
Probabilistic Occlusion Culling using Confidence Maps
for High-Quality Rendering of Large Particle Data

Mohamed Ibrahim, Peter Rautek, Guido Reina, Marco Agus, and Markus Hadwiger

RENDERING

visible/culled particles

visible/culled density

75
.5

%
 C

UL
LE

D

OCCLUSION

Fig. 1. Rendering a synthesized SARS-CoV-2 virus with atomistic resolution (∼40M particles). (Left) Main view rendered with 75.5% of
particles culled. (Right) We estimate occlusion probabilities using particle density functions sampled from a coarse particle density
volume. From front to back (left to right), both the number of particles and the volume density decrease due to detected occlusion.

Abstract—Achieving high rendering quality in the visualization of large particle data, for example from large-scale molecular dynamics
simulations, requires a significant amount of sub-pixel super-sampling, due to very high numbers of particles per pixel. Although it is
impossible to super-sample all particles of large-scale data at interactive rates, efficient occlusion culling can decouple the overall data
size from a high effective sampling rate of visible particles. However, while the latter is essential for domain scientists to be able to see
important data features, performing occlusion culling by sampling or sorting the data is usually slow or error-prone due to visibility
estimates of insufficient quality. We present a novel probabilistic culling architecture for super-sampled high-quality rendering of large
particle data. Occlusion is dynamically determined at the sub-pixel level, without explicit visibility sorting or data simplification. We
introduce confidence maps to probabilistically estimate confidence in the visibility data gathered so far. This enables progressive,
confidence-based culling, helping to avoid wrong visibility decisions. In this way, we determine particle visibility with high accuracy,
although only a small part of the data set is sampled. This enables extensive super-sampling of (partially) visible particles for high
rendering quality, at a fraction of the cost of sampling all particles. For real-time performance with millions of particles, we exploit novel
features of recent GPU architectures to group particles into two hierarchy levels, combining fine-grained culling with high frame rates.

Index Terms—Large-scale particle data, sub-pixel occlusion culling, super-sampling, anti-aliasing, coverage, probabilistic methods

1 INTRODUCTION

The steadily growing size of simulation data leads to significant novel
challenges. One area where this is particularly apparent is in molecular
dynamics (MD) simulations. Such data sets comprise millions to bil-
lions of particles, and practitioners increasingly require high rendering
quality and accuracy to capture important data features, in addition to
high performance. However, the particles comprising large-scale parti-
cle simulations are very small, and therefore the number of particles
per pixel in visualizations is typically much larger than for many other
types of data. In this context, the standard approach of sampling pixels
with only a few samples (rays) thus often leads to significant aliasing
and missing features, because the data are severely undersampled.

Many approaches therefore employ pre-computed levels of detail, or
abstractions. This typically means skipping groups of particles that are
small, or aggregating particles into simplified proxy geometries. This
not only removes high-frequency detail from the visualization, but can

• Mohamed Ibrahim, Peter Rautek, and Markus Hadwiger are with
King Abdullah University of Science and Technology (KAUST), Visual
Computing Center, Thuwal, 23955-6900, Saudi Arabia. E-mail:
{ mohamed.ibrahim, peter.rautek, markus.hadwiger } @kaust.edu.sa.

• Guido Reina is with Visualization Research Center (VISUS) at the University
of Stuttgart, Germany. E-mail: guido.reina@visus.uni-stuttgart.de.

• Marco Agus is with College of Science and Engineering, Hamad Bin Khalifa
University, Qatar Foundation, Doha, Qatar. E-mail: magus@hbku.edu.qa.

Manuscript received 31 Mar. 2021; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

also bias the analyses of domain scientists toward data that is simplified
for the current scale of exploration. This poses a problem for accurate
exploratory analysis, as it limits the detail level at which data can be
understood, and the assessment where to continue exploring. Moreover,
for data with similar features on different scales, simplification makes
it unnecessarily hard to understand which scale is currently shown.

Particles in large-scale data sets are often distributed heterogeneously
in space, e.g., depending on the type of matter being simulated. In
molecular dynamics, particles in a solid/crystalline state tend to be
tightly packed, as do liquid particles. In contrast, particles in a gas
phase often lead to sparsely populated regions, e.g., in the left-hand side
of Fig. 2. In such regions, the particles require accurate super-sampling
without overestimating their potential for occluding, which would lead
to visible particles not being sampled. The right-hand side, however,
is densely packed, and most particles there in fact do not contribute
to the visualization, providing significant opportunities for occlusion
culling. (See Table 1 for an overview of the terminology that we use
in this paper.) Efficient and accurate occlusion culling must take these
properties into account, but particles that are smaller than a pixel pose
a major challenge for dynamic (on-the-fly) occlusion culling. If state-
of-the-art occlusion culling is employed for such data, small particles
lead to overestimation of potential occlusion: the depth of a sample is
not representative for an entire pixel. This holds unless occlusion is
also super-sampled on top of super-sampling for rendering.

The major kinds of state-of-the-art interactive molecular visualiza-
tion approaches and their drawbacks are: (1) Reducing individual cells
of an acceleration structure, or even entire molecule bounding boxes,
to a single pixel when their projection is small enough [7]. This skips
details of large parts of the scene. (2) Clustering and simplifying the



 ~0.5 million

 ~47.5 million

Fig. 2. Heterogeneous particle distributions. Often, only a small part
of a data set, e.g., the ∼ 0.5 million particles in the crown (left), and the
faces of the aluminum block (right), contribute to the actual visualization.

data to fit the current zoom level [27, 32], filtering out finer details.
In terms of performance and perception, all of these approaches scale
well, but at the cost of lost accuracy. (3) Progressive super-sampling
achieves high accuracy after convergence, but at a significant cost [37].
For fast re-lighting, the result of costly super-sampling can be cached
in normal distribution functions [22]. This captures details well, but
super-sampling needs to be re-computed for every new rotated view.

Main goals. We build on the basic premise that accurate, high-
quality visualization of the intricate details in large-scale particle data
(Fig. 1 and Fig. 2) is impossible without extensive super-sampling per
pixel. However, doing this for all particles in large data sets was so far
prohibitive at interactive rates. We therefore target improving perfor-
mance by concentrating most of the sampling effort on the visible parts
of the data only. We propose a novel architecture for dynamic occlusion
culling that is probabilistic, uses progressive refinement, and also takes
current GPU architectures into account for high performance. Our
approach performs both occlusion culling and high-quality rendering
via progressive sampling, adding more and more samples from frame
to frame, without requiring any data simplification or approximations.

Contributions. The major contributions of this paper are:
(1) A novel probabilistic occlusion culling architecture (Fig. 4) that

goes hand in hand with progressive super-sampling of particle data
containing intricate detail. While we start progressively super-sampling
the scene, we likewise progressively build up visibility information that
enables culling more and more parts of the scene that become known to
be occluded with high confidence. We combine fine culling granularity
with fast rendering via a two-level object space subdivision, grouping
particles into nodes and meshlets, and using recent GPU features.

(2) Instead of computing sub-pixel coverage via explicit discretiza-
tion, as in Fig. 3 (left), we track a representative pixel depth (d), and
probabilistically estimate sub-pixel coverage, as in Fig. 3 (right), to
determine confidence (C) in the current value of d. We track depth and
confidence information (d,C) in a multi-resolution image pyramid, the
depth confidence map, enabling probabilistic culling.

(3) To enable the accurate estimation of depth and confidence up-
dates, in addition to the particle data we maintain and progressively
update a coarse 3D particle density volume, from which we extract
particle density functions along view rays on-the-fly via ray casting.
This enables a novel probabilistic computation of visibility estimates.

