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ABSTRACT

Reference frame optimization is a generic framework to calculate a spatially varying observer field that views an unsteady fluid flow in a
reference frame that is as-steady-as-possible. In this paper, we show that the optimized vector field is objective, i.e., it is independent of the
initial Euclidean transformation of the observer. To check objectivity, the optimized velocity vectors and the coordinates in which they are
defined must both be connected by an Euclidean transformation. In this paper, we show that a recent publication applied this definition
incorrectly, falsely concluding that reference frame optimizations are not objective. Furthermore, we prove the objectivity of the variational
formulation of the reference frame optimization that was recently proposed and discuss how the variational formulation relates to recent
local and global optimization approaches to unsteadiness minimization.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0063817

I. INTRODUCTION

In fluid mechanics, an important property of vortex detectors is
whether their corresponding vortex criteria are objective, i.e., indiffer-
ent to the reference frame in which they are computed. This has been
recognized, for example, in the seminal work by Haller1 and in a large
body of subsequent work. Non-objectivity implies that different
observers, undergoing time-dependent relative rigid motion, might
obtain different results for the same conceptual criteria. For example,
vortex core lines might be detected at different spatial locations or not
be detected at all. This is a major drawback of nonobjective methods
that often corresponds to the fact that the detected features lack a clear
physical meaning or cannot occur physically at all, as pointed out by
many authors, from the early work of Haller1 until a recent analysis.2

With this motivation in mind, a variety of vortex criteria have been
specifically designed to be objective by definition, i.e., the associated
method can directly be proven to be indifferent to the motion of the
input reference frame, and all observers agree on the result of the

evaluated criteria. Usually, these combine (1) new proposed criteria
and (2) a direct proof, specific to these criteria, that the proposed
method is in fact objective.

One might ask the question whether it is possible to come up
with a generic way of “objectivizing” existing, by themselves nonobjec-
tive, vortex criteria. If such an approach was successful, it would auto-
matically convert criteria that were not defined in a way that makes
them objective by definition, into somehow equivalent but objective
criteria. In the literature, three different approaches can be found
which aim to objectivize existing vortex criteria: (1) replace the vortic-
ity tensor by the relative spin tensor, (2) replace the vorticity tensor by
the spin-deviation tensor, and (3) observation in a reference frame
that is as-steady-as-possible. Approaches of categories (1) and (2)
are based on the observation that the vorticity tensor W ¼ ð@xv
�ð@xvÞTÞ=2 is not objective, which is, however, frequently used in
many vortex definitions,3,4 cf. G€unther and Theisel5 for a recent
review. Thus, Drouot and Lucius6 and Astarita7 utilized that the
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strain-rate tensor S ¼ ð@xv þ ð@xvÞTÞ is objective by observing the
vorticity tensor W in the eigenvector basis of the strain-rate tensor,
leading to the relative spin tensor, which can be used as a replacement
for the vorticity tensor in all existing vortex criteria. More recently, Liu
et al.8 utilized that the vorticity can be made objective by subtracting
the average vorticity from a local neighborhood, cf. Haller,9 leading to
a relative spin tensor, which can be used as a building block in existing
vortex criteria. Haller2 pointed out that the replacement of W by the
relative spin tensor invalidates the arguments used in the derivation of
existing vortex criteria, unless a corresponding frame change is per-
formed. The first approach of category (3) was proposed by G€unther
et al.,10 who presented a generic approach by searching for spatially
varying reference frames in which the flow appears as-steady-as-possi-
ble. This was motivated by the fact that for steady velocity fields vorti-
ces are easier to define. The need for spatially varying reference frames
was pointed out by Lugt11 and Perry and Chong,12 who observed that
features moving at different speeds need differently moving reference
frames to make them steady. This idea has created an amount of
follow-up research: G€unther and Theisel13 consider locally affine
frame changes, and Baeza Rojo and G€unther14 incorporate general
non-rigid frame changes described by a local Taylor expansion.
G€unther and Theisel15 extended the approach to inertial flows.
Hadwiger et al.16 described frame changes by formulating their deriva-
tives as approximate Killing vector fields. Rautek et al.17 extended this
to flows on general two-manifolds.

