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A SAMPLE ACCEPTANCE PROBABILITY COMPUTATION

Computing the depth acceptance probability as in Eq. 21 for large data
sets presents a significant computational challenge. This is because
the rendering of such large data sets results in many (hundreds of
thousands to millions) of particles projecting to a single screen-space
pixel resulting in large values of N. Therefore, the Binomial Coefficient
factor of the Binomial Cumulative Distribution Function in Eq. 21 will
be very costly to compute for large values of N and gets more costly as
the difference between N and k(dy) increases.

There are several methods in the literature approximating the Bi-
nomial Coefficient such as Stirling’s Approximation [8] resulting in
a more computationally tractable computation of the Binomial Coef-
ficient. However, even with the approximation of the Binomial Co-
efficient, the cumulative distribution function computation in Eq. 21
still poses a computational challenge since we are interested in the
sum of the probability mass function of the Binomial distribution of a
tentatively large range, namely the range from k(ds) and N.

We are therefore interested in an approximation to the Cumulative
Distribution Function of the Binomial Distribution that is accurate and
computationally efficient.

Normal Approximation of the Binomial Distribution Function.
For large (> 10) values of N - p(ds) and N - p(d;) - ¢(dy) we can approx-
imate the Binomial Distribution Function by a Normal Distribution
Function [6]. Therefore, a random variable K that follows a Bino-
mial Distribution with parameters N and p(ds), approximately fol-
lows a Normal Distribution with a mean y = N - p(dy) and variance
6% = N-p(d;) - q(dy) as outlined in Eq. 1.

K ~B(N,p(dy)) ~ K ~ N(u,07) (24)

where u = N - p(d;) and 62 = N - p(ds) - q(ds).

We can therefore re-write the cumulative distribution function
in Eq. 21 in as the cumulative distribution function of the Normal
distribution as outlined in Eq. 2.
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Since the Binomial Distribution is a discrete distribution, approxi-
mating it with the continuous Normal Distribution Function requires
adding a continuity correction term, ¢ = 0.5 [6]. Adding the continuity
correction term to Eq. 2, the Normal cumulative function would be
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Standard Normal Transformation We can further simplify the Ap-
proximation of the Binomial Cumulative Distribution Function in Eq. 5
if we transform the Normal Cumulative Distribution Function to a Stan-
dard Normal Cumulative Distribution Function. Note that if a random
variable Z ~ N(0, 1), then a random variable X = 6Z+ u ~ N(u,6?)
[6]. This in turn means that Z = (X — u)/o ~ N(0,1). Therefore,
we can re-write the Cumulative Distribution Function of the general
Normal Distribution in terms of the Cumulative Distribution Function
of the standard Normal Distribution as:
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where c=(a—p)/candd = (b—u)/o.

We can therefore re-write the Cumulative Distribution Function of
the general Normal Distribution in Eq. 5 in terms of the Cumulative
Distribution Function of the standard Normal Distribution for a random
variable Z ~ N(0, 1) as follows:

P(k(dy) +c <K <N+c)=Pla<Z<b) (28)

where a = (k(ds)+c—pn)/ocandb=(N+c—u)/o.

Therefore, the final formulation of the standard transformation of
the Normal approximation of the Cumulative Distribution Function of
the Binomial Distribution in Eq. 21 would be:
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where a = (k(ds)+c—p)/candb=(N+c—u)/o.
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To simplify computations further, we can rewrite Eq. 6 as

Pla<Z<b)=P(Z<b)—P(Z<a)

ra

(30)
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where a = (k(ds) +c—p)/cand b= (N+c—u)/o.

Computing the depth acceptance probability is therefore now trans-
formed into computing a simple cumulative distribution function of the
standard Normal distribution. Which can be done in a pre-processing
step for a percentile of interest of the standard normal distribution.
Denoting by zq the critical value (100(1 — at)th percentile) of the
standard normal distribution such that P(Z > z4) = o, we pre-compute
the range of critical values [—z¢,72¢] [6]. With oo = .001, we capture
99.8% of the area under the standard normal distribution curve, and
store the cumulative distribution function values over [—zq,z¢] on the
GPU turning the depth acceptance probability into a simple lookup.
We refer the reader to Fig. 1 for a plot of the standard normal approxi-
mation of the Binomial cumulative distribution function for different
values of N and p(dy).

B EXTENDED EVALUATION

Table 1 gives a full list of data sets that we have used for the evaluation,
and Table 2 and Table 3 provide the corresponding extended results for
performance and for culling, respectively. Fig. 5 shows renderings of
all data sets, of the three different views corresponding to the results
reported in Table 2 and Table 3.

Table 5. Data sets used for evaluation, with particle and meshlet counts.

data set # particles  # meshlets
copper/silver mixture 14,500,000 901,462
expanding fluid layer 30,000,000 1,880,040
covid-19 40,048,645 2,733,504
laser ablation 48,000,000 3,004,700
large laser ablation 199,940,704 12,513,900
16 x copper/silver mixture | 232,000,000 14,420,300
9 x expanding fluid layer 270,000,000 16,916,500

C SoOURCE CODE AND DATA SETS

The source code for our renderer and some data sets can be found at
http://vccvisualization.org/research/particleculling/


http://vccvisualization.org/research/particleculling/
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Fig. 13. Binomial Cumulative Function Approximation A plot of the Binomial Cumulative Function, the cumulative distribution function of the
Normal approximation of the Binomial, and the cumulative distribution function of the Standard Normal equivalent of the Normal distribution. We vary
N from top to bottom, and vary p(d,) from left to right. Note that the approximation is most accurate for large N.

Fig. 14. Filaments and banding in the gas phase introduced by the
normal smoothing from Grottel et al. [16]. Left: copper/silver mixture,
right: fluid at frame 100.

D EXTENDED COMPARISON TO PREVIOUS WORK
Performance

We compared the performance of our approach against MegaMol and
Grottel et al. [15] in Sect. 7 in the main text. Another standard approach
for the visualization of large-scale particle data is using a particle k-D
tree (P-k-d tree) [37] as a zero-overhead acceleration structure together
with ray tracing (see Fig. 4). A recent improvement based on NVIDIA
OptiX allows to trade-off the overhead and speed of a BVH versus
the compactness and lower performance of a P-k-d tree [12]. We have
tested the performance of the provided implementation with the large
laser ablation using a single P-k-d tree, and it can outperform our
approach without or during culling.

However, when samples per pixel are increased to allow for sub-
pixel details, performance degrades linearly (as expected, see Fig. 3).
Our goal of having tens to hundreds of samples can only be achieved
interactively if the ray tracer uses an accumulation buffer and adds
samples progressively. That way, image quality gradually increases
as long as the user is not manipulating the camera. The P-k-d [12]

approach outperforms ours in the ’dc’ stage and when we sample
the data once per pixel in the ’ac’ stage. However, after the culling
computations converge, our method can generate additional samples
much faster than the P-k-d [12] approach. In this example this happens
after frame 22, and we report performance using hardware-supported
multi-sampling for anti-aliasing (MSAA) with 2 or more samples.

By design, the overlap of sub-trees in a P-k-d tree limits its perfor-
mance, as the first found hit can not early-terminate traversal. Combin-
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Fig. 15. Convergence and comparison with P-k-d performance. A
comparison of the rendering performance of our approach versus the
approach presented by Gralka et al. [12] using a pure P-k-d data structure
and the large laser ablation data set, with increasing samples per pixel
(x axis). We highlight the different stages (during culling/dc, and after
culling/ac) in the plot to demonstrate the convergence behaviour of our
approach. We report the rendering performance measure (fps) for the
approach by Gralka et al. [12] and for our approach with MSAA enabled,
with one to eight samples. In addition, we highlight the initial fps and the
average fps during the dc stage for our approach with MSAA enabled
with two samples.



Fig. 16. P-k-d Quality. A rendering quality comparison of the rendering
performance of our approach with MSAA with two samples versus the
approach presented by Gralka et al. [12] using a pure P-k-d data structure
and the large laser ablation data set, with 64 samples per pixel for a
similar view of the data set (ours uses orthographic projection, while
Gralka et al. [12] use perspective projection).

ing our occlusion estimate with ray traversal could provide the required
information for early termination, but we leave this investigation as
future work for now.

Quality

We compared the rendering quality of our approach against MegaMol
and Grottel et al. [15] in Sect. 7, and in Fig. 12 in the main text.
Moreover, the rendering quality is lowest with the brute-force renderer
that samples each pixel once and does not apply any post processing
operations to the image. It suffers from heavy aliasing, especially with
very large data sets. The normal smoothing used by Grottel et al. [16]
results in more pleasant images, but limits the visible features to the
order of the current resolution and zoom level (normals are smoothed
over a 3x3 pixel neighborhood). It is also geared towards bulk material
and can thus introduce filament artifacts and banding in the gas phase,
which can be mistaken for features in the data (see Fig. 2). This works
contrary to our goal of preserving sub-pixel details, same as in our
previous work [22], to not remove features that might indicate structures
of interest only because exploration is started at an inappropriate zoom
level - the same holds for level-of-detail approaches. For instance, as
shown in Fig. 12, the resulting rendering of the large laser ablation data
set using the super-sampling performed by our method successfully
captures interesting features, marked by the dashed ellipses, that the
single-sampled renderings produced by Grottel et al. [16] fail to capture.

In addition, in Fig. 4 we show the resulting rendering of the large
laser ablation data set from which the performance numbers in Fig. 3
were generated. Our rendering produces a less noisy image where
interesting features such as the crown are clearly visible, while the
image generated by Fig. 4 captures the shadows and ambient occlusion
more.
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Fig. 17. Evaluated data set views. Visualizations of the three different views for all data sets used for measuring the numerical results given
in Table 2 and Table 3.



Table 6. Rendering performance. For each data set, for three different views, we report average rendering speed (fps) without using occlusion
culling (w/o c), during the culling process (dc), and after occlusion culling is finished (ac). For these results we used a confidence value of Coee = 0.95,
and a rendering budget b = 2 meshlets per node.

data set view fps
w/oc | de | ac | MegaMol | Grottel et al.
. 0 71 52 | 252 103 59
copper/silver 1| 59 |s53|212| 185 79
mixture 2 66 | 52 | 207 81 65
expanding fluid layer 0 28 291 91 68 18
(frame: 30) 1 33 35 | 118 123 14
) 2 28 82 | 90 92 15
expanding fluid layer (1) gg %(3) Sé 17028 195
(frame: 100) 2 | 31 |21 80 83 10
0 19 22 | 56 32 18
covid-19 1 28 25 | 63 38 17
2 27 24 | 59 50 20
0 50 30 | 115 63 200
laser ablation 1 38 40 | 138 44 110
2 36 40 | 130 59 130
0 16 13 | 35 14 59
large laser ablation 1 15 18 | 42 9 28
2 16 14 | 36 13 40
16 x copper/silver 0 3 8 34 7 35
mixture 1 6 12 | 41 13 12
2 5 9 37 8 16
9 x expanding fluid layer (]) i 2 % ]72 2
(frame: 30)
2 4 9 18 7 7
9 x expanding fluid layer 0 4 8 22 7 2
(frame: 100) 1 4 8 21 12 9
’ 2 4 6 14 7 9

Table 7. Culling efficiency. We report the percentage of culled meshlets (c) and the number of samples (smp) required for culling convergence.
The middle column pair is for our acceptance probability (Sect. 4.5), whereas “random” means 50:50 sample acceptance. Confidence value was
Cocc = 0.95, using a rendering budget of » = 2 meshlets per node.

data set View random probabilistic | Grottel et al.
c(%) | smp | c(%) | smp c(%)

. 0 24 120 82 136 72
copper/silver 1 20 [ 136 | 75 | 80 87
mixture 2 27 | 136 | 76 | 112 76
. . 0 28 88 73 104 67
expanding fluid layer 1 25 38 8] Y 53
(frame: 30) 2 | 2 | 96 | 74 | 9 49
expanding fluid layer (1) % 18386 gg H; gg
(frame: 100) 2 5 56 | 62 | 120 62
0 42 200 75 112 56
covid-19 1 29 128 58 120 32
2 25 152 60 120 24
0 17 88 66 56 79
laser ablation 1 41 128 86 112 65
2 42 48 83 112 68
0 8 64 68 208 89
large laser ablation 1 36 96 79 136 79
2 32 272 70 176 83
. 0 35 104 89 88 93
16 x cqpper/sﬂver | 59 104 9 7 82
mixture 2 44 | 112 | 90 | 88 87
. . 0 62 72 90 72 49
9% exf(’?;‘r‘;‘;? g(‘)‘)‘d layer | 3 | 80 | 83 | 161 57
2 54 240 88 112 44
. . 0 62 88 84 88 75
% exg?:ilgg]%%‘)d layer |yl s1 | oea | 83 | 112 73
2 28 136 75 112 77
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