We show that our probabilistic culling converges quickly, enabling
extensive super-sampling of visible particles at real time rates, while
significantly reducing the overall number of particles that are sampled.

2 RELATED WORK

Super-sampling for high-quality rendering is a standard technique in
graphics and visualization. Many approaches subdivide pixels into a
sub-pixel grid, and perform sampling on this finer grid (see Fig. 3 (left)).
An early seminal work is the A-buffer [3]. The accumulation buffer [19]
sums color samples per pixel in multiple rendering passes, reusing the
standard depth buffer for correct visibility without sub-pixel depth
storage overhead. However, this accumulation buffer cannot be used
for sub-pixel-accurate culling. We also do not store or use an explicit
sub-pixel grid (see Fig. 3 (right)), but overall our approach is very
different and focuses on probabilistic estimates that enable sub-pixel-
accurate culling. We also use an “accumulation buffer,” but this is not
related to the concept just described [19]. Our accumulation buffer
performs a probabilistic accumulation of confidence in depth values.

A A

₁
₂

₃ 1-A₃

Fig. 3. Sub-pixel coverage. We do not discretize or store sub-pixel
samples on a grid (left), but instead probabilistically estimate the accu-
mulated sub-pixel coverage An(k) (right) after k samples, out of which n(k)
are from unique particles (here, n = 3), where n is also probabilistically
estimated. The confidence C(k) for the pixel’s representative depth d
then corresponds to the covered area, for which depth ≤ d is guaranteed.

Occlusion culling. We perform hierarchical occlusion testing, in-
spired by hierarchical occlusion maps (HOMs) [41] and the hierarchical
z buffer [13]. However, we emphasize that instead of aggregating depth
information of pixels or sub-pixels, our “finest resolution” occlusion
information is fully probabilistic and not an aggregation of discretized
sub-pixel data. Bittner et al. [2] and Cohen-Or et al. [5] provide com-
prehensive overviews of occlusion culling methods. Many approaches
exploit GPU hardware occlusion queries, e.g., in OpenGL [4], which
are challenging to use because they are asynchronous. Various methods
reduce stalls in the occlusion pipeline, such as coherent hierarchical
culling [1], and later improvements [18, 29, 30]. On top of these meth-
ods, fast hierarchical culling can be built [13,41]. To achieve scalability
to large scenes, hybrid image/object-space methods use spatial scene
partitionings and hierarchical data structures, amortizing occlusion
query and culling cost over many primitives [10, 31]. Proximity infor-
mation of occluding triangles can also be used to infer good occluders
from neighboring triangles [40]. A more recent CPU-based approach
for early occlusion culling was presented by Hasselgren et al. [20].

Particle rendering. A common approach to render particle data
is to use GPU-computed glyphs [17], where the particle geometry is
replaced by implicit descriptions that are rendered as billboards and
then filled in, for example by computing ray-sphere intersections for
each pixel in the billboard’s screen space projection. We render parti-
cles based on the same principle. Large-scale particle data can also be
rendered via volume rendering, e.g., via RBF volume ray casting [23],
or ray tracing for molecular visualization of ball-and-stick models [24],
also in ultra-resolution immersive environments [33]. Other approaches
for molecular visualization that exploit a grid and instancing for large
particle data have been proposed. Lindow et al. [28] traverse a grid in
layers to just require a single reference per atom even when it spans
multiple cells, additionally optimizing normal computation to reduce
aliasing. Falk et al. [7] use a grid containing local grids for entire
molecules to further optimize intersection testing depending on screen-
space size. Grottel et al. [16] perform occlusion culling of particle
scenes on two levels, in both cases against a (hierarchical) depth buffer
of the previous frame. On the coarse level, they check whether the
bounding boxes of large chunks of data are occluded. On the fine
level, they do per-glyph occlusion culling against the appropriate depth
hierarchy level in the vertex shader, that is, after the data is streamed
(chunk-wise) to the GPU. This produces good results in terms of occlu-
sion and frame rates. However, this technique always streams the data

Table 1. Terminology and main concepts used in this paper.

term explanation
occlusion culling determining occluded subsets of

the data. here: to exclude groups
of particles from super-sampling

sub-pixel super-sampling more than one ray per pixel
sub-pixel coverage percentage of occluded pixel area
depth confidence; C sub-pixel area with depth ≤ d
representative depth; d depth valid for sub-pixel area C
depth confidence map (d,C) tracked in image pyramid
particle density volume; D 3D volume of local particle density
particle density function; D(t) density along ray; extracted from D
meshlet a small group of particles

(used in Vulkan mesh shaders)
node a group of meshlets



YESNO

NE
XT

 IT
ER

AT
IO

N

OCCLUDED

pre-processing

sampling occlusion 

pick 
subset

update 
depth/confidence

 multiple passes 

-
pa

rti
cl

e 
hi

er
ar

ch
y 

de
ns

ity
 v

ol
um

e 

convergence check

culling
converged?

view changed depth confidence map 

DEPTH CONFIDENCE

super-sampled rendering

NODES MESHLETS 

update density volume

MEDIUM

LOW

PVISIBLE

occlusion classes

probabilistic occlusion culling

Fig. 4. Probabilistic occlusion culling architecture. To facilitate culling, particles are grouped together in a two-level object space hierarchy
comprising nodes and meshlets (top left). For probability estimates, we also compute a coarse particle density volume (bottom left). For each new
view, we sample subsets of particles not (yet) known to be occluded, and update a novel image space hierarchy for culling: depth confidence maps.
Confidence values are updated probabilistically, requiring particle density estimates along rays through the density volume, determining an occlusion
class for each meshlet, from visible to occluded. Rendering is performed by super-sampling only the meshlets that are not known to be occluded,
with culling as well as super-sampling performed progressively. After culling has converged, we continue super-sampling for higher rendering quality.

to the GPU and is bandwidth-limited for large data: To use occlusion
queries, the respective data has to be uploaded to the GPU. The authors
have implemented a caching mechanism such that relevant batches of
particles are kept on the GPU for rendering, but for each batch with
unclear visibility uploading is required. Wang et al. [39] introduce a
particle-specific metric to determine occlusion on the CPU.

Ray tracing frameworks. A recent CPU ray tracing framework is
OSPRay [36], built on Embree [38], using a standard bounding volume
hierarchy (BVH). The Particle Kd-Tree (P-k-d) is an extension for par-
ticle data [37]. Similar approaches are available for GPUs, for example
the NVIDIA RTX hardware ray tracing capabilities. This approach also
requires an acceleration structure to be efficient, which can only have
two levels, of which the bottom one has bounding information [35]. A
more recent approach investigates nesting of P-k-ds inside a standard
BVH to balance memory requirements and resulting performance [12]
and benchmarks implementations using OptiX, OSPRay and OpenGL.

Point-based rendering. Particle rendering and point-based render-
ing share several of the basic approaches, and they manage occlusion in
similar ways. For example, layered point clouds [9, 11] are organized
top-down in chunks through a hierarchical data structure, exploiting
the chunks together with frame-to frame coherence for culling.

3 OCCLUSION CULLING ARCHITECTURE OVERVIEW

Fig. 4 depicts an overview of the major components of the pipeline
of our probabilistic occlusion culling architecture. Table 1 gives an
overview of our terminology. In the following, we first summarize
the major ideas that our probabilistic approach is built on, and then
describe each of the pipeline stages depicted in Fig. 4 in more detail.

All input particles are spatially grouped into a simple two-level
hierarchy (Sect. 3.1), comprising small groups of particles stored as
meshlets, and meshlets further grouped into nodes (Fig. 4, top left).
Moreover, we compute an auxiliary 3D particle density volume to
facilitate accurate probability estimates (Fig. 4, bottom left).