In a recent paper, Haller2 formulates a variational problem simi-
lar to the ones solved by G€unther et al.,10 Hadwiger et al.,16 Baeza
Rojo and G€unther,14 G€unther and Theisel,13 G€unther and Theisel,15

and Rautek et al.17 Then, Haller2 attempts to prove that the solution of
this variational problem is not objective. From this, Haller2 concludes
that the approaches of G€unther et al.,10 Hadwiger et al.,16 Baeza Rojo
and G€unther,14 and G€unther and Theisel13 are not objective either,
which is contrary to what is claimed and proven in the respective
papers. In addition, Haller2 claims “physical and mathematical incon-
sistencies” in G€unther et al.,10 Hadwiger et al.,16 Baeza Rojo and
G€unther,14 and G€unther and Theisel.13

The recent paper by Haller2 has great importance to research in
fluid dynamics and visualization. If the statements by Haller2 were cor-
rect, a significant amount of recent research would be wrong, includ-
ing G€unther et al.,10 Hadwiger et al.,16 Baeza Rojo and G€unther,14

G€unther and Theisel,13 G€unther and Theisel,15 and Rautek et al.17

Because of this, a careful analysis of the statements by Haller2 is
necessary.

In this paper, we make the following contributions:

• We show that the proof of the nonobjectiveness of the variational
problem by Haller2 is not correct because Haller2 applies the defi-
nition of objectivity in an incorrect way. In particular, we show
that Haller2 attempts to check objectivity of vector fields in
wrong reference frames.

• We show that the variational problem in Haller2 gives objective
solutions if it is considered in the correct frame, i.e., the opti-
mized velocity field is observed in frames consistent with the
motion of the coordinates. The correct objectivized velocity field
has the closed form Eq. (30).

• We show that existing objectivization approaches by G€unther
et al.10 and Hadwiger et al.16 incorporate the transformation to
this correct frame and are therefore objective.

• We show that the claimed mathematical inconsistencies are suit-
able and necessary boundary conditions to solve the minimiza-
tion problem.

We emphasize that the standard definition of objectivity used in
continuum mechanics and visualization, as given by Truesdell and
Noll,18 is purely mathematical in nature. Its immediate physical mean-
ing is only that if a method is objective, different physical observers
come to the same conclusions, for example regarding the location of a
vortex. This is true for all generic “objectivization” approaches by
G€unther et al.,10 Hadwiger et al.,16 Baeza Rojo and G€unther,14

G€unther and Theisel,13 G€unther and Theisel,15 and Rautek et al.17 In
contrast to this, however, the argumentation of Haller2 goes partially
beyond objectivity and in part argues against objectivization of vortex
criteria with additional physical considerations. These considerations,
however, do not invalidate the objectivity of generic objectivization
approaches, and, most importantly, they go beyond the standard defi-
nition of objectivity. In this paper, we therefore focus purely on objec-
tivization with the standard meaning of objectivity and show that the
corresponding mathematical proof given by Haller2 is incorrect and
that such an objectivization is indeed possible.

II. THE VARIATIONAL PROBLEM BY HALLER2

We set out to show that a reference frame optimization toward
an as-steady-as-possible vector field is objective. For this, we demon-
strate that the result of the reference frame optimization for the same
vector field observed in two different frames is connected through the
objectivity condition if observed in the appropriate coordinates.

A. Definition of objectivity

We begin with recapitulating the common definition of objectiv-
ity, in particular for vector fields. Let wðx; tÞ be a vector field observed
in a frame (coordinate system) F. Furthermore, let ~wðy; tÞ be the
observation of wðx; tÞ under the Euclidean frame change

x ¼ QðtÞy þ bðtÞ; (1)

where QðtÞ is a time-dependent rotation tensor and bðtÞ a time-
dependent translation vector. Then, wðx; tÞ is objective if, cf. Truesdell
and Noll,18

~wðy; tÞ ¼ QTðtÞwðx; tÞ: (2)

Note that for the objectivity condition in Eq. (2) to hold, the two vector
fields w and ~w must be observed in coordinates x and y, respectively,
which are connected by Eq. (1). Furthermore, condition (2) must hold
for every possible Euclidean transformation (1).

B. Reference frame optimization

A reference frame optimization as in G€unther et al.,10 Baeza Rojo
and G€unther,14 Hadwiger et al.,16 and Rautek et al.,17 aims to view a
given vector field in a new reference frame in which the flow becomes
as-steady-as-possible, as explained in the following. To setup the nota-
tion, we are given a velocity field vðx; tÞ that is observed in the refer-
ence frame F. Further, we assume that vðx; tÞ is given in the domain
(U, T), with U being a simply connected spatial domain and
T ¼ ½tmin; tmax� being a time interval. Observing vðx; tÞ in a new refer-
ence frame F� given by

F! F� : x ! x� ¼ gðx; tÞ; (3)
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results in the observed velocity field

v�ðx�; tÞ ¼ @xgðg�1ðx�; tÞ; tÞ vðg�1ðx�; tÞ; tÞ þ @tgðg�1ðx�; tÞ; tÞ:
(4)

Here, gðx; tÞ is a diffeomorphism describing a generalized frame
change. Note that v�ðx�; tÞ is defined in the domain ðgðU ;TÞ;TÞ, i.e.,
x� 2 gðU ;TÞ.

