������

++++++++++++ ++ ++ +++ ++ + +++ +++++

�

�
�

�
�

�

�

�

++++++++++++ ++ ++ +++ ++ + +++ +++++

�

��

� �

�

Supercell

Supercell

Supercell

C
ells

Fig. 8. Supercells. Each is assigned one supercell ID, but represents all
2ln×2ln×2ln cells (l ≥ 0) in the spatial extent of a given octree node, for
octree leaf nodes (l = 0) of n3 cells (here, n = 2). Inserting supercell IDs
into all local filters enables an early-out strategy during octree traversal,
by performing conservative culling queries against the global filter. (Here:
3D data illustrated in 1D/2D/3D; only one supercell ID shown hashed.)

• The counts in the global filter are guaranteed to be bounded by the
number d ≤ D (Fig. 6, right). This allows a simple deterministic
allocation of ⌈logD⌉ bits for storing each count value.

• The false positive rate in our global filter is exactly the same as
that of a regular Bloom filter (Eq. 2). This is not the case for the
standard use of a counting Bloom filter [46].

Alternative non-counting global filter. If the capability for in-
cremental global filter updates is not desired, each count could be
substituted by a single bit, i.e., a regular Bloom filter could be used.
In this case, the summation of local filter bits into counts becomes a
simple bitwise AND. However, if this is done AND and OR queries
cannot be fulfilled from the same global filter: Each such query requires
a re-computation of the global filter. For these reasons, and because
the storage corresponding to the count values of a single global filter is
usually not a critical issue, we always employ a counting global filter.

Choice of Bloom filter size. We choose m (the number of counts in
the global filter) according to the expected query cardinality |Q|, but
always choose a size such that m ≪ N. Table 3 illustrates the impact of
different ratios between query size and Bloom filter size, in particular
on the false positive rates. We note again that the same size m must
also be used for all Bloom filters comprising the local filter range bins.

4 SPATIAL HIERARCHY

Although the first two stages (Fig. 2, left and center) of our approach
can be used without visualization, our design is very much targeted
toward the characteristics and requirements of visualization. That is, in
particular, the traversal of a hierarchical space subdivision such as an
octree, and the integration and interaction with visibility determination
via view frustum and (progressive) occlusion culling. The third stage of
our method therefore comprises octree traversal strategies that interact
efficiently with query evaluation (checking the global filter hash table),
and performing conservative culling, i.e., not visiting octree nodes that
are guaranteed to be empty, but maybe visiting some nodes that turn
out to be empty after all. In particular, recursive octree traversal must
compute and update octree node occupancy states. See Algorithm 1.

4.1 Attribute Co-Occurrence Granularity
A crucial issue of joint attribute queries is the spatial granularity at
which the co-occurrence of 1 < d ≤ D attribute values is determined.
Exact co-occurrence would have to be determined for (infinitesimal)
spatial points, as to some extent done by several methods, such as
fiber surfaces [12]. If, however, we consider it to be sufficient for each
attribute value (range) to appear anywhere within a spatial region of
finite extent, then the accuracy of co-occurrence determination depends
on the region size (Fig. 7). For example, two isosurfaces might come
as close as the size of the region, but they might not actually intersect.
We refer to this phenomenon as attribute co-occurrence granularity.10

A crucial fact to note is that, even with finite granularity, queries
can be evaluated conservatively at any granularity: If there is no co-
occurrence within the region at some granularity, it is guaranteed that

10It is, however, crucial to note that this is the granularity of “grouping”
full-resolution data. We do not consider down-sampled multi-resolution data.

attribute values cannot co-occur down to the individual point level.
(Interpolation issues are discussed in Sec. 5.3.) As illustrated in Fig. 7,
this means that conservative query answers can be exploited at different
granularities: Because there can be no false negatives, we can use
coarse-granularity checks for efficient early-out during octree traversal.
We do this via regions of 23ln3 cells (l ≥ 0, n const.) we call supercells.

4.2 Supercells
For conservative culling with reduced spatial granularity (Fig. 7), we
introduce the concept of supercells to enable an efficient early-out
strategy in the recursive computation of spatial occupancy state. See
Figs. 8, 9, 11, and Algorithm 1. For a regular grid, we assign a supercell
ID to spatial regions of 2ln×2ln×2ln cells, where l ≥ 0 determines the
spatial granularity of the supercell. l = 0 refers to the finest granularity.
In an octree, each supercell corresponds to one octree node.11 Thus, the
number of supercells equals the number of octree nodes. It is crucial
that, although each node is assigned only a single supercell ID, the
supercell corresponds to all attribute values of the 23ln3 cells within
the spatial extent of the node, where l = 0 for leaf nodes of size n3.

Projecting supercell IDs into the local filters. In the pre-processing
stage, we insert all supercell IDs into all local filters as follows: Denot-
ing the number of octree levels by ℓ, every cell corresponds to additional
ℓ supercell IDs. (These IDs are not exclusive: Many other cells share
the same supercell IDs.) We now simply compute, for every cell out of
N cells, ℓ+1 IDs (one cell ID, plus ℓ supercell IDs), and insert all of
these IDs into all local filters, according to the cell’s attribute values.

Different cells with the same supercell IDs will be inserted multiple
times, but the bit vectors of the local Bloom filters will not have dupli-
cates (there is no counting). In the worst case, a single supercell ID
can end up in all bins of all local filters (but only once per bin at most).
For real data, the “spread” of supercell IDs over attribute ranges will
be much less. The supercell ID of the octree root node will end up in
the largest number of bins of all supercells (typically in all bins). This
approach essentially “links” the spatial domain and the attribute space.

Overhead of supercells. Any disadvantage of supercells during run
time is negligible. For example, for a volume that is a cube of N = M3

cells, with a power-of-two side length M = 2L, L ≥ 0, i.e., M cells in
each of the three spatial dimensions, and a leaf node size of n3 cells (n
a power of two), for the total number of supercells we obtain the bound

#supercells <
8M3

7n3 =
8N
7n3 . (5)

Considering false positives in Bloom filters, the false positive rate
(Eq. 2) corresponds to the number of inserted IDs, and therefore insert-
ing additional IDs increases the false positive rate. However, the above
formula shows that the number of supercell IDs that will be inserted
in addition to the N cell IDs is very low. For example, for octree leaf
nodes with n3 cells, for n = 4 the number of additional supercell IDs is
1.79% ·N, for n = 8 it is 0.22% ·N, and for n = 16 it is 0.028% ·N.

4.3 Occupancy State Propagation
At run time, we can perform query evaluation and the corresponding
determination of a binary occupancy state per node during recursive
traversal of the spatial hierarchy (e.g., an octree). See Algorithm 1.

Every visited octree node first checks whether its occupancy state is
already valid, i.e., whether it has been computed and cached before. If
this is not the case, then we perform a conservative test for a guaranteed
false occupancy state update using the node’s supercell ID. This is
always correct: (1) Supercells cannot give false negatives (see above
and Fig. 7). (2) The global filter also has guaranteed no false negatives.
However, the test can be overly conservative due to supercell regions
of 23ln3 cells. Despite this, accuracy naturally increases exponentially,
as supercell granularity decreases during octree traversal (l decreases).

Early-out with supercell IDs. Because there cannot be false neg-
atives, for every node visited during octree traversal, before we visit

11We emphasize that this has nothing to do with multi-resolution rendering
using octrees: For us, the octree just provides a hierarchical “spatial grouping.”

6
5
4
3
2

Tree Levels

��

���

���

���

����

��

���

���
��
��

��

���

���
��
��

��

���

���
��

��

���

���

��

���

��

Early Exit

Octree Leaf Node Size
� � � �� �� ��

N
o Supercell

���

���

��

Memory
(MB)

Time Query
(ms)

False Positive
(x1000)~

���

���

���
��� ��� ���

�� �� �� �� ���

���

� � �� �� �� ��

Fig. 9. Early-out with supercells. (Top) Octree nodes that exit tree
traversal early are shown in purple. (Bottom) Efficiency of early-out
with supercells for different octree leaf node sizes n3 (n = 2 to n = 64):
Percentages of nodes exiting on a given tree level (root is level 0). With
increasing node size, memory consumption decreases, but query times
and false positive rates increase. Here, the sweet spot is around n = 16.

child nodes or individual cells (for leaf nodes), we first query the super-
cell ID against the global filter for a conservative test. If the ID is not in
the global filter, we know that the occupancy state of the entire subtree
starting with the current node is false. See Fig. 9 and Algorithm 1.

Algorithm 1: Spatial Traversal and Occupancy Updates (k = 2)
1 function queryGlobalFilter (cellID, d)
2 hash1 = getHash1(cellID);
3 hash2 = getHash2(cellID);
4 if (globalFilter.getCount(hash1) = d) and

(globalFilter.getCount(hash2) = d) then
5 return true;
6 else
7 return false;
8 end
9 function traverseTreeGetOccupancy (node, d)

10 if node.isCachedOccupancyValid() then
11 return node.occupancyState;
12 end
13 if !queryGlobalFilter(node.superCellID) then
14 node.occupancyState = f alse;
15 return node.occupancyState;
16 end
17 if !node.isLeafNode() then
18 node.occupancyState =

node.visitAllChildNodesGetAggregateOccupancy(d);
19 else
20 node.occupancyState =

node.visitAllCellsGetAggregateOccupancy(d);
21 end
22 return node.occupancyState;

Fig. 10. Multi-dimensional intersections. With growing number of
attribute dimensions in an AND query, fewer and fewer cells are selected,
i.e., the query cardinality |Q| gets smaller. From left to right, d = 1,2,3.

Propagation up the tree. If the conservative check using the su-
percell ID did not provide a guaranteed negative answer, we need to
traverse further. If the node is not a leaf node, all child nodes need to
be visited, and the occupancy state of the current node is the logical
OR of the states of all child nodes. If the node is a leaf node, recursive
traversal stops, and all cells within the spatial extent of the node are
queried against the global filter. The occupancy state of the node is
then the logical OR of all individual cell states. See Algorithm 1.

Asynchronous cell queries. The individual cell queries for leaf
nodes can be scheduled to be computed asynchronously. Once the
asynchronous computation of a leaf node finishes, the node’s occupancy
state is known and cached. On the next octree traversal, the node’s
occupancy state will then be propagated up the tree.

Eliminating false positives. If a completely accurate (i.e., guar-
anteed no false positives) result is required, we can eliminate false
positives by visiting leaf nodes and for each of the contained cells
evaluate the exact query using scanning, i.e., by checking all attributes
individually. This operation can also be scheduled to be computed asyn-
chronously, progressively updating the occupancy state of tree nodes
to eliminate false positives. We note that cached occupancy states in
the tree that were already set to valid need to be invalidated for the
part of the tree above each leaf node that is being updated (and whose
occupancy state in fact changed due to false positive elimination).

5 RESULTS AND EVALUATION

We evaluate our method using the data sets listed in Table 2, consisting
of two real data sets from different scientific domains (meteorology and
oceanography), which use physical attributes such as temperature, hu-
midity, pressure; and a synthetic test data set based on Perlin Noise [44]
with different frequencies and seed numbers per attribute. We also
compare our results with other techniques for multivariate filtering.

5.1 Implementation

Our framework is implemented in C++ and OpenGL. All tests rely on
our own implementations, using the C++ Standard Template Library,
except for the R-tree, for which we used the fast template library by
Guttman et al. [23], and the compression of Bloom filter bit vectors,
for which we used the libraries by Lemire et al. [30]. Our system
supports data coming from different kinds of sources, and can be easily
integrated into larger or more complex visualization systems.

All our results were measured on an Intel Xeon 6230R with 128 GB,
and a NVIDIA RTX 3090 GPU, running Windows 10. To facilitate fair
comparisons, for all performance tests we used only a single CPU core
and no GPU implementation, except for standard OpenGL rendering.

5.2 Evaluation

In Table 2, we compare our technique, both with the use of supercells
(SC) and without (BF; only for comparison purposes), with other tech-
niques for multivariate filtering in visualization: (1) Scanning; checks
each cell and attribute individually (also determines ground truth); (2)
MinMax octree; uses an octree with fixed-size leaf nodes of 163 cells,
testing a (min,max) value pair per attribute per node; and (3) an R-tree.

We evaluate three data sets with three queries each, of dimensions
d = 1 (Q1), d = 2 (Q2), and d = 3 (Q3), respectively. The query
cardinalities |Q| of each of these queries are given in Table 3.

Pre-processing. Table 2 reports the times for building each basic
data structure. For our method, this is the creation of the local filters.
This pre-processing is an offline process that is done just once. For
our data sets, it takes from several minutes to one or two hours. In
our approach, the total Storage Size of all local filters, as well as the
Pre-Processing time, depend directly on the number of range bins
computed. However, query evaluation only has to load or stream the
small subset of bins within the actual query range under consideration.

Query performance (global filter construction). Create GF in
Table 2 is the time to construct the global filter by summing all local
filter range bins within the query ranges Qi, representing the query
result set Q by the global filter. This is done only once for each new
query, and takes from a few milliseconds for the Red Sea data set to a
few seconds in the worst cases, which still facilitates user interaction.

Query performance (global filter querying). In Table 2, Query
Time is the time for computing the occupancy state of all cells, which is
the final query result. Query times include the time needed to eliminate
false positives. (For comparison, SC times in parentheses are without
false positive elimination.) In order to avoid confusing measurements
for query evaluation with on-screen visibility, all reported numbers are
for complete data set traversals without any PVS determination, i.e.,
for Ñ = N. We note, however, that this eliminates one clear advantage

Table 2. Method comparisons. We compare our method without (BF)
and with supercells (SC), respectively, with (1) Scanning d attributes, (2)
MinMax (octree with 163 leaves; test d out of D min-max per node, (3)
D-dimensional R-tree. Our results (BF, SC) use m = 25 %N, k = 2. Our
query times include false positive elimination (SC times in parentheses
without). BF query times are for comparison only; no hierarchy is used.

Scanning MinMax R-tree BF SC
GFS Meteorology Prediction. 2,048x1,024x512 (N = 1,073,741,824), D = 8.
Pre-Processing [min] - 8.75 194.76 25.33 231.66
Storage Size [MB] - 31.99 79,591 18,814 20,363
Global Filter [MB] - - - 256 256
Q1 Create GF [s] - - - 3.96 4.11
(d=1) Query Time [s] 39.76 15.60 59.48 11.21 4.25 (3.44)

FPR [%] - - - 43.02 10.07
Q2 Create GF [s] - - - 7.13 7.04
(d=2) Query Time [s] 77.46 8.00 41.95 11.26 3.65 (2.19)

FPR [%] - - - 23.22 4.33
Q3 Create GF [s] - - - 7.24 7.77
(d=3) Query Time [s] 110.01 5.38 34.84 11.22 2.91 (1.43)

FPR [%] - - - 1.10 0.17

Red Sea. 500x500x50 (N = 12,500,000), D = 6.
Pre-Processing [min] - 0.08 1.08 0.08 0.28
Storage Size [MB] - 0.37 757.48 164 166
Global Filter [MB] - - - 2.98 2.98
Q1 Create GF [s] - - - 0.003 0.002
(d=1) Query Time [s] 0.48 0.08 0.31 0.14 0.04 (0.01)

FPR [%] - - - 2.76 0.18
Q2 Create GF [s] - - - 0.004 0.004
(d=2) Query Time [s] 0.91 0.07 0.37 0.16 0.03 (0.007)

FPR [%] - - - 1.48 0.07
Q3 Create GF [s] - - - 0.006 0.006
(d=3) Query Time [s] 1.24 0.07 0.26 0.12 0.02 (0.006)

FPR [%] - - - 0.19 0.02

Synthetic Perlin Noise. 512x512x512 (N = 134,217,728), D = 15.
Pre-Processing [min] - 2.17 28.50 4.14 12.94
Storage Size [MB] - 7.49 18,486 4,490 4,842
Global Filter [MB] - - - 32 32
Q1 Create GF [s] - - - 0.28 0.23
(d=1) Query Time [s] 5.14 4.53 6.32 2.02 1.25 (1.11)

FPR [%] - - - 29.82 20.96
Q2 Create GF [s] - - - 0.16 0.17
(d=2) Query Time [s] 9.59 0.40 2.68 1.44 0.23 (0.02)

FPR [%] - - - 0.21 0.10
Q3 Create GF [s] - - - 0.35 0.34
(d=3) Query Time [s] 14.36 0.30 1.73 1.40 0.23 (0.002)

FPR [%] - - - 0.08 0.005

Table 3. Evaluation of false positives for different Bloom filter sizes.
Bloom filter size m, false positives (FP), true negatives (TN), and true
negatives skipped by supercell early-out (SC-Skip) are given in % of the
data size N. The false positive rate (FPR; Eq. 6) is in %. We compare our
method without (BF) and with (SC) the use of supercells. See Fig. 12.

m [%N] FP [%N] TN [%N] FPR [%] SC-Skip [%N]
GFS Meteorology Prediction. 2,048x1,024x512 (N = 1,073,741,824), D = 8.

BF 50 14.82 71.86 17.10

Q1 (d=1) SC 2.16 84.51 2.50 74.06
BF 25 37.29 49.39 43.02

|Q| = TP = SC 8.73 77.95 10.07 66.41
13.3 %N BF 15 59.87 26.80 69.07

SC 27.79 58.88 32.07 46.45
BF 50 6.11 91.78 6.24

Q2 (d=2) SC 1.05 96.83 1.08 88.03
BF 25 22.73 75.15 23.22

|Q| = TP = SC 4.24 93.64 4.33 83.86
2.12 %N BF 15 49.01 48.87 50.07

SC 15.43 82.46 15.76 69.22
BF 50 0.19 99.77 0.19

Q3 (d=3) SC 0.03 99.93 0.03 93.28
BF 25 1.10 98.86 1.10

|Q| = TP = SC 0.16 99.79 0.17 90.92
0.03 %N BF 15 3.97 95.99 3.97

SC 0.85 99.10 0.86 83.17

of our method: The spatial hierarchy traversal for query evaluation can
be the same as the one that is already used for rendering and visibility
culling, efficiently skipping all subtrees outside the PVS completely.

Memory footprint. MinMax (with fixed-size blocks of 163 cells)
stores only a small amount of data (2 ·D floats per block), whereas an R-
tree needs much more space. In contrast, our probabilistic approach is
more than three times smaller than the R-tree (in terms of pre-computed
local filter storage), and it scales better with the number of attribute
dimensions D. The memory overhead of supercell IDs in (compressed)
local filter storage is around 10%. In Table 2, Global Filter is the
(uncompressed) size of the global filter, which is independent of D and
only depends on the chosen Bloom filter hash table size m. Since the
global filter is quite small, it is not compressed and therefore has the
same size whether or not supercells are used. Although we have not
implemented it, the global filter could easily be stored in GPU memory.

False positive rate evaluation. For concrete results, here we report
measured false positive rates (Table 3, Fig. 12) instead of probabilistic
estimates (Eq. 2). The measured false positive rate is defined as

FPR =
FP

FP+TN
. (6)

FP is the number of false positives, TN the number of true negatives,
and FP+TN the total number of ground truth negatives; see Fig. 11.

Table 3 reports how the Bloom filter size m influences the false
positive rates for different queries, as well as how much the use of
supercells decreases both the number of true negatives that are tested
individually, as well as the false positive rate (see below). Fig. 12
visualizes these results. A more complete evaluation is provided in
Table 6 and in Figs. 13, 14, and 15 in the supplementary appendices.

It is crucial to note that the use of our supercells with hierarchical
traversal and early-out usually results in a significant decrease of the
false positive rate. The reason for this is that in our early-out strategy a
single supercell ID represents many cell IDs, incurring the false positive
probability only once per supercell instead of once for each cell.

5.3 Discussion
Interaction use cases. In a typical user interaction scenario, only a
small number of nodes will become visible whose occupancy state has
not already been cached before. For this reason, while the timings given
in Table 2 are given for whole data sets, our approach is usually fully
interactive. The creation of a new global filter is not always interactive,
but can be made much faster by incremental changes from a previous
query. However, even a full update is still faster than previous work.

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

�� �� ��

�����
�

�
	�����
���������
���

�����

Fig. 11. True positives (TP), false positives (FP), true negatives (TN).
The false positive rate is FPR = FP/(FP+TN), for FP+TN ground truth
negatives. To eliminate all false positives (FP-Elim.), we only need to
scan TP+FP cells, instead of all N = TP+FP+TN cells. Moreover, we
use supercells with early-out to skip a significant part of TN (SC-Skip).

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

��
��
��

��
��
��
��

��

��

��
��
��

��
��
��
��

��

��

��
��
��

��
��
��
��

��

��

Fig. 12. Evaluation of false positives for different Bloom filter sizes.
Stacked bar charts corresponding to Table 3; but here the results are
grouped according to m = 50 %N, m = 25 %N, m = 15 %N (top to bottom).

Data interpolation. In this paper, we have focused on data attributes
that are not interpolated. When attribute values should be interpolated
to reconstruct a continuous field (e.g., interpolating from grid cell
vertices), this has to be taken into account for accurate query results.
One way to integrate interpolation into our method would be to treat
this case similarly to how we compute supercells: Each cell with
interpolated data corresponds to a (min,max) pair of values, and the
cell’s ID would have to be projected into all local filter range bins that
overlap its (min,max) range. However, we leave this for future work.

Structured vs. unstructured grids. Since we treat individual cells
as data points with a set of attribute values per point, our approach does
not depend on the type of grid (structured or unstructured) that is used,
and can also directly be applied to meshless (e.g., point-based) data.

6 CONCLUSIONS

Our probabilistic data structure and output-sensitive query method have
several important benefits regarding scalability with data size and, in
particular, the number of attribute dimensions. The main target of
our framework are logical AND queries in high-dimensional attribute
spaces. The major idea of our query method is that query evalua-
tion should be as output-sensitive as possible. Regarding the query
evaluation by itself, we achieve this by targeting scalability with the
cardinality |Q| of the query result set Q, which is particularly useful
for joint queries of many attributes. Moreover, our approach is also
output-sensitive regarding the visible part of the data set in the visual-
ization, by integrating directly with standard octree traversal or other
hierarchical space subdivisions. The use of our concept of supercells is
particularly useful to speed up query time, both for view-independent
queries—where the supercells allow for efficient early-out during hier-
archical query evaluation—as well as during rendering, where standard
view frustum and occlusion culling can integrate directly with supercell-
based skipping of whole subtrees of the hierarchical space subdivision.

ACKNOWLEDGMENTS

This work was supported by King Abdullah University of Science and Technology
(KAUST), and was also supported in part by a grant from Saudi Aramco (#3879).

REFERENCES

[1] S. Amer-Yahia and T. Johnson. Optimizing queries on compressed bitmaps.
In International Conference on Very Large Data Bases (VLDB), pp. 329–
338, 2000.

[2] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions. In IEEE Symposium on Foundations
of Computer Science (FOCS), pp. 459–468, 2006.

[3] G. Antoshenkov. Byte-aligned bitmap compression. In Data Compression
Conference (DCC), p. 476, 1995.

[4] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-Tree:
An efficient and robust access method for points and rectangles. SIGMOD
Record, 19(2):322–331, 1990.

[5] M. A. Bender, M. Farach-Colton, R. Johnson, R. Kraner, B. C. Kusz-
maul, D. Medjedovic, P. Montes, P. Shetty, R. P. Spillane, and E. Zadok.
Don’t thrash: How to cache your hash on flash. VLDB Endowment,
5(11):1627–1637, 2012.

[6] J. L. Bentley. Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9):509–517, 1975.

[7] J. L. Bentley. Decomposable searching problems. Information Processing
Letters, 8(5):244–251, 1979.

[8] J. L. Bentley and J. H. Friedman. Data structures for range searching.
ACM Computing Surveys, 11(4):397–409, 1979.

[9] J. Beyer, H. Mohammed, M. Agus, A. K. Al-Awami, H. Pfister, and
M. Hadwiger. Culling for extreme-scale segmentation volumes: A hybrid
deterministic and probabilistic approach. IEEE Transactions on Visualiza-
tion and Computer Graphics, 25(1):1132–1141, 2019.

[10] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422–426, 1970.

[11] A. Broder and M. Mitzenmacher. Network applications of Bloom filters:
A survey. Internet Mathematics, 1(4):485–509, 2007.

[12] H. Carr, Z. Geng, J. Tierny, A. Chattopadhyay, and A. Knoll. Fiber
Surfaces: Generalizing isosurfaces to bivariate data. Computer Graphics
Forum, 34(3):241–250, 2015.

[13] S. Chambi, D. Lemire, O. Kaser, and R. Godin. Better bitmap performance
with roaring bitmaps. Software: Practice and Experience, 46(5):709–719,
2016.

[14] C.-Y. Chan and Y. E. Ioannidis. An efficient bitmap encoding scheme for
selection queries. SIGMOD Record, 28(2):215–226, 1999.

[15] A. Chaudhuri, T. H. Wei, T. Y. Lee, H.-W. Shen, and T. Peterka. Efficient
range distribution query for visualizing scientific data. In IEEE Pacific
Visualization Symposium (PacificVis), pp. 201–208, 2014.

[16] S. Cohen and Y. Matias. Spectral Bloom filters. In ACM SIGMOD
International Conference on Management of Data, pp. 241–252, 2003.

[17] A. Crainiceanu and D. Lemire. Bloofi: Multidimensional Bloom filters.
Information Systems, 54:311–324, 2015.

[18] B. Fan, D. G. Andersen, M. Kaminsky, and M. Mitzenmacher. Cuckoo
filter: Practically better than Bloom. In ACM International Conference
on Emerging Networking Experiments and Technologies (CoNEXT), pp.
75–88, 2014.

[19] L. Fan, P. Cao, J. Almeida, and A. Broder. Summary Cache: A scal-
able wide-area web cache sharing protocol. IEEE/ACM Transactions on
Networking, 8(3):281–293, 2000.

[20] Y. Fu and E. Biersack. False-positive probability and compression opti-
mization for tree-structured Bloom filters. ACM Trans. Model. Perform.
Eval. Comput. Syst., 1(4):19:1–19:39, 2016.

[21] D. Gunopulos, G. Kollios, V. J. Tsotras, and C. Domeniconi. Approx-
imating multi-dimensional aggregate range queries over real attributes.
SIGMOD Record, 29(2):463–474, 2000.

[22] A. Guttman. R-Trees: A dynamic index structure for spatial searching.
SIGMOD Record, 14(2):47–57, 1984.

[23] A. Guttman, M. Stonebraker, and G. Douglas. R-Trees: a dynamic index
structure for spatial searching. https://github.com/nushoin/RTree,
2021.

[24] M. Hadwiger, R. Sicat, J. Beyer, J. Krüger, and T. Möller. Sparse PDF
maps for non-linear multi-resolution image operations. ACM Transactions
on Graphics, 31(6):133:1–133:12, 2012.

[25] Y. Hua, D. Feng, and T. Xie. Multi-dimensional range query for data
management using Bloom filters. In IEEE International Conference on
Cluster Computing, pp. 428–433, 2007.

[26] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards
removing the curse of dimensionality. In ACM Symposium on Theory of
Computing (STOC), pp. 604–613, 1998.

[27] J. Kehrer and H. Hauser. Visualization and Visual Analysis of Multi-
faceted Scientific Data: A Survey. IEEE Transactions on Visualization
and Computer Graphics, 19(3):495–513, 2013.

[28] M. Kratky, V. Snasel, J. Pokorny, and P. Zezula. Efficient processing of
narrow range queries in multi-dimensional data structures. In International
Database Engineering and Applications Symposium (IDEAS), pp. 69–79,
2006.

[29] D. T. Lee and C. K. Wong. Worst-case analysis for region and partial
region searches in multidimensional binary search trees and balanced quad
trees. Acta Informatica, 9(1):23–29, 1977.

[30] D. Lemire, L. Boytsov, and N. Kurz. SIMD compression and the intersec-
tion of sorted integers. Software: Practice and Experience, 46(6):723–749,
2016.

[31] D. Lemire, O. Kaser, N. Kurz, L. Deri, C. O’Hara, F. Saint-Jacques,
and G. Ssi-Yan-Kai. Roaring bitmaps: Implementation of an optimized
software library. Software: Practice and Experience, 48(4):867–895,
2018.

[32] D. Lemire, G. Ssi-Yan-Kai, and O. Kaser. Consistently faster and smaller
compressed bitmaps with roaring. Software: Practice and Experience,
46(11):1547–1569, 2016.

[33] S. Liu, J. A. Levine, P.-T. Bremer, and V. Pascucci. Gaussian mixture
model based volume visualization. In IEEE Symposium on Large Data
Analysis and Visualization (LDAV), pp. 73–77, 2012.

[34] Y. Livnat. Accelerated isosurface extraction approaches. In C. D. Hansen
and C. R. Johnson, eds., Visualization Handbook, pp. 39–55. Butterworth-
Heinemann, Burlington, 2005.

[35] Y. Livnat, H.-W. Shen, and C. Johnson. A near optimal isosurface extrac-
tion algorithm using the span space. IEEE Transactions on Visualization
and Computer Graphics, 2(1):73–84, 1996.

[36] K. Lu and H.-W. Shen. A compact multivariate histogram representa-
tion for query-driven visualization. In IEEE Symposium on Large Data
Analysis and Visualization (LDAV), pp. 49–56, 2015.

[37] Y. Lu, L. Cheng, T. Isenberg, C.-W. Fu, G. Chen, H. Liu, O. Deussen, and
Y. Wang. Curve Complexity Heuristic KD-trees for Neighborhood-based
Exploration of 3D Curves. Computer Graphics Forum, 40(2):461–474,
2021.

[38] G. S. Lueker. A data structure for orthogonal range queries. In Symposium
on Foundations of Computer Science (SFCS), pp. 28–34, 1978.

[39] Y. Matias, J. S. Vitter, and M. Wang. Wavelet-based histograms for
selectivity estimation. In ACM SIGMOD International Conference on
Management of Data, pp. 448–459, 1998.

[40] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized
Algorithms and Probabilistic Analysis. Cambridge University Press, 2005.

[41] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge
University Press, 1995.

[42] M. Muralikrishna and D. J. DeWitt. Equi-depth multidimensional his-
tograms. SIGMOD Record, 17(3):28–36, 1988.

[43] P. E. O’Neil. Model 204 architecture and performance. In D. Gawlick,
M. Haynie, and A. Reuter, eds., High Performance Transaction Systems,
pp. 39–59. Springer Berlin Heidelberg, 1989.

[44] K. Perlin. An image synthesizer. ACM SIGGRAPH Computer Graphics,
19(3):287–296, 1985.

[45] E. Pitoura. Selectivity estimation. In L. Liu and M. T. Özsu, eds., Ency-
clopedia of Database Systems, p. 2548. Springer, Boston, MA, 2009.

[46] S. Pontarelli, P. Reviriego, and J. A. Maestro. Improving counting Bloom
filter performance with fingerprints. Information Processing Letters,
116(4):304–309, 2016.

[47] V. Poosala and Y. E. Ioannidis. Selectivity estimation without the attribute
value independence assumption. In International Conference on Very
Large Data Bases (VLDB), pp. 486–495, 1997.

[48] F. Porikli. Integral histogram: a fast way to extract histograms in Cartesian
spaces. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 829–836, 2005.

[49] A. Sayar, S. Eken, and O. Öztürk. Kd-tree and quad-tree decompositions
for declustering of 2D range queries over uncertain space. Frontiers of
Information Technology & Electronic Engineering, 16:98–108, 2015.

[50] T. K. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-Tree: A dynamic
index for multi-dimensional objects. In International Conference on Very
Large Data Bases (VLDB), pp. 507–518, 1987.

[51] H.-W. Shen, C. Hansen, Y. Livnat, and C. Johnson. Isosurfacing in span
space with utmost efficiency (ISSUE). In IEEE Visualization, pp. 287–294,
1996.

[52] Q. Shi and J. JaJa. Isosurface extraction and spatial filtering using per-

https://github.com/nushoin/RTree

sistent octree (POT). IEEE Transactions on Visualization and Computer
Graphics, 12(5):1283–1290, 2006.

[53] R. Sicat, J. Krüger, T. Möller, and M. Hadwiger. Sparse PDF volumes
for consistent multi-resolution volume rendering. IEEE Transactions on
Visualization and Computer Graphics, 20(12):2417–2426, 2014.

[54] R. R. Sinha and M. Winslett. Multi-resolution bitmap indexes for scientific
data. ACM Transactions on Database Systems, 32(3):16–es, 2007.

[55] S. Sprenger, P. Schäfer, and U. Leser. Multidimensional range queries on
modern hardware. In International Conference on Scientific and Statistical
Database Management (SSDBM), pp. 1–12, 2018.

[56] S. Sprenger, P. Schäfer, and U. Leser. BB-tree: A main-memory index
structure for multidimensional range queries. In International Conference
on Data Engineering (ICDE), pp. 1566–1569, 2019.

[57] K. Stockinger, J. Shalf, K. Wu, and E. Bethel. Query-driven visualization
of large data sets. In IEEE Visualization, pp. 167–174, 2005.

[58] K. Stockinger, K. Wu, and A. Shoshani. Evaluation strategies for bitmap
indices with binning. In F. Galindo, M. Takizawa, and R. Traunmüller,
eds., Database and Expert Systems Applications, pp. 120–129. Springer
Berlin Heidelberg, 2004.

[59] D. Thompson, J. A. Levine, J. C. Bennett, P.-T. Bremer, A. Gyulassy,
V. Pascucci, and P. P. Pébay. Analysis of large-scale scalar data using
hixels. In IEEE Symposium on Large Data Analysis and Visualization
(LDAV), pp. 23–30, 2011.

[60] C. Wang and Y.-J. Chiang. Isosurface extraction and view-dependent
filtering from time-varying fields using persistent time-octree (PTOT).
IEEE Transactions on Visualization and Computer Graphics, 15(6):1367–
1374, 2009.

[61] K.-C. Wang, K. Lu, T.-H. Wei, N. Shareef, and H.-W. Shen. Statistical
visualization and analysis of large data using a value-based spatial distribu-
tion. In IEEE Pacific Visualization Symposium (PacificVis), pp. 161–170,
2017.

[62] T.-H. Wei, C.-M. Chen, and A. Biswas. Efficient local histogram searching
via bitmap indexing. Computer Graphics Forum, 34(3):81–90, 2015.

[63] T.-H. Wei, C.-M. Chen, J. Woodring, H. Zhang, and H.-W. Shen. Efficient
distribution-based feature search in multi-field datasets. In IEEE Pacific
Visualization Symposium (PacificVis), pp. 121–130, 2017.

[64] M. A. Westenberg, J. B. T. M. Roerdink, and M. H. F. Wilkinson. Volu-
metric attribute filtering and interactive visualization using the max-tree
representation. IEEE Transactions on Image Processing, 16(12):2943–
2952, 2007.

[65] K. Wu, E. Otoo, and A. Shoshani. Compressing bitmap indexes for faster
search operations. In International Conference on Scientific and Statistical
Database Management, pp. 99–108, 2002.

[66] K. Wu, E. Otoo, and A. Shoshani. On the performance of bitmap indices
for high cardinality attributes. In International Conference on Very Large
Data Bases (VLDB), pp. 24–35, 2004.

[67] K. Wu, E. Otoo, and A. Shoshani. Optimizing bitmap indices with efficient
compression. ACM Transactions on Database Systems, 31(1):1–38, 2006.

[68] H. Younesy, T. Möller, and H. Carr. Improving the quality of multi-
resolution volume rendering. In Eurographics / IEEE VGTC Conference
on Visualization (Eurovis), p. 251–258, 2006.

[69] C. Yu. High-Dimensional Indexing: Transformational Approaches to High-
Dimensional Range and Similarity Searches. Springer Berlin Heidelberg,
2002.

[70] T. Zäschke, C. Zimmerli, and M. C. Norrie. The PH-Tree: A space-
efficient storage structure and multi-dimensional index. In ACM SIGMOD
International Conference on Management of Data, p. 397–408, 2014.

[71] Y. Zhao, Y. Wang, J. Zhang, C.-W. Fu, M. Xu, and D. Moritz. KD-Box:
Line-segment-based kd-tree for interactive exploration of large-scale time-
series data. IEEE Transactions on Visualization and Computer Graphics,
28(1):890–900, 2022.

	Introduction
	Related Work
	Algorithm
	Overview and Processing Stages
	Query Representation and Characteristics
	Bloom Filters: Probabilistic Set Membership
	Local Filters: 1D Attribute Space Projections
	Global Filter: Set Intersection via Counting

	Spatial Hierarchy
	Attribute Co-Occurrence Granularity
	Supercells
	Occupancy State Propagation

	Results and Evaluation
	Implementation
	Evaluation
	Discussion

	Conclusions