The main idea is to sample the scene progressively, over several itera-
tions of the right-hand side of our pipeline, with fully dynamic occlusion
culling, consisting of (1) dynamic sampling of occlusion (Sect. 3.2),
(2) probabilistic updates of depth confidence maps (Sect. 3.3), and (3)
probabilistic occlusion culling using the depth confidence to classify
groups of particles (meshlets) into one of four occlusion classes; culling
the particles in the class O (occluded). These particles are known to
be occluded with high confidence. After each iteration of determining
occlusion classes, we dynamically update the particle density volume
by removing the contribution of particles that were put into O. These
updates significantly improve our probabilistic confidence estimates.

Our approach converges quickly, separating occluded (O) particles
from potentially visible (P) particles , which enables extensive super-
sampling of only those remaining particles at real time rates (Sect. 3.5).

3.1 Pre-Processing and Object Space Data Structures
Object space particle hierarchy. For efficient hierarchical culling,
and to exploit recent GPU architectures, we do not perform occlusion

tests at the granularity of single particles. We group particles into
two hierarchy levels in a simple view-independent pre-processing step:
Small groups (e.g., 16) of nearby particles are grouped into meshlets
(corresponding to GPU mesh shaders), and nearby meshlets are grouped
further into nodes. While this significantly increases efficiency, the
small size of meshlets preserves fine culling granularity (Fig. 5).

Particle density volume. We generate a low-resolution 3D particle
density volume that is used to determine a per-pixel particle density
function for each view ray via ray casting. It is needed to allow accurate
estimation of occlusion probabilities for each sample.

3.2 Dynamic Sampling of Occlusion
We sample and improve occlusion estimates over multiple iterations,
until sufficient convergence is reached (Fig. 4, red cycle). In each
iteration, we perform multiple passes of choosing a subset of potential
occluders (meshlets) to sample occlusion (Fig. 4, top center). In each
pass, we generate one sub-pixel depth sample per pixel via rasterization.

A major motivation for progressively sampling occlusion is that, a
priori, the best selection of particles for the purposes of occlusion is not
known. In the simple case without sub-pixel accuracy, farther depths
will be occluded by closer depths, which can be resolved by simple
depth testing. However, with sub-pixel accuracy any sampled depth
will in general not be representative for a whole pixel. For this reason,
samples with closer depth should not always lead to more occlusion:
Overall occlusion depends on the sub-pixel coverage corresponding to
that depth. Therefore, if the closest depth is retained, within pixels a
suboptimal choice of depth sampling will often occur. To solve this
problem, our probabilistic approach (Sect. 4) dynamically estimates
the probability of a new sample improving occlusion, and chooses the
depth samples to retain according to this probability (Sect. 4.5).

3.3 Depth Confidence Maps
To avoid the overhead and discretization of explicit sub-pixels
(Fig. 3 (left)), we estimate confidence values probabilistically, concep-
tually corresponding to continuous sub-pixel coverage (Fig. 3 (right)).
For the depth value d of each pixel in screen space, we estimate an
associated confidence value C, as a probability 0 ≤C ≤ 1 that a ran-
domly chosen, new sample in this pixel would hit a particle with a
depth≤ d. (Smaller d meaning closer to the camera.) We call this d the
representative depth of this pixel, with associated depth confidence C.

particles nodesmeshlets
Fig. 5. Meshlets and nodes. For efficiency, we use two hierarchy levels
to group particles. Meshlets (center) comprise a few particles (e.g., 16)
each, and facilitate fine-grained culling. Meshlets are further grouped
into nodes (right), to test a group of meshlets for occlusion in one step.



For each pixel, we maintain a pair (d,C), with d its representative
depth, and C its associated depth confidence. The details of this ap-
proach are described in Sect. 4.1 and Sect. 4.2. In fact, to progressively
improve both confidence (higher is better) as well as representative
depth (closer is better), we maintain two pairs (d,C) per pixel: One in
a cull buffer, which at any time is used for probabilistic culling, and
another one in an accumulation buffer (Sect. 4.3). The latter is used to
progressively build up confidence for a closer depth value with better
potential occlusion (see Sect. 4.4 and Sect. 4.5). For hierarchical occlu-
sion testing, we further maintain the cull buffer as a multi-resolution
pyramid, similar to mipmaps or HOMs [41], as described in Sect. 4.6.

3.4 Probabilistic Occlusion Culling
Occlusion classes. Our architecture maintains and progressively up-
dates a classification of meshlets into one of four occlusion classes.
All meshlets start in the occlusion class P (potentially visible). As the
confidence in the occlusion of a meshlet increases, it “moves up” in
confidence, toward occlusion class O (occluded). See Sect. 5.

Confidence-based culling. In every iteration, the depth and con-
fidence values (dcull,Ccull) stored in the cull buffer are used to test
meshlets that are not yet in occlusion class O. This gives a new overall
confidence value for each meshlet, which is its probability of being
occluded. This in turn triggers an update of its occlusion class.

3.5 Super-Sampled Rendering
Occlusion culling, in each iteration of Fig. 4, results in a potentially
visible set (PVS) of particles, which we define as all particles whose
meshlets are not in occlusion class O, with the PVS becoming smaller
from iteration to iteration. Actual rendering is performed by progres-
sively super-sampling all particles in all the meshlets in the PVS. The
most important property of our pipeline is that this super-sampling
effort is only spent on particles that are not occluded with sufficient
confidence, as determined by culling against the depth confidence map.

4 DEPTH CONFIDENCE MAPS

Considering sub-pixel occlusion (Fig. 3), the depth value of a pixel only
corresponds to the sub-pixel samples computed so far. Future samples
may have larger (farther) depth values. For each pixel we therefore
estimate the confidence in the depth value currently associated with it,
which we call its representative depth, with that associated confidence.

We estimate, improve, and use depth confidence probabilistically
over multiple iterations (Fig. 6). We iterate over a sequence of samples
of particles mapping to a given pixel, and for each sample we: (1)
Estimate the sub-pixel area corresponding to all samples so far, for
which the depth value is representative (Sect. 4.1 and 4.2). (2) Estimate
whether the new sample’s depth would increase particle occlusion—
which also requires sufficient accumulation of confidence—using a
novel probabilistic strategy for accepting the incoming depth (Sect. 4.5).

4.1 Probabilistic Sub-Pixel Coverage
We want to derive an estimate of how much of the sub-pixel area of a
given pixel is covered so far, in an iteration over a sequence of particle
samples. For this, we consider a given pixel of screen space size A, and
perform the estimation of sub-pixel coverage iteratively, iterating from
particle contribution to particle contribution (see Fig. 3 (right)).

Representative depth. A crucial concept in our method is the
meaning of the depth value associated with a given pixel. Although
we perform extensive super-sampling, we only store one depth value d
for every pixel, not one depth value per sub-pixel sample. We call
this depth d the representative depth, which is computed over the non-
empty regions of the pixel (Fig. 3 (right)). The farthest visible depth
anywhere marked in orange is d. In contrast, all regions shown in white
have unknown depth, and (future) samples taken there can potentially
hit particles with any depth. Thus, d for a given pixel is a representative
conservative depth for sub-pixel regions already known to be covered.

Particle sampling without replacement. We first consider iterating
over all particles mapping to the pixel, with 0 < an ≤ A the size of
particle n within the pixel footprint of area A. We denote the total pixel
area that is covered jointly by n particles, after n iterations, by An. The
fraction covered inside the pixel’s area after n iterations therefore is

An/A. However, because particles often overlap in screen space, An
cannot be determined as ∑n an. In order to estimate how much the next
particle’s area will contribute to the area An of the pixel covered in
iteration n, we estimate that the fraction of its area an, that will map to a
sub-pixel area that was not already covered before, is given by the ratio
of the sub-pixel area not yet covered, to the total area of the pixel, i.e.,
(A−An−1)/A. We can view this estimate as computing the expected
value of the newly covered area over a long series of trials of placing
the same particle at different sub-pixel locations. This expected value
will be ((A−An−1)/A)an. Thus, an iterative estimation of sub-pixel
coverage An, starting with n = 0, is given by the recurrence relation

A0 = 0, An = An−1 +
A−An−1

A
an. (1)

We can simplify this by normalizing the pixel area, setting A = 1 (and
thus 0 < an ≤ 1). If all particle sizes an are equal (an = a, for all n),
the closed-form solution of this recurrence for n≥ 0 is the function

An = 1− (1−a)n. (2)

Since 0 < a≤ 1, limn→∞ An = 1. If the an are not equal, the equation
above simply has to multiply n different (1−an) terms accordingly.

Particle super-sampling with replacement. However, because our
architecture employs extensive super-sampling of particles, this means
that we are in fact sampling many particles multiple times, i.e., we
sample with replacement. Thus, n above must be the number of unique
particles hit by k samples, where n ≤ k. Keeping track of individual
sampled particles is too costly, so we cannot compute the exact number
n(k) of unique particles hit over k iterations. However, for any k ≥ 0,
we can compute the expected value E

(
n(k)

)
, via the recurrence relation

E
(
n(0)

)
= 0, (3)

E
(
n(k)

)
= E

(
n(k−1)

)
+

N−E
(
n(k−1)

)
N

. (4)

Here, N is the number of particles out of which we are choosing the k
samples, which in our case must be the total number of particles with a
depth ≤ d (i.e., closer than the representative depth d for which we are
accumulating coverage). For any given pixel, we obtain the correspond-
ing view-dependent number N by performing volume rendering into
a per-pixel particle density histogram, as described in Sect. 4.4. The
closed-form solution of this recurrence relation, for k ≥ 0, is

E
(
n(k)

)
=

1−Mk

1−M
, with M := 1− 1

N
. (5)

We note that E
(
n(k)

)
≤ k, for any k ≥ 0, and limN→∞ E

(
n(k)

)
= k, as

expected. Fig. 7 illustrates E
(
n(k)

)
for different values of k and N.

From Eq. 4, we also obtain the incremental contribution of the k’th
sample to the expected number of unique particles n(k), as

rendering 4 32168

CO
NF
ID
EN
CE

low

high

Fig. 6. Confidence accumulation over sampling iterations for the Laser
Ablation data set of about 48 million particles. From left to right, confi-
dence accumulates from iteration to iteration (k = 4 to 32 samples).



N = 120
N = 60
N = 30
N = 15

0
0

10

20

30

10 20 30

E(n(k))

k

Fig. 7. Expected value of unique particles, E
(
n(k)

)
, for various sample

counts k (non-unique), and particle counts N with smaller (closer) depth.

∆E
(
n(k)

)
:= E

(
n(k)

)
−E
(
n(k−1)

)
= 1−

E
(
n(k−1)

)
N

. (6)

Particle sizes. In the derivations above, we have considered particles of
size an. However, for particles that we cannot consider to be extremely
small compared to the pixel size A, we would first have to clip the
particle against the pixel footprint in order to determine the actual
size within the footprint. See Fig. 3 (right). In practice, we only do
this probabilistically, by using effective particle sizes an that are pre-
computed as the expected values of the area of the particle inside the
pixel, instead of the full particle size. We have also implemented exact
clipping for comparison, and the differences in practice are negligible.

4.2 Depth Confidence
To obtain an interpretable probabilistic notion of depth confidence
associated with the current representative depth of a given pixel, we
interpret (1−An) as the probability that a randomly cast ray in the
pixel’s footprint, with its location determined by a uniform (spatial)
distribution, hits a new particle at a sub-pixel location where no particle
has been hit before. The confidence for not hitting such a particle that
could have a farther depth than the representative depth is therefore An.

(1) Assuming constant particle size a, we can define the depth
confidence C(k) after the k’th sample using Eq. 2 for the estimated
sub-pixel coverage An, with n given by the expected value E

(
n(k)

)
, as

C(k) := An(k) ≈ 1− (1−a)n, with n := E
(
n(k)

)
, (7)

with E
(
n(k)

)
given by Eq. 5. (2) For non-constant particle sizes an,

using Eq. 1 (with A = 1) we iteratively estimate the depth confidence

C(k) := An(k) ≈ 1−
k

∏
i=1

(1−ai)
ni , with ni := ∆E

(
n(i)
)
, (8)

with ∆E
(
n(i)
)

given by Eq. 6. We note that in addition to Eq. 8 being
only an expected value, it is also an approximation because the expected
increments E

(
∆n(i)

)
for a particle of size an get split over different

particle sizes indiscriminately. However, Eq. 8 works well in practice.
Fig. 8 illustrates depth confidence curves for different particle sizes a,

sample counts k, and different N. Fig. 6 depicts a real example.
Sample count. To be able to update the per-pixel C(k) incrementally

from sample to sample, in addition to the accumulated value C we also
need to store and update a per-pixel sample count k. See algorithm 1.

4.3 Double-Buffered Depth Confidence Updates
The representative depth and the associated depth confidence value for
each pixel try to achieve a trade-off between two opposing goals:

In order to obtain the maximum possible amount of culling, we want
an as small as possible representative depth for each pixel. However,
this will only lead to sufficient culling if the associated confidence
is also high enough: A small representative depth is not useful if
its associated confidence is too low. Likewise, a high confidence is
not useful if the depth is too large, because large depth values will
usually occlude only a smaller number of particles. We quantify these
considerations jointly, by estimating the number of occluded particles
OP(d,C) (see Eq. 12) for a given depth and confidence pair (d,C).

Depth confidence is accumulated over occlusion sampling passes,
which increase sub-pixel coverage and thus depth confidence. However,
for a new representative depth value, the associated confidence needs a
sufficient number of samples to build up. While this is happening, for
some time the confidence value is low, and therefore OP(d,C) is small.

k k

C(k)

N = 10 N = 100

= 1
= 0.5
= 0.1
= 0.01

0 5 10 15

0.2

0.4

0.6

0.8

1.0 C(k)

0 5 10 15

0.2

0.4

0.6

0.8

1.0

Fig. 8. Depth confidence, for the representative depth of a pixel, for
various sample counts k, particle sizes a, and closer particle counts N.

We therefore maintain double-buffered depth and confidence maps,
i.e., we maintain two buffers with one depth and confidence map each:

Cull buffer. The depth/confidence pair in the cull buffer, denoted
by (dcull,Ccull), is the one that so far has the largest occlusion value
OP(dcull,Ccull). Therefore, this is the buffer that we use for culling.

Accumulation buffer. The depth/confidence pair in the accumula-
tion buffer, denoted by (d,C), is used to try and accumulate confidence
for a smaller, i.e., better, representative depth d than the current dcull.
However, while confidence C is accumulating due to new samples com-
ing in progressively, the pair (dcull,Ccull) will still be used for culling.
Only when the accumulated number of occluded particles OP(d,C)
surpasses the number of occluded particles OP(dcull,Ccull), we perform
the assignment (dcull,Ccull) = (d,C), overwriting the previous values
in the cull buffer. The accumulation buffer is not changed after having
been copied. Accumulation and double-buffering simply continue in
the same way, to try to improve OP(d,C) even further (see Sect. 4.5),
in order to potentially improve OP(dcull,Ccull) again. See algorithm 1.

4.4 Per-Pixel Particle Density Functions
Several of our probability computations require an estimate for the
number of particles that are in front of or behind a certain depth. To
be able to estimate these numbers, we maintain a coarse 3D density
volume D on a regular grid that stores a 3D scalar density function of
particles, i.e., (x,y,z) 7→D(x,y,z) gives a number of particles per unit
volume. For each pixel, we then extract a 1D particle density function
D(t) along a ray t through that pixel via volume ray casting, gathering
particle densities integrated over the 2D footprint A of the pixel, i.e.,

D(t) :=
∫

A
D
(
x(t),y(t),z(t)

)
dA, A⊥ to the ray t. (9)

Given D(t), for any depth interval [da,db] along the ray t we then get
the corresponding particle count between depth da and depth db as

D
(
da,db

)
:=
∫ db

da

D(t)dt. (10)

Per-pixel particle density histograms. While conceptually D(t) is a
continuous function, for each pixel our ray caster traverses the particle

Algorithm 1: Double-Buffered Depth Confidence Updates

1 function updateAccumulationBuffer (ds,as);
2 P(ds) = acceptanceProbability(ds); u = rand(0,1);
3 if ((ds < d) and (u≤ P(ds)) then
4 (d,C) = (ds,as); k = 1;
5 else
6 C = accumulateConfidence(C,as,k); k++;
7 end
8 function UpdateDepthAndConfidenceForSample (ds,as);
9 if (ds ≤ dcull) then

10 Ccull = accumulateConfidence(Ccull ,as,kcull); kcull++;
11 end
12 if (ds ≤ d) then
13 updateAccumulationBuffer(ds,as);
14 end
15 if OP(dcull ,Ccull)< OP(d,C) then
16 (dcull ,Ccull) = (d,C); kcull = k;
17 end



rendering (front) density volume (side) density histogram

A t

D(t)
dmin ds

B(ds)
dmax

t

DE
NS

IT
Y

low

high

Fig. 9. Per-pixel particle density functions. We maintain a 3D number of particles/unit volume density function in a low-resolution volume D(x,y,z),
with dynamic updates for fully occluded meshlets. From this, we compute 1D per-pixel particle density histograms D(t) via volume ray casting.

density volume D and computes a discretized D(t) in the form of a
particle density histogram. That is, we store particle counts D

(
di,di+1

)
in discrete bins [di,di+1], from depth dmin to dmax. See Fig. 9 (right).

Dynamic volume updates. For correct estimates, the volume D
must correspond to particles still being considered for sampling. Thus,
we dynamically update D when a meshlet reaches the occlusion class
O. This is efficient, because D is low-resolution, and we pre-compute
a (static) list of voxels affected by any meshlet becoming occluded.

4.5 Estimating and Improving Particle Occlusion
From its per-pixel particle density function D(t), we can estimate the
number of particles behind a given pixel with representative depth d as

B(d) := D
(
d,dmax

)
. (11)

To get the number of occluded particles, we need to take into account
the sub-pixel coverage of the pixel, which is given by the confidence C.
We therefore get an estimate for the number of occluded particles as

OP(d,C) := B(d)C. (12)

We now want to compare two depths ds and d in terms of numbers of
occluded particles, with ds < d to consider depth improvements. For
this, we compute the unknown confidence Cs to be associated with ds,
such that OP(ds,Cs)> OP(d,C), i.e., that more particles are occluded.
The minimum threshold for the unknown confidence Cs is therefore

Cs >
B(d)
B(ds)

C. (13)

Here, we always have Cs <C, because we only consider ds < d, and
thus B(ds)> B(d). Now, we want the minimum number n of unique
particles, such that the confidence Cs above is reached as Cs =Cs(n).
This n can be determined by inverting the pixel coverage relationship

Cs(n) = 1− (1−a)n. (14)

The number n depends on ds, and we therefore now write n(ds). Com-
bining the above two equations, its minimum threshold is given by

n(ds)> log(1−a)

(
1− B(d)

B(ds)
C
)
. (15)

The base (1−a) of the logarithm here is less than one. Thus, n(ds)> 0.
Now, we additionally have to take into account that we are actually
sampling with replacement. We can solve this problem by computing
the required minimum k such that the expected value of the correspond-
ing number of unique samples is at least n(ds). Using Eq. 5, we get

k(ds) = logM

(
1− (1−M)E

(
n(k(ds))

))
. (16)

In this context, we already know that we want E
(
n(k(ds))

)
≥ n(ds),

with n(ds) as given by Eq. 15. We can therefore obtain the minimum
number of necessary samples k(ds), which, in expectation, will reach
sufficient coverage Cs(n) as derived in Eq. 13, Eq. 14, and Eq. 15, as

k(ds)> logM

(
1− (1−M)n(ds)

)
. (17)

The expected value computation, which is now only implicit in Eq. 17,
corresponds to a maximum number of particles N, from which we are

sampling (N in Eq. 5). Here, this must be N := D
(
dmin,ds

)
, because

our coverage only counted samples closer than ds. Thus, M must be

M = 1− 1
D
(
dmin,ds

) . (18)

As above, the base of the logarithm is less than one, because 0 < M < 1.
In our framework, we use the minimum threshold k(ds) computed as

k(ds) =
⌈

logM

(
1− nmax

D
(
dmin,ds

))⌉, (19)

where we have defined the clamped value nmax as

nmax := min
(

n(ds),η ·D
(
dmin,ds

))
, with 0 < η < 1. (20)

We compute n(ds) as the right-hand side of Eq. 15. The reason for
clamping is to prevent k(ds) to increase without bound, due to the loga-
rithm. In our implementation, we use a fixed percentage of η = 0.98.
Moreover, in practice we in fact check explicitly whether n(ds) would
be clamped by Eq. 20. If that is the case, we treat this sample with a
symbolic k(ds) = ∞, from which we know without further computation
that the sample acceptance probability below (Eq. 21) will be zero.

4.5.1 Probability of fast enough culling improvement
We now address the following crucial question: Whenever a new par-
ticle is sampled by our pipeline, should its depth ds be used as the
new representative depth d for the corresponding pixel, i.e., should we
assign d = ds and continue? There are two specific considerations:

• If ds ≥ d, the sample will not be considered further, because d
cannot be improved, i.e., decreased, from this sample’s depth ds.

• If ds < d, this sample would improve the representative depth d.
However, if we assign d = ds as the new representative depth,
the current depth confidence C associated with d becomes invalid,
because then the sub-pixel region known to have depth ≤ ds is only
the area as of this particle. That is, if we update d we essentially
have to restart accumulating confidence from scratch.

Because we are sampling particles progressively, the crucial question of
the latter point is whether the confidence Cs of depth ds would accumu-
late fast enough. We define fast enough in terms of a number of samples
Nbudget. That is, if we are willing to wait for Nbudget future samples, will
we then have reached a confidence Cs such that OP(ds,Cs)>OP(d,C)?
In order to answer this, we compute the probability of this happening.

Eq. 19 tells us how many samples k(ds) with a depth ≤ ds we need,
in expectation, to reach OP(ds,Cs)> OP(d,C). However, our pipeline
samples particles with uniform probability over the entire depth range
[dmin,dmax]. We thus need the probability of seeing a large enough
subset of particles with depth ≤ ds, within a budget of Nbudget samples.
A sample’s depth being ≤ ds or not constitutes a Bernoulli trial. Thus,
we can compute the probability of getting at least k := k(ds) samples
with depth≤ ds, in N = Nbudget samples, from the binomial distribution

P
(
ds
)

:= P
(
k ≥ k(ds)

)
=

N

∑
k=k(ds)

(
N
k

)
pk(1− p)N−k. (21)

The probability p is given by the particle density function D(t) as

p = p(ds) :=
D
(
dmin,ds

)
D
(
dmin,dmax

) . (22)

Note that if the minimum threshold k(ds) exceeds the maximum al-
lowed Nbudget, the probability P

(
ds
)

will be zero, as should be expected.



Depth Test

Fail

Pass

Occlusion Classes

High

OCCLUDED

MEDIUM

LOW

PVISIBLE

Confidence

Low

Medium

High

Any

Cocc

Fig. 10. Occlusion classes of meshlets are determined during occlusion
testing from computed confidence values and from passing or failing the
depth test. Only class O (occluded) will be excluded from rendering.

4.5.2 Sample acceptance probability and strategy
Bringing everything together, we use the probability P

(
ds
)

determined
by Eq. 21 as the sample acceptance probability in algorithm 1: Every
time a new sample with depth ds comes in, we compute the minimum
sample number k(ds) using Eq. 19, which requires computing Eq. 15,
Eq. 18, and Eq. 20 first. We then compute Eq. 21 for the new sample. In
practice, however, evaluating Eq. 21 directly is inefficient. We therefore
use a much faster standard approximation, which is very accurate. The
details are described in App. A. Finally, in order to determine whether
the new sample with depth ds will be accepted or not, we compute a
uniform random number u ∈ [0,1]. If the random number u ≤ P(ds),
we accept the sample with depth ds. Otherwise, we do not.

4.6 Depth Confidence Pyramid
We maintain the depth confidence maps in the cull buffer in a multi-
resolution pyramid, like a mipmap, to facilitate hierarchical occlusion
tests similar to hierarchical occlusion maps [41], see Fig. 4 (top right).
The strategies described above are used to update the highest-resolution
pyramid level LOD0. All other, coarser-resolution levels LODi, with
i > 0, are updated with the iterative update rule

(d,C)LODi =

(
max
p∈N

dp,
1
n ∑

p∈N
Cp

)
LODi−1

. (23)

This rule combines all pixels p in a pixel neighborhood N , compris-
ing n pixels, in resolution level LODi−1, into a single pixel in resolution
level LODi. As in standard mipmaps, we use neighborhoods of 2×2
pixels (n = 4). The maximum operator for depth values guarantees that
the combined depth is representative for the whole coarser-resolution
pixel, and averaging the confidence gives the correct total confidence,
corresponding to the actual combined normalized sub-pixel coverage.

5 OCCLUSION CULLING

In every iteration, the current cull buffer is used for confidence-based
occlusion culling. We perform hierarchical culling, first testing nodes,
and then testing the meshlets contained inside each node if necessary.

Confidence-based culling. We test the axis-aligned bounding box
of each meshlet/node for occlusion in two ways: (1) The bounding box
is rasterized, and the standard GPU depth test determines whether the
depth test failed (occluded with respect to the depth buffer) or passed
(not occluded). The depth buffer used for this test is the representative
depth dcull stored in the cull buffer. (2) Considering sub-pixel occlusion,
it is important to take into account that particles in a node/meshlet that
failed the depth test can still be visible. This depends on the associated
confidence values Ccull. We aggregate all confidence values Ccull in the
set of pixels in the screen space projection of the bounding box that is
tested, resulting in an overall confidence for the tested geometry. Only
if this confidence value is high enough (and the depth test failed), is a
meshlet/node considered to be occluded (in occlusion class O, below).

5.1 Occlusion Classes
At any time, meshlets belong to one of four occlusion classes (Fig. 10),
according to the criteria below. After each iteration, the occlusion class
must be updated according to new cull buffer contents. The classes are

• O (Occluded): Meshlets considered definitely occluded with high
confidence. They have failed the depth test with a high confidence
of occlusion. We define this as confidence greater than a confidence
threshold Cocc, e.g., Cocc = 0.95 (see Fig. 11). Meshlets in this
class will not be sampled again (unless we restart for a new view).

• M (Medium): Meshlets with medium confidence of occlusion.
They have failed the depth test, but with medium confidence, so
they cannot be culled yet. However, the probability of occlusion is
too high to consider them as good potential occluders themselves.

• L (Low): Meshlets with low confidence of occlusion. They have
failed the depth test. They could be occluded, but confidence in
occlusion is low. They will be sampled as potential occluders, but
only when there are not enough meshlets in P to increase occlusion.

• P (Potentially visible): Potentially visible meshlets. They have
passed the depth test, so they cannot be culled, independent of con-
fidence. They are the main candidates for good potential occluders.

Initially, and every time the view has changed, all meshlets are put into
class P, because nothing is known yet regarding their visibility. Then,
in each iteration, a set of potential occluders is selected (see below)
and sampled into the cull and accumulation buffers. Afterward, all
meshlets in any class except O are culled against the cull buffer to
update their occlusion class. The overall goal of iterating is to move as
many meshlets as possible into class O. Meshlets are moved between
classes according to their current overall confidence values and may
only move in the “upward” direction, i.e., increase in confidence from
iteration to iteration, because confidence values can never decrease.

5.2 Occluder Selection

To select potential occluders in each iteration, we pull meshlets from
P until we reach a pre-specified budget per iteration. If the budget
is not yet reached after all meshlets in P have been consumed, we
continue by sampling meshlets selected from L. We do not prevent the
same meshlets from being selected as potential occluders in multiple
iterations. This is crucial for our approach: It allows confidence values
to increase due to super-sampling occlusion, iteratively attaining more
known sub-pixel coverage and thereby occlusion.

Avoiding starvation. In the common case when there are more
meshlets in P and L together than the specified budget for potential
occluders per iteration, it is important to not select the same subset of
potential occluders in every subsequent iteration, to avoid “starving”
other good potential occluder candidates. We therefore randomize
the selection of potential occluders by shuffling meshlets in P and L.
This can be implemented very efficiently on GPUs using task shaders,
Vulkan subgroups [21], and a random permutation buffer.

5.3 Occlusion Convergence

After sampling nodes/meshlets in order to determine the confidence of
occlusion, we need to decide whether or not occlusion computations
have converged. We discuss several criteria for convergence below.

Rendering budget. We can check whether a small enough number
of meshlets remains after all other meshlets have reached class O. This
criterion is often too crude, unless the number of remaining meshlets is
very small, because there could still be room for improving occlusion.

Overall confidence. A potential test could be to check the root node
of the confidence map pyramid to determine that the total confidence
in all depth values is high enough. However, this just means that the
known depth values—which could be unnecessarily large—are accurate
enough. Because high coverage does not directly correspond to small
depth values, it does not necessarily correspond to high occlusion. For
this reason, we do not use this criterion for determining convergence.

Active changes of occlusion class membership. We use the follow-
ing criterion to determine convergence: If over multiple iterations no
meshlet changes its occlusion class, we stop iterating and assume that
we have converged to a sufficient amount of occlusion. At the same
time, this implies that we have already reached high confidence for the
occlusion decisions that we have performed, i.e., we are confident (with
threshold Cocc) about occlusion of all meshlets in occlusion class O.



0

0.5

DE
PT

H 
DI

FF
ER

EN
CE

ground truth
(large particles)

ground truth
(small particles)

Cₒcc = 0.95

66
.2

%
21
.6

%

Cₒcc = 0.8

69
.6

%
27
.3

%

Cₒcc = 0.5

73
.9

%
57
.4

%

Cₒcc = 0

91
.6

%
91
.6

%

Fig. 11. Varying confidence threshold Cocc for class O. Ground truth renderings (left) use 1,024 samples per pixel, without any culling. We
compare two different particle sizes, large at the top, and small at the bottom. From left to the right, we decrease the confidence threshold Cocc that
determines when meshlets are moved into occlusion class O. (Top rows) Renderings. (Bottom rows) Depth difference images highlighting pixels for
which the representative depth is closer than the ground truth with confidence ≥Cocc. Too low Cocc increases culling, but result in artifacts.

6 IMPLEMENTATION

We exploit recent advancements in GPU architecture introduced with
the NVIDIA Turing RTX GPU. We employ a new graphics pipeline that
comprises task and mesh shaders, instead of the traditional pipeline.

The task/mesh shader pipeline operates on small groups of trian-
gles called meshlets, which target vertex re-use to reduce the data to
fetch in parallel rendering. However, particle data sets are not typical
meshes with high vertex re-use. Rather, we are dealing with a soup
of disjoint billboards with two triangles per particle. However, our
occlusion culling architecture exploits the parallel processing of small
groups of particles packed into meshlets for fast occlusion testing.

Meshlet generation uses the Point Cloud Library (PCL) [34] in a
pre-processing step to subdivide the input data into small neighbor-
hoods of particles, which then become meshlets. We use a neighbor-
hood size of 16 particles, because this requires 64 vertices to be drawn:
Two triangles and four vertices per billboard, and 64 is currently the
maximum number of emitted vertices recommended per meshlet [26].

Nodes. For the purpose of hierarchical culling of particle data sets,
we group neighborhoods of meshlets together into larger nodes. Each
node fits a fixed maximum number of particles (we are using 10,000).

Mesh shaders. We use mesh shaders to generate the actual particle
billboard geometry for potentially visible meshlets. Each invocation of
a mesh shader operates on a meshlet, and generates the corresponding
geometric primitives. These primitives are then rasterized to produce
the fragments that are then shaded by a traditional fragment shader.

Task shaders. These are the most important feature of the Turing ge-
ometry pipeline for our framework. Task shaders are compute shaders
that dynamically enable/disable emittance of mesh shader workgroups.
We use them to efficiently determine whether whole meshlets are oc-
cluded, and issue workgroups only for potentially visible meshlets.

Vulkan. We have implemented our framework in C++ using the
Vulkan API, which offers more low-level control over GPU operation
than APIs such as OpenGL. We make use of Vulkan’s subgroups [21]
to determine which meshlets to sample, and perform culling for them.

7 RESULTS

We evaluate rendering quality and performance, and compare to previ-
ous work. Table 2 lists the data sets we have used for the evaluation. A
more extensive evaluation is given in the supplemental App. B.

7.1 Rendering Quality
In Fig. 11, we analyze the effects of different confidence thresholds
Cocc for occlusion class O. Too low values for Cocc lead to culling of

Table 2. Data sets used for evaluation. (See the appendixes for more.)

data set # particles # meshlets
covid-19 40,048,645 2,733,504
large laser ablation 199,940,704 12,513,900
16 × copper/silver mixture 232,000,000 14,420,300

meshlets even when not all of their particles are already sufficiently
covered, leading to artifacts. However, Fig. 11 demonstrates that our
probabilistic approach is quite robust. In practice, we use Cocc = 0.95.

Fig. 12 illustrates the importance of super-sampling, by comparing
the quality of our method and the method of Grottel et al. [16].

We also employ screen-space ambient occlusion as a visual cue,
since the understanding of spatial structure is essential for molecular
dynamics simulations [25]. Since we already maintain a low-resolution
particle density volume (see Sect. 4.4), we could easily also extend this
to the object-space technique presented by Grottel et al. [15].

7.2 Performance
We evaluate culling performance in terms of percentage of particles
culled, time taken to cull, and the rendering speed (frames per sec-
ond/fps) during (“dc”) and after (“ac”) culling. Performance was mea-
sured on a dual Intel Xeon X5550 2.67 GHz, Geforce RTX Titan (24
GB), at 1920×1080 resolution. Table 3 gives performance results for
culling and rendering, for three different views. (See full tables and
more data sets in the supplemental material.) Our method results in
a significant speed up after culling is finished (“ac”). This is more
apparent for large data sets, such as the 16× copper/silver mixture data
set, where the speed up is up to 10×. We note that the fps during culling
(“dc”) is usually faster than the fps without culling (“w/o c”). This is
because our method determines meshlets in class O progressively, and
therefore will place more and more meshlets there as confidence builds
up to greater or equal the confidence threshold Cocc. This in turn will
result in a progressive decrease in the number of meshlets to render
until the occlusion computations converge, leading to higher fps.

Table 4 shows percentages of culled meshlets, and number of sam-
ples required until convergence (full results are in the supplemental
material). To evaluate our probabilistic acceptance strategy (Sect. 4.5),
we also report numbers where instead we simply accept incoming sam-

Fig. 12. Top: Our method successfully captures interesting features and
removes noise due to super-sampling. Bottom: The same views using a
single sample per pixel (with Grottel et al. [16]) exhibit undersampling.



Table 3. Rendering performance. Average rendering speed for different
data set/view (v) combinations: averaged over the whole culling process
(dc); after occlusion convergence (ac); without occlusion culling (w/o c).
Confidence threshold Cocc = 0.95; rendering budget b = 2 meshlets/node.

data set v dc
[fps]

ac
[fps]

w/o c
[fps]

MegaMol
[fps]

Grottel
[fps]

covid-19
0 22 56 19 32 18
1 25 63 28 38 17
2 24 59 27 50 20

large laser
ablation

0 13 35 16 14 59
1 18 42 15 9 28
2 14 36 16 13 40

16 × copper/
silver

mixture

0 8 34 3 7 35
1 12 41 6 13 12
2 9 37 5 8 16

Table 4. Culling efficiency. Percentage of culled meshlets (c) and
number of samples (smp) required for culling convergence. (Column
“random” uses 50:50 sample acceptance for comparison only.) Confi-
dence threshold Cocc = 0.95; rendering budget b = 2 meshlets per node.

data set view probabilistic random Grottel
c [%] smp c [%] smp c [%]

covid-19
0 75 112 42 200 56
1 58 120 29 128 32
2 60 120 25 152 24

large laser
ablation

0 68 208 8 64 89
1 79 136 36 96 79
2 70 176 32 272 83

16 × copper/
silver

mixture

0 89 88 35 104 93
1 92 72 59 104 82
2 90 88 44 112 87

ples randomly with a probability of 50% (a coin flip). Our probabilistic
approach achieves much higher culling percentages than random accep-
tance (about 2-8×). We note that the bigger the data set, the smaller
the particles’ projection is on screen, and therefore more samples are
required in order to achieve confidence in the depth used for culling.

7.3 Comparison to Previous Work
Our approach is conceptually orthogonal to the actual sampling method
for the final rendering: Both rasterization and ray tracing are valid ap-
proaches. In our implementation, we perform ray casting of the particle
density volume, but sample particles via rasterization [17]. Given that
ray tracers exploit spatial data structures to accelerate ray-geometry
intersections, integration of our culling approach with these data struc-
tures and the corresponding (dynamic) updates go far beyond the scope
of this work and will require more in-depth investigation. We there-
fore compare our results to the free and open-source particle renderers
available in MegaMol, given that they perform better than some other
available implementations [14]. We use both the baseline brute-force
SSBO-based renderer, and the multilevel culling variant by Grottel et
al. [16] (with all culling and caching enabled). Both of these renderers,
however, do not support multisampling, so their output will always
suffer from aliasing. The performance of these approaches is still use-
ful for interpreting the performance of our approach: The brute-force
renderer represents a low-overhead, straightforward implementation
without any acceleration structure. The impact of large data sets on
performance is mitigated by the low number of fragments generated
for each sphere (just one in the limit case), but this renderer cannot
scale to arbitrary data sizes, it is both limited by available GPU RAM
and shader performance. The occlusion culling approach uses both
occlusion queries and culling against a hierarchical z buffer in the ver-
tex stage, and thus serves as a reference for a basic culling technique.
In principle, it scales to arbitrary data sizes because only occluders
are cached on the GPU. It progressively updates the GPU cache, but
renders and tests the whole data set, thus streaming the uncached data
to the GPU. Interactivity is limited by upload bandwidth and, to a lesser
degree, rendering performance. Our approach is completely progres-
sive to guarantee interactivity. Since on current GPUs 8 GB RAM or

more are common, keeping all data in GPU memory is not a problem.
Rendering quality is significantly improved over brute-force and

smoothing alike (see also App. D). Our method captures interesting
features better (see dashed ellipses in Fig. 12). Sub-pixel details allow
the discovery of features without bias from smoothing or LOD.

Performance. The MegaMol brute-force renderer is consistently
faster than our approach with culling disabled (“w/o c”): As long as
the view does not change, our approach always uses the averaging
pass over new samples and the previous results to reduce aliasing,
while the MegaMol renderers do not. Also, the brute-force renderer
in MegaMol is probably better optimized than our sampling. Despite
this, the converged culling achieves much better performance than the
culling-assisted MegaMol rendering, especially for large data.

Culling. Our culling percentage is similar to the approach by Grottel
et al., with a few notable exceptions: Since our meshlets have much
finer granularity than the bricks used by Grottel et al., we can remove
particle groups from medium-density gas phases present in these data
sets. Their approach can only accomplish this for each sphere separately
in the hierarchical z test and thus has higher geometry processing load.

Ray tracing. We compare our method against GPU ray tracing using
P-k-d trees [12] in App. D. While P-k-d trees are faster per sample,
increasing the number of samples per pixel to allow for sub-pixel detail
degrades performance linearly, as expected. Interactively sampling tens
to hundreds of times per pixel is only feasible with P-k-d trees if the ray
tracer accumulates samples as long as no user interaction takes place.

7.4 Storage Requirements
We consider the memory usage of our approach in two categories:

Data-dependent storage. We maintain density volumes D of very
small resolutions, from 700k to 1M voxels (in total, not per dimension),
depending on the size of the data set. We store a (node/meshlet)/voxel
correspondence vector that for each node/meshlet stores the indices of
the voxels in D to which they correspond. For each node/meshlet we
store: (1) An axis-aligned bounding box in four float (32 bit) values.
(2) An unsigned int (8 bit) for its occlusion class. (3) An index to the
voxel in the (node/meshlet)/voxel correspondence vector (32 bit).

Resolution-dependent storage. Per pixel, we store the represen-
tative depth d, the depth confidence C(k), and the sample count k.
We store d and C(k) in 32 bit floats, and k in an unsigned 32 bit int.
Therefore, for the highest resolution pyramid level LOD0, we store
3×32 = 96 bits/pixel. For the lower-resolution pyramid levels we store
only 2×32 = 64 bits/pixel. Finally, for each pixel in LOD0, we store
the discretized function D(t) in a maximum number of 64 bins.

8 CONCLUSION AND FUTURE WORK

Our culling architecture is probabilistic in many respects, allowing us
to target high-quality rendering with extensive super-sampling of finely
detailed particle data with high performance. All our probabilistic
estimates are based on expected value derivations, and therefore our
pipeline operates with the idea of expected occlusion. Due to the large
number of samples and particles in the data we are targeting, this turns
out to be a very good strategy. We probabilistically estimate both sub-
pixel coverage and probabilities of hitting samples in front or behind a
certain depth, using a particle density estimate from a coarse density
volume. Building on the latter capability, we can efficiently estimate
an acceptance probability that determines whether an incoming depth
sample is likely to improve occlusion and should therefore be accepted
or not. Our results have shown that this strategy works very well in
practice and significantly improves the percentage of culled particles.

For future work, we would like to investigate how progressive confi-
dence can be exploited for even larger data sets or time-dependent data,
where not all particles fit into GPU memory. This approach could also
be combined with partial and differential updates to a GPU-resident
cache that reflects the state of the current confidence class distribution.

ACKNOWLEDGMENTS

This work was partially supported by Intel® Corporation via the Intel® Graphics and
Visualization Institutes of XeLLENCE program (CG #35512501). This work was supported
by King Abdullah University of Science and Technology (KAUST).



REFERENCES

[1] J. Bittner, M. Wimmer, H. Piringer, and W. Purgathofer. Coherent Hier-
archical Culling: Hardware Occlusion Queries Made Useful. Computer
Graphics Forum, 23(3):615–624, 2004. doi: 10.1111/j.1467-8659.2004.
00793.x

[2] J. Bittner and P. Wonka. Visibility in computer graphics. Environment
and Planning B: Planning and Design, 30(5):729–755, 9 2003. doi: 10.
1068/b2957

[3] L. Carpenter. The a-buffer, an antialiased hidden surface method. In
Proceedings of the 11th Annual Conference on Computer Graphics and In-
teractive Techniques, SIGGRAPH ’84, pp. 103–108. ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA, 1984.

[4] A. S. Christensen, B. Licea-Kane, C. Everitt, J. Bolz, and
M. Ribble. ARB occlusion query2 OpenGL extension. https:

//www.khronos.org/registry/OpenGL/extensions/ARB/ARB_

occlusion_query2.txt. Accessed: 2018-03-15.
[5] D. Cohen-Or, Y. L. Chrysanthou, C. T. Silva, and F. Durand. A sur-

vey of visibility for walkthrough applications. IEEE Transactions on
Visualization and Computer Graphics, 9(3):412–431, July 2003. doi: 10.
1109/TVCG.2003.1207447

[6] J. L. Devore. Probability and Statistics for Engineering and the Sciences.
Brooks/Cole, 8th ed., January 2011. ISBN-13: 978-0-538-73352-6.

[7] M. Falk, M. Krone, and T. Ertl. Atomistic Visualization of Mesoscopic
Whole-Cell Simulations Using Ray-Casted Instancing. Computer Graph-
ics Forum, 32(8):195–206, 2013. doi: 10.1111/cgf.12197

[8] W. Feller. On the normal approximation to the binomial distribution. Ann.
Math. Statist., 16(4):319–329, 12 1945. doi: 10.1214/aoms/1177731058

[9] E. Gobbetti and F. Marton. Layered point clouds: a simple and efficient
multiresolution structure for distributing and rendering gigantic point-
sampled models. Computers & Graphics, 28(6):815–826, 2004. doi: 10.
1016/j.cag.2004.08.010

[10] E. Gobbetti and F. Marton. Far Voxels – a multiresolution framework for
interactive rendering of huge complex 3d models on commodity graphics
platforms. ACM Transactions on Graphics, 24(3):878–885, August 2005.
Proc. SIGGRAPH 2005.

[11] P. Goswami, Y. Zhang, R. Pajarola, and E. Gobbetti. High Quality Interac-
tive Rendering of Massive Point Models Using Multi-way kd-Trees. In
2010 18th Pacific Conference on Computer Graphics and Applications,
pp. 93–100. IEEE, sep 2010. doi: 10.1109/PacificGraphics.2010.20

[12] P. Gralka, I. Wald, S. Geringer, G. Reina, and T. Ertl. Spatial partitioning
strategies for memory-efficient ray tracing of particles. In 10th IEEE
Symposium on Large Data Analysis and Visualization (LDAV), pp. 42–52,
2020. doi: 10.1109/LDAV51489.2020.00012

[13] N. Greene, M. Kass, and G. Miller. