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Fig. 1. Vortex structures (b; λ2 vortex cores) not visible in the input flow (a) become visible relative to different observers (e). (Vertical
axis is time.) Because all observers (six observers in insets) were computed using objective optimization, the observed vortices are
also objective. However, each observer is also physically realizable. This guarantees that these vortices are also physically observable.
We represent observers as curves through the Lie algebra of physically-realizable observer motions, which is a special 3D vector space.
Choosing a basis defines an (a,b,c) parameter space (d), enabling efficient averaging, interpolation, and comparison of observers (c).

Abstract—State-of-the-art computation and visualization of vortices in unsteady fluid flow employ objective vortex criteria, which
makes them independent of reference frames or observers. However, objectivity by itself, although crucial, is not sufficient to guarantee
that one can identify physically-realizable observers that would perceive or detect the same vortices. Moreover, a significant challenge
is that a single reference frame is often not sufficient to accurately observe multiple vortices that follow different motions. This paper
presents a novel framework for the exploration and use of an interactively-chosen set of observers, of the resulting relative velocity
fields, and of objective vortex structures. We show that our approach facilitates the objective detection and visualization of vortices
relative to well-adapted reference frame motions, while at the same time guaranteeing that these observers are in fact physically
realizable. In order to represent and manipulate observers efficiently, we make use of the low-dimensional vector space structure of
the Lie algebra of physically-realizable observer motions. We illustrate that our framework facilitates the efficient choice and guided
exploration of objective vortices in unsteady 2D flow, on planar as well as on spherical domains, using well-adapted reference frames.

Index Terms—Flow visualization, vortex detection, objectivity, observers, reference frames, Lie algebras

1 INTRODUCTION

A significant amount of recent research in flow visualization and con-
tinuum mechanics has built on the concept of objectivity [14,17,19,39].
For vortex detection, for instance, it is crucial that the employed cri-
teria are objective, because otherwise different observers can come to
different conclusions on where vortices are located. For this reason,
non-objective criteria often might not correspond to physical reality.
However, even objectivity, by itself, only guarantees that different ob-
servers reach the same conclusions, but not necessarily how physically-
plausible these conclusions are. In particular, it is known that for many
real-world flow phenomena a single reference frame is not sufficient
in order to detect or depict all features of interest [14, 29]. For this
reason, generic objective approaches have been proposed that use a
large number of observers and detect features jointly [4, 14, 18, 39].
These approaches, however, focus on overall objectivity, and not on
confirming that each detected feature would in fact be able to be per-
ceived by a physically-realizable observer. In this paper, we therefore
target the additional consideration whether some, a priori unknown, but
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physically-realizable, observer is able to reach the same conclusion.
We propose to address the gap between using a single, physically-

realizable observer on the one hand, and joint methods using many
observers on the other hand, via an interactive framework for 2D un-
steady flow that (1) employs only physically-realizable observers; and
(2) enables users to explore arbitrary sets of observers together with
the flow phenomena they perceive, in order to ultimately determine a
set of observers that is sufficient to detect and visualize all structures
of interest. A crucial property of our framework is that we enable
interactively choosing, averaging, and interpolating observers, coupled
with interactive observer-relative visualization and feature detection.

1.1 Mathematical Framework
Before introducing our framework, we first briefly introduce several
crucial concepts that are not standard in the flow visualization literature.
We refer to later sections as well as the appendixes in the supplementary
material for details and more background on these concepts.

Physically-realizable observers. We call a reference frame that
is described by a time-dependent rigid motion a physically-realizable
observer, since every reference frame motion that can be carried out in
reality must preserve Euclidean distances [46] (neglecting relativistic
effects). The most important consequence of this fact in our context is
that we can thus model all such observers by vector fields that are the
derivatives of rigid motions, obtaining the motion via integration.

Killing vector fields. The derivatives of rigid motions are given by
Killing vector fields [32, 38], corresponding to the infinitesimal isome-
tries of a given manifold M. In our context, we focus on M being either
the plane R2 or the two-sphere S2, defining our domain for 2D un-
steady flow fields. Corresponding to the notion of physically-realizable
observers, we can therefore describe all possible observer motions by
(time-dependent) Killing vector fields. Every motion described by a
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Fig. 2. Observer representation. Any physically-realizable observer is determined by a time-dependent Killing field (x, t) 7→ w(x, t) = a(t)e1(x)+
b(t)e2(x)+ c(t)e3(x). The basis vector fields e1 (purple), e2 (yellow), and e3 (cyan) are steady vector fields that do not change over time. Any possible
(time-dependent) observer wi is solely determined by a time-dependent function t 7→ (ai(t),bi(t),ci(t)) of three scalar coefficients (ai,bi,ci) per time t.

Killing field is guaranteed to be physically realizable. Any observer
that cannot be modeled by a Killing field is not physically realizable.

Lie algebra of observer motions. A Lie algebra [12] is a vector
space, of abstract vector objects with scalar multiplication and vector
addition, plus an additional vector product, the Lie bracket [·, ·]. In our
context, however, each vector (element) of a Lie algebra represents an
entire vector field on the underlying manifold M. This enables us to
represent all physically-realizable observer motions as elements of the
Lie algebra of Killing fields on the manifold M. Most importantly, as
a vector space, every Lie algebra has a basis. Therefore, any observer
motion can be given as a linear combination of basis Killing fields.

Notation. We denote vectors and vector fields in bold, like v, u, and
real numbers as well as spatial points in non-bold, like a, t, or x ∈ M.

Our framework
For both the manifolds M = R2 and M = S2, respectively, the Lie alge-
bra of physically-realizable observer motions is three-dimensional (as a
vector space). Thus, all possible observer motions are fully determined
by coefficients referred to a three-dimensional basis. We choose a fixed
basis of three basis Killing vector fields {e1,e2,e3} on M, and represent
every possible observer motion by three real coefficients (a,b,c) for
each time t. Any observer is therefore determined by a function

t 7→
(
a(t),b(t),c(t)

)
. (1)

The corresponding observer motion is given by a time-dependent
Killing vector field w, determining the motion via its derivative, as

(x, t) 7→ w(x, t) = a(t)e1(x)+b(t)e2(x)+ c(t)e3(x). (2)

See Fig. 2. This representation enables averaging, interpolating, and
comparing observers simply via their coefficients given by Eq. 1.

1.2 Interactive Exploration Pipeline
Fig. 3 depicts an overview of our interactive exploration framework.
The goal is to explore an arbitrary, unsteady input flow field v. However,
in order to do so, we want to be able to use an arbitrary reference frame,
relative to which the field v is visualized, and features such as vortices
can be computed objectively. To facilitate this, the second input to our
system is another unsteady flow field u, which is used with the seman-
tics of an observer field [18]. We can initialize the field u by computing
(or loading) the solution of an objective optimization [14,18,39], but we
can also simply use the field u := v. The latter can be used to “extract”
observers from the input field v itself. Independent of how the observer
field u is initialized, our framework represents all observers w by func-
tions t 7→ (a(t),b(t),c(t)) (Eq. 1), determining observers by either (1)
extraction from the observer field u; or (2) averaging or interpolation of
already known observers. When an observer is chosen interactively, the
input field v can immediately be visualized relative to it. Furthermore,
we can visualize the functions t 7→ (a(t),b(t),c(t)) as curves in the
three-dimensional parameter space (a,b,c)⊂ R3 (Fig. 3 (center)).

1.3 Observers and Objectivity
A fundamental property of our framework is that we determine ob-
servers objectively, in the sense that all possible observers agree on
which specific reference frame motions were chosen1. This has the con-
sequence that properties of the input field computed relative to any one

1We call these objectively-determined observers. This is not a standard term,
but it captures the concept well. Appendix B provides a detailed discussion.

such observer are objective. Furthermore, because all our observers are
physically realizable, these properties are therefore also physically ob-
servable. Our observers are determined objectively because we “extract”
them along path lines of the observer field u, which are Lagrangian and
thus objective [21], and because of a crucial theorem about Killing fields
(Theorem 3.2). However, this only holds when all possible observers
do, in fact, agree on the motion described by the field u. This is trivially
the case when we choose u := v. Crucially, however, the same is true
when u is computed via objective optimization, as those of Günther et
al. [14], Hadwiger et al. [18], or Rautek et al. [39]. Furthermore, we
allow determining new observers by averaging or interpolation of a set
of observers. If the latter are all objectively determined, the resulting
new observer is again objectively determined. For more details and
some subtleties, we refer to Appendix B (supplementary material).

1.4 Contributions
We propose the first framework for the interactive, objective explo-
ration of unsteady 2D flow from the perspective of a set of physically-
realizable observers. In contrast to prior work that uses a large number
of observers jointly, such as one observer per space-time grid point [14],
or a continuous field of observers [18, 39], we focus on facilitating vi-
sualization and feature detection with respect to individual observers.

In particular, we for the first time (1) enable the interactive selection,
comparison, and user evaluation of objective vortex structures relative
to an interactively-chosen and modified set of physically-realizable
observers; (2) define a novel mathematical framework that enables the
efficient manipulation of observers by expressing all possible observer
motions in the same basis of vector fields for the corresponding Lie
algebra; (3) describe how previous methods integrate with our interac-
tive framework; and (4) leverage the Lie algebra of observer motions to
treat flow fields in 2D flat space and the curved surface of a sphere, e.g.,
for geophysical flow fields, respectively, in a conceptually unified way.

2 RELATED WORK

Flow visualization is one of the core topics of scientific visualization,
and many techniques have been developed over the years to visual-
ize flow fields, for example LIC for steady (time-independent) flow
fields [8], or texture advection methods for unsteady (time-dependent)
flow fields [25,47], as well as the visualization of integral curves [26,49].
Instead of flow visualization in general, in this section we focus on
related work whose specific aspects are most relevant to our work.

Reference frames. Flow fields are velocity vector fields, and there-
fore they can only be given with respect to a frame of reference, or
an observer. One important area where this fact is important is in the
detection and visualization of vortices, where it has become a major con-
sideration when evaluating different vortex detection methods [17, 19].
A crucial notion is that of the invariance of a given method with respect
to a particular kind of reference frame transformation, for example
Galilean invariance [48], rotation invariance [15], or invariance relative
to rigid motions [19]. The latter is known as objectivity [19] or frame in-
difference [46], originally defined in continuum mechanics [22, 33, 46],
and recognized to be of fundamental importance for vortex detection
more recently [14, 17, 19, 21], although used earlier as well [1, 11].

Multiple reference frames. Most commonly, only a single reference
frame is considered for flow visualization or computational tasks such
as vortex detection. Several recent methods, however, jointly consider
multiple reference frames, such as averaging observers related to a
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Fig. 3. Interactive exploration pipeline. The input to our system consists of two unsteady vector fields: the input flow field v, and an observer
field u. The observer field can be computed via objective optimization [14,18], or can be initialized to u := v (to extract observers from the input field).
Observers are extracted from the field u, representing each corresponding Killing field w by a function t 7→ (a(t),b(t),c(t)). New observers can be
generated by averaging or interpolation. When an observer is selected, the input field v can be visualized interactively relative to that observer.

finite set of Galilean-invariant critical points [7], one observer per point
in space-time [14], or a continuous field of observers [18, 39].

Vortex detection. Vortices are important features in flow visualiza-
tion [17] and fluid mechanics [41]. There is no single, well-defined
notion of a vortex, but they are usually seen as a swirling motion around
a central region [1, 10, 29, 40]. Earlier methods have often used only
spatial (in contrast to time) derivatives, e.g., the well-known methods
of Okubo [34] and Weiss [50], Sujudi and Haimes [44], the Q Criterion
of Hunt et al. [23], or the λ2 criterion of Jeong and Hussein [24], which
can lead to challenges for unsteady flow. One reason for this is that
many early methods are partially based on critical point theory of steady
vector fields [36,37]. Later extensions were improved for unsteady flow,
e.g., with Galilean invariance [42, 48], often building on the parallel
vectors operator [35] or a predictor-corrector approach [5]. Criteria can
be grouped into line-based vs. region-based techniques [17], the latter
often including the detection of region boundaries [13, 21]. The objec-
tivity of vortex criteria is now seen to be a crucial desired property of
vortex detectors [14, 17, 19, 21]. One particular recent example that we
also use is the Lagrangian-Averaged Vorticity Deviation (LAVD) [21].

Generic objectivization. A recent idea for developing vortex de-
tection methods that are objective is to solve an optimization problem
that enables generically “objectivizing” non-objective vortex crite-
ria [4, 14, 16, 18, 39]. All of these approaches perform objective com-
putations that define a large number of observers. The motivation for
this is the well-established understanding that for many flow fields a
single observer is not able to depict all vortices of interest [29]. How-
ever, while the objectivity of these approaches guarantees that any
physically-realizable, i.e., rigidly-moving, observer will reach the same
conclusions regarding the “joint” detection of vortices, none of these
methods guarantees that there is one physically-realizable observer that
by itself (i.e., not jointly) would have computed the same vortex using
physically-motivated criteria. While this does not change the fact that
the above methods are provably objective [14, 18, 39, 45], recent work
has argued that physical criteria should also be used to determine the
validity and consistency of vortex detection [20]. In this work, we ap-
proach this problem from a different perspective to try and combine the
advantages of both viewpoints: We enable the interactive exploration of
multiple, objectively-determined observers, but allow users to choose
specific, physically-realizable observers for actual vortex detection and
visualization. In this way, physically-motivated criteria fully apply.

Killing vector fields. The properties of Killing fields are often
explored in Riemannian geometry [9, 32, 38]. They have been used
explicitly in geometry [6, 28, 31, 43], including vector field design on
curved surfaces [2, 3], and recently also in flow visualization [18, 39].

3 OBSERVERS AND SETS OF OBSERVERS

Our approach is based on a set of physically-realizable observers. In
this section, we describe how these observers are modeled as Killing
vector fields, and how the corresponding description can be extracted
from any given input observer velocity field u (Fig. 3, bottom left).

3.1 Physically-Realizable Observers
The central basic notion of this paper is given by the following

Theorem 3.1. An observer is physically realizable if its time-dependent
motion relative to any other physically-realizable observer is a rigid
motion, i.e., if the map between the two reference frames is an isometry.

This basically means that every rigid reference frame motion corre-
sponds to a physically-realizable observer. The reason for the “circular”
argument above is that all motion is relative, and thus for a rigid motion
to in fact describe a physical observer, the background reference frame
(e.g., the lab frame) must already be known to be physically realizable.
In terms of our input field v, this means that the whole field must have
been measured relative to the same, physically-realizable observer.

Killing vector fields
A vector field x 7→ w(x) is a Killing field, if its (spatial) velocity gradi-
ent ∇w is identically anti-symmetric. That is, when for w we have

⟨∇w(x),x⟩= 0. (3)

This must hold at all points x ∈ M, for all vectors x. Eq. 3 is valid for all
manifolds M, with ∇w the covariant derivative of w (in components,
∇ jwi; see Rautek et al. [39] for details). For M = R2 with Cartesian
coordinates, ∇w is simply a Jacobian matrix ∂ jwi of partial derivatives.

Time-dependent Killing fields
We define a time-dependent Killing field with the properties given
above to hold for each fixed time t, giving a time-dependent field

(x, t) 7→ w(x, t). (4)

Corollary 3.1. A time-dependent Killing field w(x, t) gives the deriva-
tive of a time-dependent rigid motion. Therefore, it corresponds to a
physically-realizable observer, defined by integrating the Killing field.

As above, it is important that w is measured relative to a physically-
realizable observer. We will also exploit the following important

Theorem 3.2. A Killing field w is uniquely defined by: (1) a single
vector w(x) at an arbitrarily chosen point x ∈ M, and (2) the corre-
sponding (anti-symmetric) velocity gradient (∇w)x at the same point x.
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Fig. 4. Vortex on the sphere. We exploit the same 3D vector space structure of the Lie algebra of observer motions on spherical domains as in the
plane. Here, we smoothly interpolate between two observers, the input lab frame (left) and an objectively-determined observer [39] (right), smoothly
“shifting” the observed field and the contained vortex until the latter becomes visible (right). (The axis orthogonal to the sphere corresponds to time.)

This is a well-known property of Killing fields [38, p.315]. However,
this property is crucial to objectively “extracting” physically-realizable
observers from the methods described in prior work [14, 18, 39], and
converting them to the representation of our framework. See Sec. 3.3.

3.2 The Lie Algebra of Observer Motions
We exploit that the Lie algebras of Killing fields on our manifolds M of
interest, the plane R2 and the sphere S2, are three-dimensional vector
spaces, and thus have 3D vector space bases. (See also Appendix A.)

Dimensionality and basis expansion
It is crucial to note that the Lie algebra of Killing fields is a vector space
of vector fields, i.e., each element (abstract vector) of this vector space
is itself a whole vector field on the underlying manifold M. It is also in
this sense that the Lie algebras that we use are three-dimensional: Each
Killing field can be referred to a basis comprising three basis vector
fields, each weighted by a scalar coefficient. We have the following

Theorem 3.3. A Killing field w on a manifold M is uniquely defined
by a spanning set of basis Killing fields {ei} and the corresponding set
of coefficients {wi}. The Killing field w is then given as w = ∑i wi ei.

In this paper, all vector spaces of Killing fields are three-dimensional,
and we will therefore only need three coefficients wi, which we will
instead denote by a := w1,b := w2,c := w3, or collectively by (a,b,c).

Inner products of vector fields
To be able to determine orthogonality of basis functions as well as for
comparing observers by comparing their corresponding Killing fields,
we will make use of an inner product between vector fields, defined
on the Lie algebra of observer motions. We define the inner product
between two (Killing) vector fields w1 and w2, with domain D, by

⟨⟨w1,w2⟩⟩ :=
∫

D
⟨w1,w2⟩x dA. (5)

Here, the usual inner product in the tangent space at each point x ∈ D is
denoted by ⟨·, ·⟩x, and dA denotes integration over area elements. This
inner product is defined with respect to a domain D ⊆ M. For M = S2,
we use D = S2, because S2 is compact and the integral is therefore
guaranteed to be finite. For M = R2, we typically integrate over a
compact rectangular subdomain D = [xa,xb]× [ya,yb]⊂ R2.

Efficient computation of inner products
Instead of computing the above integrals for every arbitrary pair of
observers (w1,w2), we can exploit the vector space structure of the
Lie algebra of Killing fields. From this structure, we know that every
Killing field can be written as a linear combination w = ∑i wi ei, where
the ei are basis Killing vector fields on the manifold M. Using the inner
product ⟨⟨·, ·⟩⟩ between two vector fields given by Eq. 5, we can define
a metric tensor gi j of Killing vector fields, given by the components

gi j := ⟨⟨ei,e j⟩⟩. (6)

Given this metric tensor, we can then compute the inner product be-
tween any two Killing fields simply from their components as

⟨⟨w1,w2⟩⟩= ∑
i, j

gi j wi
1w j

2. (7)

For more details, we refer to Appendix C (supplementary material).

Basis Killing fields in the Euclidean plane
The Lie algebra of Killing fields on M = R2 is three-dimensional, and
we construct the following three linearly-independent basis Killing
fields in R2, where the vectors at any point x = (x̂, ŷ) ∈ R2 are

e1(x̂, ŷ) =
[

1
0

]
, e2(x̂, ŷ) =

[
0
1

]
, e3(x̂, ŷ) =

[
0 −1
1 0

][
x̄
ȳ

]
. (8)

See Fig. 2. For the field e3, corresponding to v being given on a rectan-
gular domain D = [xa,xb]× [ya,yb]⊂ R2, with center point (x̂0, ŷ0) =
1
2 (xa + xb,ya + yb), we have defined (x̄, ȳ) := (x̂− x̂0, ŷ− ŷ0).

Each basis element must be a Killing field. To confirm, we compute

∇e1 = 0, ∇e2 = 0, ∇e3 =

[
0 −1
1 0

]
. (9)

Therefore, Eq. 3 indeed holds for all fields ei, i.e., we have

⟨∇ei(x),x⟩= 0, (10)

for all i ∈ {1,2,3}, and for all vectors x, at all points x ∈ M = R2.
Using this basis, we can therefore write any Killing field w on M =

R2 as w = ae1 +be2 + ce3, with three coefficients (a,b,c). We note
that, due to this particular choice of basis, (a,b) have the meaning of
a linear velocity vector (given with two Cartesian components), and
the third coefficient c has the meaning of angular velocity.2 In fact, the
linear velocity is the same constant vector at all points x ∈ R2.

Orthogonality. Due to symmetry, this basis is orthogonal for a
rectangular domain of integration with (x̂0, ŷ0) chosen in the cen-
ter, where, in particular, we have ⟨⟨e1,e3⟩⟩ = ⟨⟨e2,e3⟩⟩ = 0, because
⟨e1(x̄, ȳ),e3(x̄, ȳ)⟩ = −⟨e1(−x̄,−ȳ),e3(−x̄,−ȳ)⟩, and likewise for the
fields e2 and e3. The orthogonality ⟨⟨e1,e2⟩⟩= 0 immediately follows
from the orthogonality ⟨e1(x̂, ŷ),e2(x̂, ŷ)⟩= 0 at every point (x̂, ŷ).

See Eq. 5 for the definition of the vector field inner product ⟨⟨·, ·⟩⟩.

Basis Killing fields on the sphere
The Lie algebra of Killing fields on M = S2 is also three-dimensional.
We construct the following three basis Killing fields for the two-sphere
S2 := {(x̂, ŷ, ẑ)|x̂2 + ŷ2 + ẑ2 = 1} embedded in R3, where the vectors at
any point x = (x̂, ŷ, ẑ), as elements of the tangent space embedded in R3

at that point, are given by (see Fig. 10 in the supplementary material)

e1(x̂, ŷ, ẑ) =

0 0 0
0 0 −1
0 1 0

x̂
ŷ
ẑ

 , e3(x̂, ŷ, ẑ) =

0 −1 0
1 0 0
0 0 0

x̂
ŷ
ẑ

 ,
e2(x̂, ŷ, ẑ) =

 0 0 1
0 0 0
−1 0 0

x̂
ŷ
ẑ

 .
(11)

Using this basis, we can write any Killing field w on M = S2 as w =
ae1 + be2 + ce3, with three coefficients (a,b,c). We note that, due
to the above choice of basis, the coefficients (a,b,c) determine a 3D
angular velocity vector, and ω2 := a2 +b2 + c2 is the corresponding

2As for any vector space, other bases are of course also possible. Here then,
however, no single coefficient would be the angular velocity. See Appendix A.
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Fig. 5. Beads flow. (Original; a, b) The input flow field (vertical axis is time) contains rotational as well as contracting motion (negative divergence).
However, using our framework one can determine that all rotational parts of this field can be fully explained by a rotating reference frame. (Divergence-
free; c, d) Observer exploration enables us to see that, in fact, this flow field is itself a Killing field. Thus, the input field (c) can be explained purely by
a moving reference frame observing a 0-field (d). This indicates that this field does not contain any intrinsic motion, beyond the motion of an observer.

(squared) angular velocity (magnitude). Since Eq. 3 is intrinsically
defined in each tangent space, to see that the 2D tensors ∇ei are anti-
symmetric, we must compute the covariant derivatives ∇ei at all x ∈ S2.
Using a right-handed orthonormal basis in each tangent plane, they are

(∇ei)x =

[
0 −cosϕi(x)

cosϕi(x) 0

]
. (12)

Here, the angle ϕi(x)∈ [0,π] is the colatitude of x away from the “north
pole” of the respective ei, i.e., x̂ = 1 for e1, ŷ = 1 for e2, ẑ = 1 for e3.
Therefore, Eq. 3 again holds for all ei, i.e., ⟨∇ei(x),x⟩= 0 for all x.

Orthogonality. This basis is also orthogonal, i.e., ⟨⟨ei,e j⟩⟩= 0 for
all i ̸= j. This can be confirmed by analytic integration over the sphere.

Representation of observers
We define an observer as the time-dependent, rigid reference frame
motion given by a time-dependent Killing field w. Instead of storing
an explicit vector field (x, t) 7→ w(x, t) for each observer, we store
observers with respect to a chosen basis of Killing fields. While in
principle this basis is arbitrary, we use the basis vector fields given
by Eq. 8 (for Euclidean domains M = R2), and Eq. 11 (for spherical
domains M = S2), respectively. Any given observer w is thus given by
a function t 7→ ((a(t),b(t),c(t)) (Eq. 1), which at any time allows us to
obtain the corresponding time-dependent Killing field w from Eq. 2.

Comparing observers
We exploit the low-dimensional (in our case, three-dimensional) vector
space structure of Killing vector fields in order to efficiently quantify
the similarity of two observers given as time-dependent Killing fields.

First, from the definition of the inner product of two vector fields
given by Eq. 5, we can define the difference between two arbitrary
(time-independent) Killing fields as the scalar-valued distance function

d(w1,w2) :=
√

⟨⟨w1 −w2,w1 −w2⟩⟩. (13)

This definition in fact defines a metric on the vector space of all Killing
fields in the domain D ⊆ M, where we want to compare observers. For
time-dependent Killing fields w1(x, t) and w2(x, t), we now define

d(w1(t),w2(t); t0, t1) :=
∫ t1

t0
d
(
w1(t),w2(t)

)
dt. (14)

Here, we have integrated over a desired time window [t0, t1], over which
we want to compare the two observers. The rationale for this definition
is simply that we integrate the per-time distance values over a time
window of interest, in order to quantify the “total” difference between
the two observers over that time window. (Longer time windows, in
general, give larger distances, when the two fields are different.)

We note that when both w1 and w2 are objectively-determined ob-
servers, then both distance functions above give objective scalars.

3.3 Determination of Observer Sets
We can store a set of observers by storing multiple observers, each
represented by a function t 7→

(
a(t),b(t),c(t)

)
, as above (Eq. 1).

However, we can also “extract” an arbitrary number of observers
from a given vector field, which we will refer to as the observer field u.

Observer world lines

Theorem 3.2 shows that an observer can also be specified by a function

t 7→
(
x(t),w

(
x(t), t

)
,
(
∇w
)
(x(t),t)

)
, (15)

where t 7→ x(t) is an arbitrary path on the manifold M, and we prescribe
the corresponding vectors w, and tensors ∇w along this path. Although
compared to Eq. 1, the above representation requires more storage, this
way of specifying Killing fields enables the following general approach
for extracting observers from a given observer velocity field u.

Observer world lines from observer fields

It is possible to avoid storing the path t 7→ x(t) in the previous definition
by defining it as the path line of a vector field u(x(t), t) given along the
path x(t), which is obtained by solving the non-autonomous ODE

d
dt

x(t) = u
(
x(t), t

)
, (16)

with an initial value x(t0), i.e., some chosen position on the path line
t 7→ x(t) at time t = t0, for some chosen time t0. We call this path t 7→
x(t) a world line [18] of the corresponding observer. In order to extract
an observer, at each time t we refer to the corresponding point x(t).

Extraction from observer field in the Euclidean plane

Given a single vector u(x) and the velocity gradient
(
∇u
)

x at any
point x ∈ M = R2, we can extract the coefficients of the corresponding
Killing field w, with respect to the basis fields {e1,e2,e3} (Eq. 8), as

∇w =
1
2

(
(∇u)x − (∇u)T

x

)
=

[
0 −c
c 0

]
, u(x)+∇w(r) =

[
a
b

]
. (17)

We define r := (x̂0 − x̂, ŷ0 − ŷ)T , with (x̂, ŷ) the Cartesian coordinates
of the point x, and (x̂0, ŷ0) the center point used in the definition of
the basis vector field e3. The coefficients (a,b,c) now determine the
Killing field w = ae1 +be2 + ce3, referred to the basis given in Eq. 8.

Extraction from observer field on the sphere

Given a single vector u(x) and the covariant derivative
(
∇u
)

x at any
point x ∈ M = S2, we can extract the coefficients of the corresponding
Killing field w, with respect to the basis fields {e1,e2,e3} (Eq. 11),
using the following approach. Referring to the point x ∈ S2 as the
position vector r(x) := (x̂, ŷ, ẑ)T in Cartesian coordinates, we can define
the following orthonormal basis, written as column vectors of the matrix

B̂ :=
[

x z×x z
]
, x := u(x)/∥u(x)∥, z := r(x). (18)

When ∥u(x)∥ = 0, x can be any unit vector in the tangent plane at x.
Given the covariant derivative ∇u in components as ∇ jui in some coor-
dinate chart with tangent space basis {b1,b2} at x, and the coordinate
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Fig. 6. Cylinder flow. The vortex structures in this data set are short-lived. They appear and disappear frequently over time. In the input lab frame (a)
different vortices overlap (over time) around the same spatial position and appear to be the same vortex. We interpolate (a-d) between the lab frame
and an objectively-determined constant-velocity observer that “comoves” with the vortices, revealing them more clearly. The insets depict observer
world lines. Time corresponds to the vertical axis and is also color-coded to help highlight how individual vortices appear and disappear over time.

Jacobian J transforming from that basis to the basis B̂, we can compute3

∇ jûi = J
(

∇ jui
)

J−1, ∇ jŵi =
1
2

(
∇ j ûi −∇iû j

)
=

[
0 −ĉ
ĉ 0

]
. (19)

Given the chart tangent space basis {b1,b2}, embedded in R3, the
Jacobian J is given by the top-left 2×2 submatrix of the 3×3 matrix

Ĵ = B̂T [ b1 b2 z
]
. (20)

From the obtained ĉ, and the length b̂ := ∥u(x)∥, we can now compute

K̂ =

 0 −ĉ b̂
ĉ 0 0

−b̂ 0 0

 , K = B̂ K̂ B̂T =

 0 −c b
c 0 −a

−b a 0

 . (21)

The coefficients (a,b,c) obtained from the matrix K now determine the
Killing field w = ae1 +be2 +ce3, referred to the basis given in Eq. 11.

For completeness, we note that here b̂ = ω sinϕ and ĉ = ω cosϕ ,
where ω2 = b̂2 + ĉ2 = a2 +b2 + c2 is the (squared) angular velocity of
the global rotation of the sphere given by w, with ϕ the colatitude of x
relative to the critical point of w that is the “north pole” of the rotation,
i.e., the point (x̄, ȳ, z̄)T = (a,b,c)T /∥(a,b,c)T ∥, defined when ω ̸= 0.

4 OBSERVER AVERAGING AND INTERPOLATION

Using the vector space structure of all observer Killing fields, we can
directly average a set of observers and interpolate between observers.

4.1 Observer Averaging
Given a set of observers {wi}i∈I with the index i ∈ I from some index
set I, considering the vector space structure of the space of all observers,
we can simply define the average observer of this set of observers as

t 7→
(
ā(t), b̄(t), c̄(t)

)
:=

1
|I|

(
∑
i∈I

ai(t),∑
i∈I

bi(t),∑
i∈I

ci(t)

)
, (22)

where |I| is the cardinality of the index set I. If I is a whole region of a
manifold M instead of a discrete set, we define the above average with
integrals instead of sums, and the cardinality for normalization by an
appropriate measure of the set I, e.g., the area measure on M.

Sec. 6.3 describes an application of this averaging technique, applied
over a region I =U(t)⊂ R2, with the standard area measure on R2.

4.2 Direct Observer Interpolation (Blending)
Given two observers w1 = a1 e1+b1 e2+c1 e3 and w2 = a2 e1+b2 e2+
c2 e3, we can directly interpolate between them via (α ∈ [0,1])

w(t;α) =
(
(1−α)a1(t)+α a2(t)

)
e1+(

(1−α)b1(t)+α b2(t)
)

e2+(
(1−α)c1(t)+α c2(t)

)
e3.

(23)

3We note that the anti-symmetrization used here depends on the fact that the
basis B̂ is orthonormal, and hence the corresponding metric tensor is the identity.
Otherwise, ∇ jui and the metric gi j would have to be used explicitly. See [39].

Due to the linearity of the Lie algebra of Killing fields, this works for
both M = R2 and M = S2, by using the corresponding basis {ei}.

See Fig. 6 for an example, where we directly interpolate between
the (input) lab frame observer (given by the observer field u = 0)
and an observer “comoving” along with the vortices. (However, see
Appendix B for additional discussion on using the lab frame observer.)

4.3 Observer Interpolation Along a Path
Given an arbitrary observer field u, we can pick two points x1(t) ∈ M
and x2(t) ∈ M, respectively, for an arbitrarily chosen fixed time t.
We can then extract observers corresponding to any interpolated
point x(t;α)∈M, in between the two points. For simplicity, for M =R2

we connect the two points by a line segment, obtaining

x(t;α) = (1−α)x1(t)+α x2(t), 0 ≤ α ≤ 1. (24)

For M = S2, the linear connection between the two points does not
exist on the sphere, and we therefore use the geodesic arc between x1(t)
and x2(t) instead, again interpolating according to α ∈ [0,1].

See the accompanying paper video for examples.

5 OBSERVER-RELATIVE QUANTITIES

We want to be able to interactively compute the observed input vector
field v and its derivatives, relative to the rigid motion described by w.
In terms of the observer w given by the function t 7→ (a(t),b(t),c(t)),
below we will make use of the following expansions and derivatives,

w(x, t) = a(t)e1(x)+b(t)e2(x)+ c(t)e3(x),
∇w(x, t) = a(t)∇e1(x)+b(t)∇e2(x)+ c(t)∇e3(x),

∂w(x, t)
∂ t

=
da(t)

dt
e1(x)+

db(t)
dt

e2(x)+
dc(t)

dt
e3(x).

(25)

5.1 Reference Frame Transformation
In order to transform between two reference frames, we define a
time-dependent diffeomorphism t 7→ φt , with each diffeomorphism,
for fixed t, mapping from M to M, i.e., φt : M → M. For physically-
realizable observers, each diffeomorphism φt is in fact an isometry.

For M = R2, the isometry φt can be written explicitly as

φt(x) = w(t)+Q(t)
(
x−w(t0)

)
, (26)

where w(t0) is some arbitrary position at t = t0, and each Q(t) is a
rotation tensor. In Cartesian coordinates, the rotation Q(t) is given by

Q(t) =
[

cosθ(t) −sinθ(t)
sinθ(t) cosθ(t)

]
. (27)

The path t 7→ w(t) and the integrated angle θ(t) are the solutions of

d
dt

w(t) = w
(
w(t), t

)
,

d
dt

θ(t) = c(t), (28)

with θ(t0) = 0. We can solve these two ODEs explicitly by

w(t) = w(t0)+
∫ t

t0
w
(
w(τ),τ

)
dτ, θ(t) =

∫ t

t0
c(τ)dτ. (29)
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Fig. 7. Four centers. (a,b) LAVD [21] and λ2 vortex core lines agree (vertical axis is time). (c) Vortex core lines observed relative to an observer w
selected from an observer field u computed via optimization [18]. (d) Observed path lines swirling around the core lines using variance color-coding.

To transform vectors and tensors with the diffeomorphism φt , we use
the pullback φ∗

t . On M = R2, the pullback φ∗
t x of a vector field x is

φ
∗
t x = QT (t)x. (30)

The pullback φ∗
t T of a second-order tensor field T (a linear map) is

φ
∗
t T = QT (t)TQ(t). (31)

For details on diffeomorphisms and pullbacks, and explicit formulas
for M = S2, we refer to Appendixes D and E (supplementary material).

5.2 Observed Velocity
The observed velocity, with respect to the observer w, is obtained as

v∗ = φ
∗
t (v−w) . (32)

This velocity is of particular importance for vortex detectors that search
for critical points of the velocity field, i.e., in this case the critical points
of v∗. In terms of the observer w as t 7→ (a(t),b(t),c(t)), this becomes

v∗ = φ
∗
t
(
v−a(t)e1 −b(t)e2 − c(t)e3

)
. (33)

5.3 Observed Velocity Gradient
The observed velocity gradient, with respect to the observer w, is

∇v∗ = φ
∗
t
(
∇v−∇w

)
. (34)

This velocity gradient is of particular importance for all vortex detectors
that compute its eigenvalues and determine vortex-like behavior only
when there are complex eigenvalues (2D: one conjugate complex pair).
For these criteria, the relevant eigenvalues are therefore those of ∇v∗.

In terms of the observer w as t 7→ (a(t),b(t),c(t)), this becomes

∇v∗ = φ
∗
t

(
∇v−a(t)∇e1 −b(t)∇e2 − c(t)∇e3

)
. (35)

5.4 Observed Time Derivative
The observed time derivative [18,39], with respect to the observer w, is

∂v∗

∂ t
= φ

∗
t

(
D

Dt
(v−w)

)
,

= φ
∗
t

(
∂v
∂ t

− ∂w
∂ t

+∇v(w)−∇w(v)
)
.

(36)

In terms of the observer w as t 7→ (a(t),b(t),c(t)), this becomes

∂v∗

∂ t
= φ

∗
t

(
∂v
∂ t

− da(t)
dt

e1 −
db(t)

dt
e2 −

dc(t)
dt

e3+

∇v
(
a(t)e1 +b(t)e2 + c(t)e3

)
−(

a(t)∇e1 +b(t)∇e2 + c(t)∇e3
)

v
)
.

(37)

See Appendix F (supplementary material) and previous work [18, 39]
for more on observed time derivatives. In addition, we give equations
for the observed acceleration in Appendix G (supplementary material).

6 DETERMINING OBSERVERS FROM PRIOR METHODS

We now demonstrate the generality and versatility of our framework
by describing how observers can be defined via (1) Extraction from a
globally optimized, continuous field of observers [18,39]; (2) Extraction
from separate observers optimized at each space-time point [14]; (3)
Replication of Lagrangian-Averaged Vorticity Deviation (LAVD) [21]
in our framework, relative to a special objectively-determined observer.

6.1 Observer Fields from Global Optimization

A directly suitable choice for the observer field u required by our
framework are the observer fields computed by global optimization
methods in the plane [18], or on the sphere [39], respectively. We have
used this approach in the results shown in Fig. 4, Fig. 7, and Fig. 9.

6.2 Observer Fields from Generic Objective Vortices

In order to obtain a valid observer field from the generic objective
vortices method of Günther et al. [14], we first use their optimization
method to compute an optimal, objective field v̄ (Eq. 20 in [14]). From
the objective field v̄, we then compute a smooth observer field u as

u := v− v̄. (38)

This simple approach allows us to directly use the objective optimiza-
tion method of Günther et al. [14] as an input to our framework. We
have computed the observer field used in Fig. 1 with this approach.

We note that the above approach is objective and can indeed be used
to obtain a valid observer field u, despite the fact that the optimiza-
tion [14] computes a different observer for each point in space-time.
Since the objective vector field v̄ is defined at each space-time point,
the observer field obtained via Eq. 38 describes valid, smooth observer
motions. In fact, these motions are determined objectively, because the
vector v̄ at each point in space-time is objective [14], and thus the corre-
sponding velocities u are determined objectively. The obtained field u
then enables the extraction of observers using our framework. We note,
however, that, in general, we do not extract the exact same observers
that are used for vortex detection in [14], because the derivatives given
in [14] do not correspond to the field u that we obtain via Eq. 38.

6.3 Observers for Lagrangian-Averaged Vorticity Deviation

Our framework can be used to compute results equivalent to the LAVD
method by Haller et al. [21], in the following way. See Fig. 7.

We define an observer w, for M = R2, via t 7→ (a(t),b(t),c(t)), by
setting a(t) = b(t) = 0, and defining c(t) := ω̄(t). Here, we set the
angular velocity ω̄(t) to half the average vorticity magnitude4 of a
chosen region U(t) ⊂ R2 of the flow field v, as defined by Haller et
al. [21]. As Haller et al., we assume that the region U(t) is invariant
under the flow of v, i.e., the region is deformed over time by the flow
(map) of v. We can then obtain the same scalar field as the LAVD
field defined by Haller et al. [21], by simply integrating the observed
vorticity magnitude, as observed by the observer w, along path lines of
the field v in the same region U(t) used for computing ω̄(t). We can

4We note that the different definitions of angular velocity, vorticity (curl), and
the vorticity tensor, require divisions or multiplications by two for conversion.



obtain the observed vorticity from the observed velocity gradient ∇v∗
(Sec. 5.3), given by Eqs. 34, 35, giving the observed vorticity tensor as

ΩΩΩ
∗ =

1
2

(
∇v∗− (∇v∗)T

)
. (39)

We note that due to our definition of the observer w, the observed
vorticity magnitude is identical to the instantaneous vorticity deviation
(IVD) of Haller et al. [21], and therefore its integral along path lines is
identical to LAVD. However, we do not need to explicitly compute the
deviation of vorticity from the average vorticity, as Haller et al. [21] do:
The vorticity that we integrate is simply the regular vorticity magnitude
observed by w. Nevertheless, the resulting LAVD scalar field is the
same, because the observer w is rotating with the average angular veloc-
ity ω̄(t), as defined by Haller et al. [21]. In this way, we gain additional
insight into the meaning of LAVD: It is, in fact, the (integrated) vorticity
magnitude seen by a particular, objectively-determined observer.

Averaging observers. We can gain even more insight from the
following formulation: Given the region U(t), we extract an observer
from the field u := v at every point x ∈ U(t), for fixed t, obtaining
a function t 7→ (ai(t),bi(t),ci(t)) for each i = x. We then define the
average observer w̄ over U(t) via Eq. 22, i.e., we average (ai,bi,ci),
over all i = x ∈U(t) to obtain t 7→ (ā(t), b̄(t), c̄(t)). If we project this
average observer to t 7→ (0,0, c̄(t)), this is the same observer that we
defined above via the average angular velocity ω̄(t). IVD and LAVD
can thus be formulated using the average observer of the region U(t),
followed by an appropriate projection. For our basis fields {e1,e2,e3},
c̄e3 contains the entire vorticity. We can thus either project to e3, or
notice that Eq. 39 is, in fact, independent of e1 and e2 (see Eq. 9).

7 IMPLEMENTATION AND PERFORMANCE

We have implemented our framework for interactive observer-relative
visualization in C++ and OpenGL.

7.1 Reference Frame Transformation
There are two major ways for the transformation of path lines of a
vector field from a given observer to another observer:

1. Transform the vector field, using Eq. 32, and integrate path lines
using the standard approach in the transformed vector field.

2. Transform the geometry (vertices) of path lines computed for one
observer to another observer, directly using the frame transforma-
tion given by the time-dependent diffeomorphism φt .

For best interactivity, for path lines we use the second approach above:
We first compute a set of path lines for the lab frame observer,

storing each path line as a vertex sequence [p1, p2, . . . , pk]. In order to
display the same path lines relative to any other observer, we simply
individually transform the spatial position of each vertex: For each
vertex pi, we obtain the transformed vertex via the inverse of the
diffeomorphism φt given by Eq. 26, i.e.,

p∗i = φ
−1
t (pi), with t = t(i). (40)

For M = R2, this is simply applying a rotation and a translation, for
each given time t. However, since each vertex pi on the path line
corresponds to a different time t, each vertex must be transformed with
the map φ

−1
t for a different time parameter t, which here we refer to

as t(i), i.e., the time parameter corresponding to vertex number i. See
Fig. 8 for an example for 1,200 path lines seeded on a regular grid.

For M = S2, we do the same with the map φt given in Appendix E.

7.2 Performance
Table 1 shows performance on a dual Intel Xeon 6230R (52 cores) and
an NVIDIA GeForce RTX 3090. We first integrate path lines for the
lab frame on the CPU, parallelized over all CPU cores, and then store
the resulting vertex array on the GPU. Table 1 (left) shows computation
times and overall throughput of vertices computed per second. When
integrating enough path lines in parallel we achieve more than 15M
vertices per second. For each time step, we typically compute two to

Table 1. Performance. Left half: path line integration, vertex throughput.
Right half: observer world line integration, sample throughput.

data set # path time vtxs # point time samples
lines [ms] per s samples [ms] per s

Four centers 64 26 15 M 6.28×102 6 100 K
256 83 19 M 6.28×103 12 509 K

1,024 238 27 M 6.28×104 87 723 K
Boussinesq 64 23 14 M 5×102 13 38 K

256 76 17 M 5×103 21 234 K
1,024 293 17 M 5×104 82 609 K

ten vertices. Every time the observer changes, we compute Eq. 29 on
the CPU, transfer the result to the GPU, and apply Eq. 40 to each vertex
in a vertex shader. Table 1 (right) shows the throughput of samples
along the observer world line. Overall, our system is fully interactive
and achieves 20–30 frames per second for observed path line rendering.
Performance mainly depends on the number of computed path lines
and the corresponding number of vertices, and not on the data set. See
Appendix H and I in the supplementary material for more details.

8 RESULTS

We demonstrate different aspects of our framework on analytically
defined test cases, and on numerically-simulated flow fields.

Cylinder flow (Fig. 6). The vortices behind a cylinder [27] in this
data set are short-lived, and new vortices develop periodically. We
demonstrate that a moving observer helps to produce a less obstructed
view of the individual vortices, using an observer given by a constant
velocity (translation). The vertical axis and the color map encode time
in this example. By animating the observer’s translation, we provide a
visual clue how the data observed in the lab frame is transformed into
the frame of a moving observer. The transition between the lab frame
and the final observer results from direct interpolation (Sec. 4.2).

Vortex street (cylinder) (Fig. 8). This numerical simulation of a
vortex street behind a cylindrical obstacle is an example for a flow
field that is easier to interpret in a moving reference frame. Unlike
other examples, here we have not computed an observer, but show
that simply extracting an observer from the ambient flow of the input
field v is enough to define a suitable observer. Fig. 8 shows snapshots
of the interpolation between lab frame visualization (top) to the co-
moving observer (bottom). We point out that, although the observer was
extracted along a path line in the input flow, our framework guarantees
that each individual frame of the sequence corresponds to a physically-
observable visualization, relative to a physically-realizable observer.

Fig. 8. Vortex street (cylinder). Changing the observer interactively (top
to bottom) allows revealing the vortices (bottom) obstructed in the lab
frame (top). (The vertical axis in each visualization corresponds to time.)



We automatically compute a color-coding based on the variance
of the spatial locations (relative to the chosen observer) of a particle
over time, along its path line. This highlights the centers of vortices,
provided that the chosen observer perceives the particle as swirling
around a mostly static center. Low variance is mapped to brighter hues
in the color map. This effect is clearly visible in Fig. 8 (bottom).

Bickley jet (Fig. 9). This data set [21] contains an analytically-
defined vortex street. Relative to a moving observer, the vortex struc-
tures become clearly visible. We compute the observer field u via global
optimization [18]. Fig. 9(a) shows path lines in the lab frame, Fig. 9(b)
shows observed path lines. We keep the color for each path line con-
stant (minimum observed variance) for the transformation sequence
(Fig. 9(a) to (b)). This demonstrates that color-coding is not enough to
show the vortex structures. The transformation of the pathlines achieves
a better visualization.

Four centers (Fig. 7). This data set by Günther et al. [15] contains
four centers that rotate around a common axis. We show that LAVD [21]
(color-coded) detects these four vortices, and compare LAVD with
vortex core lines computed with the λ2 criterion [24]. Figs. 7(a,b) show
that LAVD and the λ2 vortex cores agree. Fig. 7(c) shows the observed
vortex core lines relative to an observer that rotates along with the
vortices. We have computed this observer via global optimization [18]:
The observed vortex core lines stay in place. In this reference frame, it
is now trivial to verify that path lines seeded around the centers swirl
around the vortex cores (Fig. 7(d)). The color coding of the swirling
path lines in Fig. 7(d) is computed according to path line variance.

Beads flow (Fig. 5(a,b)). This flow was originally given by Wiebel et
al. [51]. We use the analytic version used by Weinkauf and Theisel [49]
and by Günther et al. [15]. It contains a contracting flow (a sink) that
rotates around a center as observed by the input lab frame. Fig. 5(a)
shows the input flow field, relative to the lab frame. Fig. 5(b) shows the
flow relative to an observer that rotates with constant angular velocity,
computed via optimization [18]. We see that all observed path lines are
now straight lines (depicted as “shadows”) that converge at the same
point. Moreover, using our framework we have found that all observers
extracted from the input field v perceive this flow field without any
rotational motion. They are, in fact, all rotating with the same angular
velocity. Since we have objectively determined observers that perceive
this flow without any rotational motion, we must conclude that all
observed rotation in this flow is solely due to the rotation of a reference
frame, and the flow itself does not contain intrinsic rotational motion.
(We note, however, that this is a purely kinematic judgement. In terms
of dynamics, a rotating frame and an inertial frame behave differently.)

Divergence-free beads flow (Fig. 5(c,d)). This field is a modifi-
cation of the original beads flow to make it divergence-free, used by
Günther et al. [15] as a test case for rotation-invariant vortex detection.
Using interactive observer exploration, we can see that the input flow
in Fig. 5(c) is in fact itself a Killing field: We choose u := v, and
interactively see that all observers extracted from this observer field
are in fact the same observer, as can also be confirmed via Eq. 14, and
that the observer-relative visualization shows no motion at all. The
observed field is identically zero, as shown in Fig. 5(d). We view this

(a)

(b)
Fig. 9. Bickley jet. The input lab frame obstructs the visibility of
vortices (a). A globally optimized observer [18] reveals the vortices
clearly (b). (The vertical axis in each visualization corresponds to time.)

field as an example of “if the motion described by a vector field is
purely an observer motion, then the input field contains no intrinsic
motion.” The same is confirmed by an observer field computed via
global optimization [18]: The optimized observer field u is u = v.

A fundamental problem with detecting a vortex in this data set is
that, since the field can be observed as the 0-field, any rotating observer
can be used in order to perceive a vortex at any chosen location. We
suggest that the only consistent interpretation is that there is in fact no
objective vortex contained in this field, unless one chooses to detect
vortices with respect to a non-objectively chosen, special observer.

Vortex on the sphere (Fig. 4). To demonstrate that our framework
is also applicable to spherical domains, we illustrate a result for a flow
field with a synthetic vortex moving once around a sphere. Path lines
observed relative to the lab frame are hard to interpret since they move
once around the sphere, as shown in Fig. 4 (left). From left to right,
Fig. 4 shows snapshots from the observer transformation between the
lab frame and a globally optimized observer [39] that moves with the
vortex. The last frame in the sequence clearly shows the “steady” vortex
that is observed by the objectively-determined, moving observer.

Boussinesq (Fig. 1). This is a more complex scenario that requires
interactive exploration of the input flow field shown in Fig. 1(a). We
first use the objective optimization method by Günther et al. [14],
obtaining an observer field as described in Sec. 6.2. We then visualize
the flow relative to one physically-realizable observer at a time, but
smoothly transition between a large number of observers: As shown
in the accompanying video, we interactively move the location where
an observer is extracted from the observer field. Fig. 1(e) depicts six
different observer-relative visualizations. We modulate the opacity of
each path line with its variance; path lines with high variance become
fully transparent, making vortex structures fade in and out while the
observer is being changed, as demonstrated in the video.

Figs. 1(b-d) show tools to help guide the exploration of the vast space
of possible observers. Fig. 1(b) shows possible vortex core positions
computed via the λ2 criterion, which can help in finding good observers.
Fig. 1(c) depicts color-coded observer similarity (Eq. 14), which can
help identify observers that are significantly different from the current
observer. Fig. 1(d) shows the (a,b,c) parameter space of linear velocity
(horizontal) and vorticity (vertical; positive in red, negative in blue).
This provides further insight into the space of possible observers: Each
observer is a curve in the 3D parameter space (left subimage); the six
observers from Fig. 1(e) correspond to six curves (right subimage).

9 CONCLUSIONS

Our framework demonstrates that in order to reveal vortex structures in
flow fields where one reference frame cannot depict all features simul-
taneously, interactive exploration of the space of observers is beneficial
or might even be necessary. Our framework is flexible enough to incor-
porate observers that are objectively computed with several different
available state-of-the-art methods. In contrast to prior work computing
features jointly, we focus on individual, physically-realizable observers
for visualization and vortex detection. We believe that our framework
can provide a common basis for the future investigation of the interac-
tion between feature detectors derived using physical arguments on the
one hand, and the flexible definition of observer fields on the other.

Determining observers objectively can be crucial. For example,
our exploration of the beads flow has shown that when observers are
not chosen objectively, the perceived rotation can be due solely to
the choice of observer: Rotation can be detected where there is no
intrinsic (kinematic) rotation. However, we have also illustrated several
different ways of choosing observers objectively. We therefore believe
that further investigation of the meaning and implications of objective
vortex detection and objectively determining observers is necessary,
and we hope that our framework can contribute in this endeavor.
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A THE LIE ALGEBRA OF OBSERVER MOTIONS

A Lie algebra is a vector space with an additional vector product, the
so-called Lie bracket. In our context, we model any possible physically-
realizable observer motion as an element (in terms of the vector space
structure, a “vector”) of the corresponding Lie algebra. This Lie algebra
therefore comprises all possible observer motions. However, in our
framework each Lie algebra element is in fact a whole (Killing) vector
field w on the underlying manifold M, where M constitutes the domain
where the input vector field as well as any Killing field describing
observer motion are given. In this paper, M = R2 or M = S2.

The vector space structure means that a Lie algebra has a basis, i.e., a
spanning set of n linearly-independent basis vectors (basis vector fields)
for an n-dimensional Lie algebra. The Lie algebras of rigid motions
for the manifolds M = R2 and M = S2, respectively, are each three-
dimensional as a vector space. This implies that any element of the Lie
algebra, i.e., any rigid motion, can be referred to three basis vectors
(here, basis vector fields), giving three corresponding real coefficients:

w(x, t) = a(t)e1(x)+b(t)e2(x)+ c(t)e3(x). (41)

This expression is a linear combination of three basis vector fields with
three real coefficients (a,b,c). (One triplet (a(t),b(t),c(t)) per time t.)

Scalar multiplication: Scalar times Lie algebra element
The scalar multiplication for the vector space structure, e.g., ae1,
where e1 denotes a vector field on M, is defined pointwise in each
tangent space via standard scalar multiplication in the tangent space:

(ae1)(x) := ae1(x). (42)

That is, in each tangent space TxM at a point x ∈ M, the basis vector in
that tangent space, i.e., e1(x), is multiplied by the same coefficient a.

Vector addition: Addition of two Lie algebra elements
Likewise, the vector addition for the vector space structure is also
defined by pointwise addition of vectors in each tangent space:

(e1 + e2)(x) := e1(x)+ e2(x). (43)

Linear independence of the Lie algebra basis
It is important to realize that the linear independence of our Lie algebra
basis needs to be verified as the linear independence of vector fields,
not as that for individual vectors in some tangent space. (Otherwise, in
a two-dimensional tangent space more than two vectors would always
be linearly dependent; but we have three linearly independent basis
vector fields.) That is, linear independence of three basis fields ei,e j,ek
is given if there are no coefficients λ ,µ ∈ R such that

ei = λe j +µek. (44)

for every (cyclic) permutation of (i, j,k) = (1,2,3). This equation must
be read such that for fixed λ ,µ ∈ R, for all points x ∈ M, the vectors in
each tangent space TxM would have to be

ei(x) = λe j(x)+µek(x). (45)

In our framework, for M = R2 and the basis given by Eq. 8, this is
trivial to see for ei = e3. However, it is also not hard to see in the
other cases. For M = S2 and the basis given by Eq. 11, we can imagine
choosing two basis fields to reproduce a non-zero vector of the third
basis field at some point, and then considering the “pole” of the third
field, where the third field has a critical point (the vector is zero), but
the linear combination that we just considered gives a non-zero vector.

Time dependence
While above we have considered the individual scalar multiplications,
vector (field) additions, and linear independence, neglecting the time-
dependence of vector fields on M, i.e., we have mainly considered

w(x) = ae1(x)+be2(x)+ ce3(x), (46)

everything trivially extends to time-dependent Killing fields with time-
dependent coefficients t 7→ (a(t),b(t),c(t)), giving Eq. 41 above.

Fig. 10. Physically-realizable observer motions referred to basis
Killing fields on the sphere. The Lie algebra of physically-realizable ob-
server motions on the sphere is a three-dimensional vector space, where
each element w can be referred to a basis of three linearly-independent
basis Killing vector fields {e1,e2,e3}, such as those shown here (right).

The Lie bracket

The Lie bracket is a “vector multiplication” operation defined for a pair
of vectors (elements) of a Lie algebra. In our case, these elements are
vector fields, and the corresponding Lie bracket is then a map

[·, ·] : X (M)×X (M)→ X (M),

(u,v) 7→ [u,v].
(47)

Here, X (M) denotes the space of all possible (smooth) vector fields
on the manifold M. This Lie bracket of vector fields is a differential-
geometric operator that maps a pair of vector fields on M to another
vector field on M. Importantly, if we consider only the Killing vector
fields on M, the Lie bracket maps a pair of Killing fields on M to another
Killing field on M. The Lie bracket is identical to the Lie derivative of
one vector field with respect to the flow of another vector field, i.e.,

[u,v] = Luv, (48)

with both sides denoting a vector field. More explicitly, we can compute
the vector field Luv, and thus the Lie bracket [u,v], by

[u,v] = Luv = ∇v(u)−∇u(v), (49)

where ∇u and ∇v are the velocity gradient tensors of the vector fields u
and v, respectively, and we evaluate in the directions v, u, respectively.

Observed time derivatives

The observed time derivative given in Eq. 36 is in fact a time-dependent
Lie derivative. As such, it combines the autonomous Lie derivative,
which is identical to the Lie bracket, with the partial time derivative of
each field. We note that, similar to the Lie bracket, the time-dependent
Lie derivative of a time-dependent Killing field with respect to another
time-dependent Killing field is again a time-dependent Killing field.

Correspondence to matrix Lie groups

For completeness, we note that for Lie algebras of matrix Lie groups,
the differential-geometric definition of the Lie bracket above can be
substituted by the much simpler definition of the Lie bracket as a
matrix commutator. In our context, for example, we can construct
an isomorphism between the Lie algebra of all anti-symmetric 3×3
matrices (all “infinitesimal rotation matrices”) and the Lie algebra of
all Killing vector fields on the sphere S2. (A specific isomorphism
can be constructed by choosing a particular basis for the space of all
Killing fields, such as the basis given by Eq. 11. See Fig. 10.) Then,
for two Killing fields w1,w2, and the corresponding anti-symmetric
matrices W1,W2, for coefficients (a1,b1,c1),(a2,b2,c2), respectively,
referring the Killing fields to the chosen basis {e1,e2,e3}, the Lie
bracket operation can be computed simply as the matrix commutator[

W1,W2
]
=W1 W2 −W2 W1. (50)

In this way, the vector field [w1,w2] is the vector field corresponding
to (via the isomorphism, i.e., the chosen basis) the matrix

[
W1,W2

]
.



Basis Killing fields on the sphere
Fig. 10 depicts the three basis Killing fields {e1,e2,e3} on the sphere
given by Eq. 11, and another Killing field w as the linear combination
with coefficients (a,b,c) referred to this basis. Below the spheres, the
corresponding anti-symmetric matrices (see above) are shown.

Different basis Killing fields for the Euclidean plane
For illustration and completeness, we give another basis for all Killing
fields on M = R2, different from the one defined in Eq. 8. In fact, any
set of three vector fields {e1,e2,e3}, where each field is given by

ei(x,y) =
[

0 −1
1 0

][
x− x0(i)
y− y0(i)

]
,

[
x0(i)
y0(i)

]
∈ R2, i ∈ {1,2,3}, (51)

is also a basis, provided that the three “center” points (x0(i),y0(i))T

are chosen in general position, i.e., none of the points are at the same
position, and no point lies on the line defined by the other two points.

Due to the different “centers” (i.e., critical points) of the basis vector
fields, all three fields are linearly independent. They must therefore
constitute a basis, even without checking anything else. Although this
might be surprising, this implies that linear combinations of these three
“rotational” basis fields can reproduce any constant-velocity vector field
(it is not hard to confirm this explicitly), just like the basis fields given
in Eq. 8 obviously can. However, then no single coefficient corresponds
to angular velocity, unlike the coefficient c referred to the basis in Eq. 8.
(For the basis in Eq. 51, the angular velocity is in fact a+b+ c.)

B OBJECTIVITY AND OBJECTIVELY-DETERMINED OBSERVERS

We summarize important details, and highlight important subtleties, of
the concept of objectivity from continuum mechanics, as it is also used
in flow visualization, and in particular explain the corresponding notion
of objectively-determined observers that we use in the main paper.

Objectivity and objective tensor fields
The basic intention of objectivity in continuum mechanics is that all
possible, physically-realizable observers should agree on objective
properties or structures. For example, they should agree on the location
and properties of objectively-detected vortices. The standard definition
of objectivity given by Truesdell and Noll [46, p.42] states the trans-
formation rules that must be fulfilled by scalar fields, vector fields, and
(second-order) tensor fields in Euclidean spaces, R2 and R3, in order
for these fields to be objective. These rules are, in fact, nothing more
than the pushforwards/pullbacks (see Appendix D), as given by Eq. 30
and Eq. 31, of the frame change diffeomorphism, as given by Eq. 26.
(Also see Marsden and Hughes [30, p.100], and Rautek et al. [39].)

More fundamental than the definition for specific fields, however, is
that the concept of objectivity includes the fact that all observers agree
on the motion of (Lagrangian) particles, in the sense of their spatial
location at any time5. (It is important that this does not mean that they
measure the same velocity field for this motion, since velocities depend
on the specific reference frame that they are relative to. See below.) If
we consider one specific particle, although the trajectory of the particle
(its path line) will in general look different for every observer, e.g.,

5We note that our entire discussion, and the definition of objectivity, is con-
cerned with kinematics, i.e., the description (and observation) of motions without
considering the forces that cause these motions. The latter are a consideration in
terms of dynamics, where the difference between inertial (non-rotating) refer-
ence frames and rotating reference frames is of crucial importance. However,
for kinematical considerations, forces are irrelevant, and therefore in this context
inertial frames are not special: In terms of kinematics, all physically-realizable,
rotating or non-rotating (inertial), reference frames are the same class of refer-
ence frames and are treated equally. An example are hurricanes on Earth, which
are fundamentally caused (in terms of forces) by the Earth’s rotation: They are a
result of inertial (or “fictitious”) forces (mainly the Coriolis force) occurring in
a rotating frame. However, the resulting motion of air, immersed particles, etc.
comprising a hurricane can then be considered purely in terms of kinematics.
That is, we can observe the hurricane’s motion from any physically-realizable,
rotating or non-rotating, observer. Naturally, however, this does not change the
hurricane’s motion, i.e., where particles are physically located at any one time.

straight for one observer, curved for another observer, see Fig. 5 (a,b),
at any time t all observers will agree on where the particle is located.

Mathematically, to agree in this context means that where the particle
is observed by one observer simply follows the observer transformation
given by Eq. 26 to determine where another observer will observe the
same particle. However, despite this transformation, the corresponding
meaning is that both observers agree that the particle is at the same
physical location. After all, it is physically the same particle, and as
such it can only occupy one spatial location at any given time.

In coordinates, the transformation given by Eq. 26 transforms the
same point (where the particle is located) from the coordinate system
of one observer to that of the other observer. However, the underlying
meaning is in fact coordinate-invariant, and Truesdell and Noll [46,
p.42] also emphasize that the observer transformation given by Eq. 26
is independent of any particular choice of coordinate system.

Transformation of velocity fields
Corresponding to the motion of particles discussed above, any one
specific observer can determine the velocity of a particle with respect to
its own reference frame. This, however, implies that different moving
observers will measure different velocities. Therefore, the input field v
to our framework will be a different field for each observer, depending
on the reference frame relative to which it was measured or simulated.

Although velocity fields are not objective, the transformation rule
for velocity fields (Eq. 32, see also the appendixes of Rautek et al. [39])
makes it easy to directly transform velocities given relative to one ob-
server to velocities valid for another observer, such that the underlying
motion is, again, the same. (The same is again meant in the sense of
each particle occupying the same spatial location at any one time for all
observers; in fact, this requirement is how the velocity transformation
rule is derived in the first place.) This also implies that when the veloc-
ity transformation rule is used first, and then particle trajectories (path
lines) are integrated by the other observer, the computed path lines will
pass through the same spatial positions (at the corresponding time).

The velocity transformation rule (Eq. 32) is not the same as the trans-
formation rule of an objective vector field (Eq. 30). (See Truesdell and
Noll [46, p.42].) An important implication of this is that while the mag-
nitude of each vector in an objective vector field does not change under
transformation, the magnitudes (speeds) of velocity vectors do change
(in Galilean relativity, different moving observers measure different
speeds). The main difference between the two transformation rules is
that in the velocity transformation the Killing field w that describes
the relative rigid motion between the two observers is subtracted out
(Eq. 32), whereas in the objective transformation it is not (Eq. 30).

Objectively-determined velocity fields
We now make the crucial point that, despite two different moving ob-
servers measuring two different velocity fields for the same underlying
motion (as above), the velocity field v that each observer measures
individually is nevertheless determined objectively by each observer.
By this we simply mean the above: The underlying motion, which
is observed and whose velocities are measured, is the same motion.
However, the objectively-determined velocity field is not an objective
vector field! For the input field v being objectively determined is a
rather obvious notion6, since all observers perceive the same underlying
motion of particles to begin with. Where the notion of an objectively-
determined velocity field becomes absolutely crucial, however, is when
an observer by itself determines a velocity field without being able
to perceive a corresponding motion of particles or fluid parcels. In
our context, this concretely refers to computing a velocity field via
mathematical optimization7. Such an optimization must result in an
objectively-determined velocity field in order to be observer-indifferent.

6This property is usually not made explicit, and we are not aware of any
standard term for this concept. We assume this is the case because velocity fields
are usually measured for the motion of physically-observable objects (particles,
fluid parcels), and the property of being objectively determined is trivially given.

7We note, however, that although maybe only computational methods are
feasible in practice, such an optimization is not necessarily “non-physical.” At
least in principle, we could achieve similar results by moving a physical grid



Another way to see this is that if two velocity fields v1,v2 (both mea-
sured relative to the same observer) are both objectively determined,
then a vector field computed as their (pointwise) difference, i.e., a field

f := v1 −v2, (52)

is always an objective vector field according to the definition by Trues-
dell and Noll [46, p.42], corresponding to the pullback given by Eq. 30.
The simple reason is that the Killing field of the observer transformation
is the same for both velocity fields and thus cancels out when taking
the difference between two (objectively-determined) velocity fields:

(v∗1 −v∗2) = φ
∗
t (v1 −w)−φ

∗
t (v2 −w),

= φ
∗
t
(
(v1 −w)− (v2 −w)

)
,

= φ
∗
t (v1 −w−v2 +w),

= φ
∗
t (v1 −v2).

(53)

Thus, we have the transformation rule of Eq. 30: f∗ = φ∗
t f, and there-

fore f is objective. However, the point about two velocity fields having
to be objectively determined, in order for their difference to be objective,
is crucial: It is not true that the difference of any two velocity fields is
objective. This is quite natural: If two observers agree on the underlying
motions (i.e., the respective velocity fields are determined objectively),
then the difference vector field will be objective. Otherwise, it will not
be objective, because they do not agree on the underlying motions.

Mathematically, the latter is a violation of the velocity transformation
rule of a velocity field v that is not objectively determined, meaning

v∗ ̸= φ
∗
t (v−w). (54)

Objectively-determined observer velocity fields
The same principle can now be applied to observer fields, which are
velocity fields describing the motion of a field of observers, relative to
any physically-realizable observer. As velocity fields, they transform
with the standard velocity transformation rule, and are thus not objec-
tive. However, the crucial point is that an observer velocity field u must
be determined objectively, exactly as described above. This guarantees
that the underlying motion (rigid or non-rigid) will be the same, inde-
pendent of which physically-realizable observer actually determined
the observer velocity field (which is thus relative to that observer).

The methods by Hadwiger et al. [18] and Rautek et al. [39] both
guarantee this by performing an objective optimization, obtaining the
observer velocity field u as the unique minimizer of a functional that
contains only objective quantities. Despite this apparent mixing of the
concepts of “objective” vector fields and of “objectively-determined”
velocity fields, this is exactly what is needed in this context: Since the
arbitrary input field v is determined objectively (see above), and the
observer field u is likewise determined objectively, guaranteeing that
we have u∗ = φ∗

t (u−w), for any possible observer w, their difference

v−u, (55)

is guaranteed to be an objective vector field. The method of Günther
et al. [14] operates in the opposite way: It directly optimizes for an
objective vector field v̄ (Eq. 20 in [14])8. But this means that the field

u := v− v̄, (56)

is guaranteed to be an objectively-determined velocity field. Using
either method, we can obtain exactly what we want: (1) An objectively-
determined observer field u, and (2) an objective vector field (v−u),
as the difference between the input velocity field and the observer field.

of points connected by rigid rods (or a physical camera setup), and move this
“reference frame” until we achieve the desired derivatives (e.g., minimal Eulerian
time derivatives) measured relative to this physical reference frame motion.

8It is interesting to note that as an objective vector field, the field v̄ is not a
velocity field, at least not in the reference frame of the input field v. This also
means that in that reference frame, it is incorrect to integrate the field v̄ to obtain
path lines: There are no physical objects that are moving with velocity v̄ in that
reference frame. (And if v̄ were a velocity field, it would transform as one.)

Objectively-determined, physically-realizable observers
The observer field u above usually determines many different observers,
and, in particular, it is typically (intentionally) not a Killing vector field.
In order to obtain physically-realizable observers w, we need to extract
individual observers (Killing fields) from the overall velocity field u,
and confirm that the extracted observers are also determined objec-
tively. Because we extract observers along path lines of the objectively-
determined observer field u (Sec. 3.3), which are Lagrangian and there-
fore objective, we only need to check the velocity gradients ∇u along
these path lines. However, this is a simple corollary from the above:
The velocity gradients ∇u, including their extracted anti-symmetric
parts ∇w (Eq. 17 and Eq. 19), result from linear spatial operators. Thus,
they simply transform as second-order tensors with the rule given by
Eq. 34. Therefore, since the velocity field u is determined objectively,
the extracted velocity gradients ∇w are determined objectively as well.
Thus, both w and ∇w along the path line are determined objectively.
However, now we can use the crucial Theorem 3.2 that states that know-
ing these two quantities on the path line determines the corresponding
Killing field on the entire manifold M uniquely. Therefore, the entire
extracted physically-realizable observer w is determined objectively.

Thus, any observer extracted as in Sec. 3.3 will be an objectively-
determined observer, if the velocity field u is objectively determined.

Objectivity of averaged or interpolated observers
Averaging and interpolating a set of objectively-determined observers is
a linear combination of observers. Thus, if all these observers are objec-
tively determined, the corresponding averaged or linearly interpolated
observer is also guaranteed to be objectively determined.

However, if we average or interpolate observers that are not (all)
objectively determined, the corresponding average or linear interpo-
lation will also not be objectively determined. An example for this
case is using the lab frame observer, relative to which the input field is
measured. The lab frame is usually not objectively determined (unless
extracting a specific observer from an objectively-determined observer
field u results in the lab frame observer; by the lab frame observer this
would be seen as a path line degenerated to a single critical point).

On the other hand, all observers resulting or extracted from an
objectively-determined observer field u (either because we use u :=
v, where v is the objectively-determined input field, or because we
have computed u via objective optimization) can be averaged and/or
interpolated, always resulting in an objectively-determined observer.

We note that the same concept is implicit in the original definition of
LAVD by Haller et al. [21]. The region U(t) that is used to compute the
average vorticity must be a material region, which as such is objective.
However, this approach is equivalent to averaging (the vorticity of)
observers over the same material region U(t), with the observers given
by the observer field u in the same region U(t). The result is objectively
determined when the field u is objectively determined.

C COMPARING OBSERVERS

Expanding on comparing observers in Sec. 3.2, for the consistency of
comparisons it is important to note that we have the following

Remark. Because the metric tensor gi j in Eq. 6 is defined via the
integral of any given Lie algebra basis, the inner product of Killing
fields obtained via Eq. 7 is invariant to the particular choice of basis.

If this were not true, for a different choice of Lie algebra basis we
would obtain different inner products. (The invariance above is the
same as the invariance in any tensorial expression in tensor calculus.)

In terms of efficiency, we note that due to our expansion of any w1
and w2 with respect to basis Killing fields, for three-dimensional Lie
algebras, the difference d(·, ·) can be computed as the component-wise
subtraction of three-component vectors wi

1 and w j
2, respectively, and

the inner product is then simply computed via matrix multiplication
with the 3× 3 matrix gi j. Moreover, because we choose orthogonal
basis Killing fields, the matrix gi j in fact is a diagonal matrix.

We now compute the specific metric tensor components gi j for
Killing fields in Euclidean and in spherical domains, respectively.



C.1 Comparing Observers in the Euclidean Plane
For the three basis Killing fields {e1,e2,e3} for M =R2 given by Eq. 8,
we obtain the corresponding metric tensor gi j := ⟨⟨ei,e j⟩⟩ as

gi j =

A 0 0
0 A 0
0 0 R

 , (57)

with A = (xb − xa)(yb − ya), and R = 1
3 A
(
(xb − x̂0)

2 +(yb − ŷ0)
2),

where we again integrate over the rectangular domain D = [xa,xb]×
[ya,yb] ⊂ R2, with center point (x̂0, ŷ0). For a Killing field w =
ae1 +be2 + ce3, we therefore compute its squared norm directly as

∥w∥2 = Aa2 +Ab2 +Rc2. (58)

The difference between two observers w1 = a1 e1 + b1 e2 + c1 e3
and w2 = a2 e1 +b2 e2 + c2 e3 can then be quantified via (see Eq. 13)

d(w1,w2)
2 = A(a1 −a2)

2 +A(b1 −b2)
2 +R(c1 − c2)

2. (59)

We note that, since A ̸= R, the relative weighting between linear and
angular velocity, respectively, depends on the size of the domain.

Alternatively, it is also valid to prescribe any metric, by directly
prescribing a matrix gi j , e.g., a metric independent of the domain size.

C.2 Comparing Observers on the Sphere
For the three basis Killing fields {e1,e2,e3} for M = S2 given by Eq. 11,
we obtain the corresponding metric tensor gi j := ⟨⟨ei,e j⟩⟩ as

gi j =

R 0 0
0 R 0
0 0 R

 , (60)

with R = 8
3 π . For a Killing field w = ae1 + be2 + ce3, we therefore

compute its squared norm directly as

∥w∥2 = Ra2 +Rb2 +Rc2. (61)

The difference between two observers w1 = a1 e1 + b1 e2 + c1 e3
and w2 = a2 e1 +b2 e2 + c2 e3 can then be quantified via (see Eq. 13)

d(w1,w2)
2 = R(a1 −a2)

2 +R(b1 −b2)
2 +R(c1 − c2)

2. (62)

D DIFFERENTIALS AND PULLBACKS

We denote reference frame transformations by diffeomorphisms φt ,
with each map φt an isometry, from a manifold M to itself. Each map

φt : M → M,

x 7→ φt(x),
(63)

induces a differential (or pushforward) dφt between tangent spaces
on M (in fact on the tangent bundle T M). For each tangent space TxM,
i.e., the tangent space at the point x ∈ M, the differential is a linear map

(dφt)x : TxM → Tφt (x)M,

x 7→ (dφt)x(x).
(64)

The differential maps vectors from points x to points φt(x).
In Sec. 5, for consistency and in order to avoid the frequent use

of pushforwards of inverse diffeomorphisms φ
−1
t , we instead use the

pullback φ∗
t , mapping “back” vectors from points φt(x) to points x by

(φ∗
t x)x :=

(
dφ

−1
t
)

φt (x)
(x). (65)

For second-order tensors T, linearly mapping vectors to vectors, we in
any case require the corresponding pullback φ∗

t of T, defined by

(φ∗
t T)x : TxM → TxM,

x 7→ (φ∗
t T)x(x) := dφ

−1
t
(
T
(

dφt(x)
))
.

(66)

While pullbacks in general are defined for smooth maps that need not
be diffeomorphisms, the above definitions require the map φt to be a
diffeomorphism (guaranteed to have an inverse) to allow mapping back
vectors in the inverse direction φ

−1
t , which in our context is fulfilled.

E OBSERVER TRANSFORMATION ON THE SPHERE

We now concretely give the reference frame transformation, described
in general and for the Euclidean plane in Sec. 5.1, for the sphere.

Frame change diffeomorphism (isometry) on the sphere
The time-dependent isometry φt for frame transformation on the sphere,
corresponding to a rigid motion (i.e., rotation) of the sphere, is given by

φt(x) = r−1(R(t) r(x)
)
. (67)

Here, r(x) is a 3D vector pointing from the center of the sphere to
the point x on the sphere, embedded in R3, R(t) is the total integrated
3×3 rotation matrix giving the rigid transformation of the sphere at
time t, and r−1(·) denotes the inverse of r(·) interpreted as a function,
mapping “back” a vector pointing from the center of the sphere to the
point φt(x) embedded in R3, to the “intrinsic” point φt(x) on the sphere.

Pullback on the sphere
The corresponding pullback φ∗

t of a vector field x on the sphere is

φ
∗
t x = (B∗)′ RT (t)Bx. (68)

The pullback φ∗
t of a second-order tensor field T on the sphere is

φ
∗
t T = (B∗)′ RT (t)B T B′ R(t)B∗. (69)

The R(t) are the same rotation matrices as above. The 3×2 matrices
B, B∗ map vectors x, at φt(x), and x∗, at x, respectively, from two
components referred to tangent space bases embedded in R3, {b1,b2},
at φt(x), and {b∗1,b

∗
2}, at x, respectively, to their embedding in R3. The

corresponding 2×3 matrices B′, (B∗)′ perform the “inverse” operation,
mapping 3D vectors, tangent to the sphere, back from three to two com-
ponents, again referred to the bases {b1,b2}, {b∗

1,b
∗
2}, respectively.

In case the vectors are given embedded in R3, instead of as intrinsic
2D vectors, and the tensors T are likewise given embedded in 3D, the
above matrices B, B∗, B′, (B∗)′ simply become identity matrices.

F OBSERVED TIME DERIVATIVES

The observed time derivative, which was originally given by Hadwiger
et al. [18] for flat (Euclidean) spaces (in 2D and 3D), but is also well-
defined for curved spaces [39], is given by the differential operator

D

Dt
:=

∂

∂ t
+Lu. (70)

This operator gives the derivative of a time-dependent tensor field with
respect to the flow of a given vector field, here denoted by u, where,
crucially, the semantic meaning of the field u is that of an observer
field [18, 39], i.e., it describes the motion of (one to many) observers.

The operator L used above denotes the (autonomous) Lie deriva-
tive, which is standard in differential geometry and mathematical
physics [12], measuring the rate of change of a tensor (including vector)
field with respect to the flow of a given vector field. Here, this is the
flow of the observer velocity field u, which we denote be writing Lu.

For the specific case of a physically-realizable observer, given by a
Killing field w, we use the same operator by simply using the field w,

D

Dt
:=

∂

∂ t
+Lw. (71)

We can obtain the time derivative of any input flow field v, as observed
by the observer determined by the Killing field w, by applying this
operator to the relative velocity field (v−w), i.e., we compute

D

Dt
(v−w) =

∂v
∂ t

− ∂w
∂ t

+∇v(w)−∇w(v) . (72)

On the right-hand side, we have simply expanded the (autonomous)
Lie derivative, which for vector fields is identical to the differential-
geometric Lie bracket, as given above (Eq. 49). See previous work [18,
39] for more details on and usage of observed time derivatives, in
particular for the objective optimization of observer fields, where the
a priori unknown field u is computed such that (D/Dt)(v − u) is
minimized, making the observed field “as steady as possible.”



G OBSERVED ACCELERATION

The acceleration of a massless particle in a velocity field v is

a = ∇v
(
v
)
+

∂v
∂ t

. (73)

By substituting observed quantities in this definition, we obtain the
observed acceleration, as the acceleration relative to the observer w, as

a∗ = ∇v∗
(
v∗
)
+

∂v∗

∂ t
,

= φ
∗
t

(
∇(v−w)

(
v−w

)
+

D

Dt
(v−w)

)
.

(74)

Inserting Eq. 73, we can compute the observed acceleration a∗ directly
from the acceleration a and the fields v and w as

a∗ = φ
∗
t

(
a− ∂w

∂ t
−2∇w(v)+∇w(w)

)
. (75)

We note that, in fact, the term 2∇w(v) corresponds to what is known
as the Coriolis acceleration 2ΩΩΩv, and the term ∇w(w) corresponds
to what is known as the centripetal acceleration ΩΩΩw, of a rotating
reference frame, with angular velocity of the rotating frame ΩΩΩ = ∇w.

In terms of the observer w as t 7→ (a(t),b(t),c(t)), as for the other
quantities above we can insert the terms given in Eq. 25 into Eq. 75.

H DATA SETS

Data set sizes used for the evaluation of our method are given in Table 2.

Table 2. Data set sizes used for evaluation.

data set size time steps
Cylinder Flow with von Kármán
vortex street (simulated) 640 × 80 1,000
Heated cylinder with Boussinesq
approximation (simulated) 150 × 450 800
Beads problem (analytic) 128 × 128 512
Divergence free beads flow (analytic) 128 × 128 256
Four rotating centers (analytic) 128 × 128 256
Cylinder flow
Jung, Tel and Ziemniak (analytic) 450 × 200 500
Bickley jet (analytic) 300 × 60 300
Vortex on sphere
triangle mesh (analytic) 7,608 triangles 64

I PERFORMANCE ANALYSIS

We separate the computation of observed path lines into three parts.
First, the computation of a set of path lines in the lab frame is performed
in parallel on the CPU, where each CPU core integrates one path
line. We upload the resulting vertex positions to a buffer on the GPU.
Second, when an observer is specified we compute the time dependent
diffeomorphism using numerical integration on the CPU (Eq. 29). We
upload the resulting array of transformation matrices Q(t), for each
time sample t = ti to the GPU. Lastly, the transformation of the path
lines (Eq. 40) is implemented on the GPU. Each vertex is transformed
by the corresponding transformation matrix in the vertex shader.

The separation of the computation into these three parts allows us
to independently update the set of path lines, as well as the observer,
without the need to recompute the integration of the observed path
lines.

We have run performance tests for different data sets, numbers of
path lines, and integration step sizes, on a workstation with two Intel
Xeon 6230R processors with a total of 52 CPU cores, and an NVIDIA
GeForce RTX 3090 GPU.

Table 3 shows performance numbers that were averaged over 1,000
runs of path line integrations. The number of integration steps that
are required to reach high-quality visualizations strongly depends on
the data set. We typically use two to ten samples for each time step
of a data set. Table 3 shows that the performance mostly depends on

the number of vertices generated by the numerical integration. When
integrating enough path lines in parallel we achieve more than 15
million vertices per second.

Table 4 shows performance numbers that were averaged over 1,000
runs for the computation of the transformation matrices used for the
diffeomorphism. Since we compute ∇w for each time step along the
observer world line, the performance depends on the number of time
steps of the data set as well as the number of samples taken along
the observer world line. Table 4 shows that the number of samples
has less influence than the number of time steps. We found in all
our experiments that computing the transformation matrices for the
diffeomorphism with a high number of samples and transferring the
data to the GPU takes less than 100 ms.

The performance impact of the transformation in the vertex shader
is only one additional matrix-vector multiplication per vertex. We
measured the frame rate of our rendering algorithm and found that we
get 20–30 frames per second for conventional path line rendering as
well as observed path line rendering.

Table 3. Pathline integration performance.

data set number of time throughput
pathlines [ms] [vertices/s]

in millions
Four centers 64 26 15

128 48 17
256 83 19
512 154 21

1,024 238 27
Heated cylinder 64 23 14

(Boussinesq) 128 40 16
256 76 17
512 150 17

1,024 293 17

Table 4. Diffeomorphism computation performance.

data set number of time throughput
samples [ms] [samples / s]

in thousands
Four centers 6.28×101 5 12

6.28×102 6 100
6.28×103 12 509
6.28×104 87 723

Heated cylinder 5×101 11 4
(Boussinesq) 5×102 13 38

5×103 21 234
5×104 82 609
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