Haller2 describes a variational problem, which measures the
unsteadiness for the transformed flow. This is calculated by integrating
the transformed time partial derivatives of v�ðx�; tÞ

JðgÞ ¼
ð
U�T
jj@tv�ðx�; tÞjj2dV ; (5)

which serves as the objective for the optimal frame change ĝ resulting
in the minimizer

ĝ ¼ argmin
g2C2ðU�TÞ

JðgÞ: (6)

C. Proof of non-objectivity by Haller2

Haller2 claims that the resulting optimal velocity field

v̂�ðx�; tÞ ¼ @xĝðĝ�1ðx�; tÞ; tÞ vðĝ�1ðx�; tÞ; tÞ þ @t ĝðĝ�1ðx�; tÞ; tÞ;
(7)

from the solution of the variational problem (5) and (6) can never be
objective. The setup for the proof of non-objectivity in Haller2 is illus-
trated in Fig. 1 and starts with an arbitrary steady vector field v0ðx0Þ
observed in a reference frame F0, and a diffeomorphism gðx; tÞ, which
describes a frame change. From this, a time-dependent velocity field
vðx; tÞ in the reference frame F is obtained by observing v0ðx0Þ under
the inverse frame change

F0 ! F : x0 ! x ¼ g�1ðx0; tÞ: (8)

This means that we construct an unsteady vector field vðx; tÞ for
which the reference frame transformation with gðx; tÞ ¼ x0 (our
ground truth) takes us back to the steady flow v0ðx0Þ. For vðx; tÞ, we
search the optimal frame change ĝ minimizing (6). Applying ĝ to
vðx; tÞ results in the optimal observed velocity field v̂�ðx�; tÞ in the
frame F̂� by

F! F̂� : x! x� ¼ ĝðx; tÞ: (9)

To test the objectivity of the reference frame optimization, we need to
observe the unsteady velocity field vðx; tÞ (observed in F) in an arbi-
trary reference frame ~F relative to it and apply the reference frame
optimization there, too. Applying a frame change according to Eq. (1)
gives the new coordinates y with

F! ~F : x! y ¼ QTðtÞðx � bðtÞÞ ¼ pðx; tÞ: (10)

Thus, observing the field vðx; tÞ in a moving Euclidean frame ~F as
given by pðx; tÞ in Eq. (10) results in the field

~vðy; tÞ ¼ @xpðp�1ðy; tÞ; tÞ vðp�1ðy; tÞ; tÞ þ @tpðp�1ðy; tÞ; tÞ (11)

¼ QTðtÞ vðQðtÞy þ bðtÞ; tÞ � _QðtÞy � _bðtÞ
� �

: (12)

Also for ~vðy; tÞ, we search the optimal frame change ~̂g minimizing
(6). Applying ~̂g to ~vðy; tÞ results in the optimal observed velocity field

~̂v �ðy�; tÞ in the frame ~̂F � by

~F ! ~̂F � : y ! y� ¼ ~̂gðy; tÞ: (13)

From the particular construction of vðx; tÞ by (8), both ĝðx; tÞ and
~̂gðy; tÞ have closed-form solutions,

ĝðx; tÞ ¼ gðx; tÞ; ~̂gðy; tÞ ¼ gðp�1ðy; tÞ; tÞ; (14)

which means that they both reach the ground truth steady vector field,

v̂�ðx�; tÞ ¼ v0ðx�Þ; (15)

~̂v �ðy�; tÞ ¼ v0ðy�Þ: (16)

Using the rotation QTðtÞ from Eq. (10), which connects x and y, in an
attempt to test the objectivity condition in Eq. (2) therefore gives an
inequality,

~̂v �ðy�; tÞ 6¼ QTðtÞ v̂�ðx�; tÞ; (17)

because v̂� and ~̂v � are steady and QTðtÞ is truly time-dependent.
From Eq. (17), Haller2 concluded non-objectivity because condition
(2) of the objectivity condition is not fulfilled.

This conclusion, however, is not correct, because the prerequisite
(1) for checking the objectivity condition (2) is not fulfilled in the first
place, i.e., x� and y� are not connected by the rotation QðtÞ via Eq.
(10), i.e.,

x� 6¼ QðtÞy� þ bðtÞ: (18)

Keep in mind that the common objectivity definition has the form “if
(1) then (2).” To check for objectivity (2), we must compare vector
fields in frames with a relative motion (1) to each other. This, however,
is not the case for the reference frames F̂�; ~̂F � in which v̂� and ~̂v � are
observed. In fact, the relation of F̂� and ~̂F � is

F̂� ! ~̂F � : x� ! y� ¼ x� 6¼ pðx�; tÞ; (19)

i.e., F̂� and ~̂F � are identical. Since in this setting (1) does not apply, we
cannot make any conclusions about objectivity or non-objectivity.

D. Proof of objectivity

To correctly check for objectivity, we have to transform v̂�ðx�; tÞ
from F̂� to F, resulting in v̂ðx; tÞ, and we have to transform ~̂v �ðy�; tÞ
from ~̂F � to ~F, resulting in ~̂v ðy; tÞ. This way, both vector fields are in
coordinates x and y, respectively, which are indeed connected by QðtÞ
in Eq. (10).

For these transformations v̂�ðx�; tÞ ! v̂ðx; tÞ and ~̂v �ðy�; tÞ
! ~̂v ðy; tÞ, several options are possible and require a discussion. In
order to support Haller’s2 general statement (“solution of Eqs. (5) and
(6) can never be objective”), it is necessary to show that all transforma-
tions v̂�ðx�; tÞ ! v̂ðx; tÞ and ~̂v �ðy�; tÞ ! ~̂v ðy; tÞ lead to nonobjective
vector fields v̂ and ~̂v . Furthermore, to show that an existing frame
optimization approach is nonobjective, one has to identify which
transformations v̂�ðx�; tÞ ! v̂ðx; tÞ and ~̂v �ðy�; tÞ ! ~̂v ðy; tÞ are used,
and for them, non-objectivity has to be shown.

In principle, there are three ways how such transformations
v̂�ðx�; tÞ ! v̂ðx; tÞ and ~̂v �ðy�; tÞ ! ~̂v ðy; tÞ could be conceived,
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which are illustrated in Fig. 2 for the line integral convolution (LIC)
slice shown in Fig. 1:

(1) Simply translate coordinates, giving v̂ðĝðx; tÞ; tÞ and
~̂v ð~̂gðy; tÞ; tÞ, which does not account for rotations of the
observer. This is neither physically meaningful nor objective.

(2) Apply an inverse reference frame transformation according to
Eq. (4) using the inverse of ĝðx; tÞ and ~̂gðy; tÞ, respectively
(reverse of solid arrows in Fig. 1). This simply results in the
original unsteady flows vðx; tÞ and ~vðy; tÞ. The resulting flow is
physically observable, but the approach is not objective.

(3) Use an inverse domain deformation only (dashed arrows in
Fig. 1). This is objective and results in a derived vector field
that unveils flow features of the original time-dependent
flow. This transformation is later introduced in Eqs. (24)
and (25).

In the following, we formally introduce the transformation in
way 3. Then we prove that this transformation gives objective vector
fields v̂ðx; tÞ and ~̂v ðy; tÞ. We also show that existing local reference
frame optimizations by G€unther et al.10 G€unther and Theisel13 and

Baeza Rojo and G€unther14 are equivalent to way 3. To explain this fur-
ther, we first formally introduce the inverse transformations,

F̂� ! F : x� ! x ¼ ĥðx�; tÞ; (20)

~̂F � ! ~F : y� ! y ¼ ~̂hðy�; tÞ; (21)

with ĥ ¼ ĝ�1 and ~̂h ¼ ~̂g
�1
, i.e.,

ĥðĝðx; tÞ; tÞ ¼ x; ~̂hð~̂gðy; tÞ; tÞ ¼ y: (22)

Computing the spatial gradients in Eq. (22) gives

@x� ĥðx�; tÞ @xĝðx; tÞ ¼ @y� ~̂hðy�; tÞ @y ~̂gðy; tÞ ¼ I: (23)

Note that for transforming v̂�ðx�; tÞ ! v̂ðx; tÞ and ~̂v �ðy�; tÞ
! ~̂v ðy; tÞ, we spatially deform the vector field to the appropriate coor-
dinates rather than applying a reference frame transformation, which
would result in the original unsteady flows. Deforming the optimized
vector field places the flow structures that are observed in the optimal
frame at their locations in the original frame, revealing for example

FIG. 1. Illustration of reference frame transformations along with an example in 2D space-time (x, y, t). A steady flow v0ðx0Þ is observed in two arbitrary reference frames
connected by pðx; tÞ, resulting in the observed unsteady flows vðx; tÞ and ~vðy; tÞ. Note that their planar line integral convolution (LIC) slices do not show the correct vortex
structures (shown as lines), since they depict streamlines and not pathlines of the unsteady flow. Assuming a unique solution, a reference frame optimization will result for both
in the same steady flow. Deforming the optimized flows v̂�ðx�; tÞ and ~̂v �ðy�; tÞ to coordinates x and y (dashed arrows) results in the vector fields v̂ðx; tÞ and ~̂v ðy; tÞ, which
are connected by the rotation in pðx; tÞ. Note that these deformed vector fields show vortex structures in the LIC slices at the vortex locations. In this figure, we used

v0ðx; yÞ ¼
�
�xð2y2 � 1Þ
yð2x2 � 1Þ

�
e�x

2�y2 and g�1ðx; tÞ ¼
�

cos ðtÞ �sin ðtÞ
sin ðtÞ cos ðtÞ

�
x þ

�
t=10
0

�
and pðx; tÞ ¼ cos t=2ð Þ �sin t=2ð Þ

sin t=2ð Þ cos t=2ð Þ

� �
x þ

�
t=5
0

�
, with the fields being

shown in the domain ½�2; 2�2 � ½0; 2p�. In v0ðx; yÞ, vortex centers are located at 61=
ffiffiffi
2
p
;61=

ffiffiffi
2
p� �

.
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vortex cores as critical points or lines with swirling motion around
them. The deformation of the optimal flows is

v̂ðx; tÞ ¼ @x� ĥðx�; tÞ v̂�ðx�; tÞ; (24)

~̂v ðy; tÞ ¼ @y� ~̂hðy�; tÞ ~̂v �ðy�; tÞ: (25)

Inserting the transformations from the given unsteady flows to the
optimal flows, i.e.,

v̂�ðx�; tÞ ¼ @xĝðx; tÞ vðx; tÞ þ @t ĝðx; tÞ; (26)

~̂v �ðy�; tÞ ¼ @y ~̂gðy; tÞ ~vðy; tÞ þ @t ~̂g ðy; tÞ; (27)

into Eqs. (24) and (25), while using Eq. (23) gives the deformed flows
v̂ðx; tÞ and ~̂v ðy; tÞ in terms of the original unsteady flows vðx; tÞ and
~vðy; tÞ,

v̂ðx; tÞ ¼ vðx; tÞ þ ð@xĝðx; tÞÞ�1 @t ĝðx; tÞ; (28)

~̂v ðy; tÞ ¼ ~vðy; tÞ þ ð@y ~̂gðy; tÞÞ�1 @t ~̂gðy; tÞ: (29)

Since now v̂ðx; tÞ and ~̂v ðy; tÞ are in the frames F; ~F fulfilling (1), we
can check for objectivity using Eq. (2). We formulate

Theorem 1. Given is a velocity field vðx; tÞ. If the variational
problem Eqs. (5) and (6) has a unique minimizer ĝ (up to a steady
Euclidean frame change), then the field

v̂ ¼ v þ ð@xĝÞ�1 @t ĝ; (30)

in Eq. (28) is objective.
This theorem is the main theoretical result of this paper. For

proving this, we start with
Lemma 1. Given is a vector field vðx; tÞ and its observation

~vðy; tÞ under the Euclidean frame change (10). Further, let v�ðx�; tÞ be
the observation of v under the frame change (3), i.e., v� is given by Eq.
(4). Finally, we define the observation frame,

~F ! ~F� : y ! y� ¼ ~gðy; tÞ ¼ gðp�1ðy; tÞ; tÞ: (31)

Then the observation ~v�ðy�; tÞ of ~v under the observation frame (31)
fulfills

~v�ðy�; tÞ ¼ v�ðx�; tÞ: (32)

Proof. Both v� and ~v� are obtained by observing v in the moving refer-
ence frames F�; ~F�, respectively. F� is given in Eq. (3). Equations (10)
and (31) give for ~F�,

F! ~F ! ~F� : x ! y ¼ pðx; tÞ ! y�; (33)

y� ¼ ~gðy; tÞ ¼ gðp�1ðy; tÞ; tÞ ¼ gðx; tÞ: (34)

This and Eq. (3) give ~F� ¼ F� which proves Eq. (32). Note that Eq.
(32) holds for a general vector field vðx; tÞ and is not limited to fields
constructed from steady vector fields via reference frame transforma-
tion, as done with Eq. (8).

From Lemma 1, it follows for gðx; tÞ and ~gðy; tÞ, connected via
Eq. (31), that

JðgÞ ¼ ~J ð~gÞ; (35)

where JðgÞ is given in Eq. (5) and

~J ð~gÞ ¼
ð
U�T
jj@t~v�ðy�; tÞjj

2dV : (36)

From this follows:
Lemma 2. If Eq. (5) has the unique minimizer ĝ, i.e., Eq. (6) holds,

then ~̂gðy; tÞ ¼ ĝðp�1ðy; tÞ; tÞ is the unique mimimizer of Eq. (36), i.e.,

~̂g ¼ argmin
~g2C2ðU�TÞ

~J ð~gÞ: (37)

Finally, from this, Eq. (32), and

@y ~̂gðy; tÞ ¼ @xgðx; tÞ @xðp�1ðy; tÞÞ ¼ @xgðx; tÞQðtÞ; (38)

follows:

FIG. 2. In principle, there are three different transformations that can take us from F̂� ! F. (1) The coordinate translation simply translates the vector of the steady frame
(orange) in F̂� via ĝ

�1 to F. While critical point locations are preserved, the flow around critical points is not physically meaningful and dependent on the observer motion. (2)
The inverse reference frame transformation takes the steady flow back to the original unsteady flow vðx; tÞ (purple vector). Note that the purple vector is the superposition of
the deformed steady frame (blue vector) and the inverse motion of the observer (red vector). Due to the latter, the result is dependent on the observer motion and therefore
not objective. (3) The inverse domain deformation (dashed arrow in Fig. 1) results in an objective vector field (blue vector). Note that unlike (1) and (2), the approach (3) is
objective. We used the same vector field and transformations as in Fig. 1 and show the time slice t ¼ 2p=5.
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~̂v ðy; tÞ ¼ @y� ~̂hðy�; tÞ ~̂v �ðy�; tÞ (39)

¼ ð@y ~̂gðy; tÞÞ�1 ~̂v �ðy�; tÞ (40)

¼ QTðtÞ ð@xĝðx; tÞÞ�1 ~̂v �ðy�; tÞ (41)

¼ QTðtÞ @x� ĥðx�; tÞ v̂�ðx�; tÞ (42)

¼ QTðtÞ v̂ðx; tÞ; (43)

which proves Theorem 1.
Remark. It is important to note that the optimal vector field v̂ in

Eq. (30) is objective but not observable from v in the sense that there
is a general frame change g such that v̂ is the observation of v under g.
Because of this, care has to be taken which vortex extractors are
applied to v̂ . While local measures (such as the Q criterion) applied to
v̂ generally give good results (as done, e.g., in G€unther et al.10)
Lagrangian approaches (based on an integration of v̂) are not advis-
able since a trajectory in v̂ does not have a physical meaning.

Remark. If v̂ is objective, then its gradient tensor @xv̂ is objective
as well. This allows directly considering objective versions of well-
established (nonobjective) vortex measures that are based on the
velocity gradient, such as vorticity, the k2, or the Q criterion. Figure 3
illustrates the application of the objective version of the k2 criterion to
a rotating mixer data set.

E. Uniqueness considerations

In the following, we show that a solution of Eqs. (5) and (6) can
be unique only up to a steady (time-independent) Euclidean frame
change. Let sðx�Þ ¼ S x� þ sc be a steady Euclidean frame change, i.e.,
S is a rotation matrix and sc is a translation vector. We define the
frame change

F! F�� : x! x�� ¼ gsðx; tÞ ¼ sðgðx; tÞÞ; (44)

where gðx; tÞ takes us from x to x� and sðx�Þ takes us from x� to x��.
Then, we get the partial derivatives

@xgsðx; tÞ ¼ S @xgðx; tÞ; @tgsðx; tÞ ¼ S @tgðx; tÞ: (45)

Thus, a reference frame transformation with Eq. (44) transforms v to

v��ðx��; tÞ ¼ @xgsðg�1s ðx��; tÞ; tÞ vðg�1s ðx��; tÞ; tÞ (46)

þ@tgsðg�1s ðx��; tÞ; tÞ (47)

¼ @xgsðx; tÞ vðx; tÞ þ @tgsðx; tÞ (48)

¼ S @xgðx; tÞ vðx; tÞ þ S @tgðx; tÞ (49)

¼ S v�ðx�; tÞ; (50)

where the step from Eqs. (46)–(47) to Eq. (48) applies the inverse
transformation of Eq. (44) to the coordinates, Eqs. (48) and (49)
applies Eq. (45), and Eqs. (49) and (50) transforms the velocity field to
coordinates x�, resulting in the factored out matrix S. This gives
@tv��ðx��; tÞ ¼ S @tv�ðx�; tÞ, resulting in

JðgÞ ¼ JðgsÞ: (51)

This has the following meaning: if ĝðx; tÞ is a minimizer of Eqs. (5)
and (6), then ĝsðx; tÞ ¼ sðĝðx; tÞÞ is a minimizer as well. Because of
this, a proper boundary condition has to “pick” a particular s to ensure
a unique solution of the variational problem. Fortunately, this picking
does not influence the final objective velocity field in the frame F,

vðx; tÞ þ ð@xĝðx; tÞÞ�1 @t ĝðx; tÞ (52)

¼ vðx; tÞ þ ð@xĝsðx; tÞÞ
�1 @t ĝsðx; tÞ: (53)

Equation (52) follows directly from Eq. (45),

ð@xĝsÞ
�1 @t ĝs ¼ ð@xĝÞ

�1 S�1 S @t ĝ ¼ ð@xĝÞ�1 @t ĝ: (54)

III. RELATION TO EXISTING APPROACHES

In order to come up with practical solutions for the variational
problem Eqs. (5) and (6), several further design decisions are
necessary:

FIG. 3. Examples of the k2 measure,
computed from original flow (left, Galilean-
invariant) and from the reference frame
optimization by G€unther et al.10 (right,
objective) in a turbulent rotating mixer
data set, containing vortices that move
along curved paths. The visualization was
rendered with the Intel OSPRay path
tracer in Kitware’s ParaView.
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• Choice of the domain: Since it is not generally possible to find a
“perfect” frame change for an arbitrary unsteady vector field (i.e.,
a frame where v̂� becomes perfectly steady) for the whole domain
(U, T), certain subsets of (U, T) may be considered instead.

• Limitations to subclasses of g: The space of all considered frame
changes g can be limited, e.g., to the space of all Euclidean frame
changes.

• Boundary conditions: depending on the settings above, proper
boundary conditions are necessary to ensure a unique solution of
Eq. (5) and (6). In particular, the uniqueness problem Eq. (51)
needs to be addressed by the boundary conditions.

• Non-linearity: the problem Eqs. (5) and (6) is a non-linear partial
differential equation (PDE), making a numerical solution chal-
lenging. Existing approaches10,16 manage to transform it to a lin-
ear PDE before solving it.

In the following, we discuss how existing approaches for unstead-
iness minimization are related to the variational problem Eqs. (5) and
(6). We restrict ourselves to the approaches of G€unther et al.10 and
Hadwiger et al.,16 respectively, because the other existing approaches
build upon them.

A. The approach by G€unther et al.10

G€unther et al.10 consider only Euclidean frame changes g.
Furthermore, the approach in Ref. 10 does not directly solve Eqs. (5)
and (6). In particular, it does not solve Eqs. (5) and (6) under the addi-
tional condition,

gðx; tÞ ¼ x; @xgðx; tÞ ¼ I; (55)

as claimed by Haller.2 Instead, G€unther et al.10 solve a similar problem
to Eqs. (5) and (6) for each point individually by assuming an individ-
ual neighborhood for each point. Let e; c > 0 be small constants, let
UeðcÞ be the spatial e-neighborhood around c, and let TcðsÞ be the
time-neighborhood around s. Furthermore, we assume e; c small
enough to fulfill ðUeðcÞ;TcðsÞÞ � ðU ;TÞ. Then, G€unther et al.10

solved an individual variational problem for each space-time location
ðc; sÞ by

Jðgðc;sÞÞ ¼
ð
UeðcÞ�TcðsÞ

jj@tv�ðx�; tÞjj2dV ; (56)

ĝðc;sÞ ¼ argmin
gðc;sÞ2C2ðUeðcÞ�TcðsÞÞ

Jðgðc;sÞÞ: (57)

This means that ĝðc;sÞðx; tÞ is the optimal frame change when consid-
ering only the neighborhood around ðc; sÞ. From this, G€unther et al.10

considered the parameter-dependent vector field

v̂ 0ðx; t; c; sÞ ¼ vðx; tÞ þ ð@x ĝðc;sÞðx; tÞÞ
�1 ð@t ĝðc;sÞðx; tÞÞ; (58)

from which the final objective vector field

v̂ðx; tÞ ¼ v̂ 0ðx; t; x; tÞ; (59)

is derived. To compute v̂ 0ðx; t; c; sÞ, we need to compute ĝðc;sÞ for
every ðc; sÞ. For this, certain boundary conditions for the uniqueness
problem (51) are necessary. G€unther et al.10 used the conditions

ĝðc;sÞðx; tÞjt¼s ¼ x; @x ĝðc;sÞðx; tÞjt¼s ¼ I: (60)

which sets conditions only in a single time slice, namely at the observa-
tion time t ¼ s, i.e., the reference frame is free to deform locally in the
space-time neighborhood. This particular choice of the boundary con-
ditions has the advantage that for each ðc; sÞ

v̂�ðc; sÞ ¼ v̂ðc; sÞ; (61)

i.e., it is sufficient to compute v̂� without the final transformation (24)
from F� to F. [Note that Eq. (61) directly follows from Eqs. (24) and
(60).] Finally G€unther et al.10 solved the problem for c! 0, making it
possible to completely represent g by a Taylor approximation. With
this, the solution of Eqs. (56) and (57) turns out to be a quadratic
problem for each ðc; sÞ with the t-derivatives of gðc;sÞðx; tÞ as
unknowns. In follow-up work, the frame change g received further
degrees of freedom.13,14

B. The approach by Hadwiger et al.16

Hadwiger et al.16 take another approach to solve Eqs. (5) and (6).
Instead of searching for optimal frame changes g, they directly solve
for the vector fields

u ¼ �ð@xgÞ�1gt : (62)

The right-hand side of Eq. (62) appears (negated) in the right-hand
side of Eq. (30), i.e., we can write

v̂ðx; tÞ ¼ vðx; tÞ � uðx; tÞ: (63)

Directly solving for a vector field u has the advantage that the
uniqueness problem (51) does not have to be addressed because of
Eq. (52). In particular, Hadwiger et al.16 search for vector fields u
that are approximate Killing vector fields, which is justified by the
following

Lemma 3. If g is a Euclidean frame change, then the vector field u
is a Killing vector field, i.e., an infinitesimal isometry.

Further, the relation to the variational problem Eqs. (5) and (6) is
given by the time derivative

@tv�ðx�; tÞ ¼ @xgðx; tÞ Luðv � uÞðx; tÞ (64)

¼ @xgðx; tÞ @xvðx; tÞuðx; tÞ þ @tvðx; tÞð
�@xuðx; tÞ vðx; tÞ � @tuðx; tÞÞ; (65)

where Lu denotes the time-dependent Lie derivative with respect to
the flow of the vector field u. To obtain the objective vector field v̂ in
the frame F, Hadwiger et al.16 solve the following variational problem,
directly in the frame F:

JðuÞ ¼
ð
U�T
jjLuðv � uÞðx; tÞjj2dV ; (66)

û ¼ argmin
u2C1ðU�TÞ

JðuÞ; (67)

v̂ ¼ v � û: (68)

If the search space is restricted to perfect Euclidean frame changes g
(corresponding to exact Killing fields u), Eqs. (66)–(68) are—due to
Eqs. (62)–(65)—identical to Eqs. (5) and (6) but have a number of
practical advantages: Eqs. (66)–(68) is linear in the unknown u, and
the uniqueness problem (51) does not have to be addressed. We note
that recently it has also been shown by Zhang et al.19 that valid and
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physically realizable Euclidean frame changes can be extracted from
the field û in an objective manner, even for the case when the frame
change g originally computed by solving the variational problem given
in Eqs. (66)–(68) is not a Euclidean frame change.

Haller2 further claims the problems “not accounting for the
x-dependence of the initial conditions of the flow of their proposed
observer vector field,” and “frame-change formulas for rotating observ-
ers that do not account for the rotation of the observer” in Hadwiger
et al.16 We disagree: Both the x-dependence and the rotation are natu-
rally encoded in the vector field u, including the corresponding frame
change formulas, integrating u, given in Sec. 6.3 of Hadwiger et al.16

IV. CONCLUSIONS

Nowadays, it is generally agreed upon that vortex criteria should
be independent of the chosen reference frame, in particular invariant
to Euclidean transformations, which is referred to as objectivity.
Many of the commonly used vortex definitions, such as the k2- and
Q-criterion, do not enjoy this mathematical property. To this date,
three generic approaches have been proposed to alter these definitions
into an objective counterpart, including the replacement of the vortic-
ity tensor with the relative-spin or spin-deviation tensors, or by finding
spatially varying reference frames in which the flow becomes as-
steady-as-possible. The latter not only enables the analysis of unsteady
flow by means of techniques developed for steady flows, it also makes
every existing vortex measure objective. In his recent paper, Haller2

systematically analyzed these approaches, formulated the reference
frame optimization as variational problem, and incorrectly concluded
that the optimization is not objective. In this paper, we showed that
Haller2 applied the objectivity definition incorrectly by comparing
optimized vector fields in the wrong coordinates. In fact, both the
velocity vectors of the fields and the coordinates in which they are
defined must obey the Euclidean transformation. Hence, we demon-
strate that the objectivization via reference frame optimization is in
fact objective, and we discuss how the variational problem relates to
the local optimization approaches of G€unther et al.10 and Baeza Rojo
and G€unther,14 and the global optimization of Hadwiger et al.,16 which
also applies analogously to the recent approach by Rautek et al.17 We
believe that reference frame optimization is a promising device for
unsteady vector field analysis, including not only vortices but also
other flow features as well as topological elements.

As a final example, we compute an objective version of the k2 cri-
terion following G€unther et al.10 to a rotating mixer flow. This is a
numerically simulated flow with a bulk rotation that is stirred by three
rotating paddles in a cylindrical container. While the left-hand side
shows the standard k2 criterion, the objective version on the right-
hand side better reveals weaker vortex structures that are located closer
to the rotation center. The work was supported by Grant No. DFG TH
692/18-1 and ETH Research Grant ETH-07 18-1. It was also sup-
ported by King Abdullah University of Science and Technology

(KAUST). This research used resources of the Core Labs of King
Abdullah University of Science and Technology.
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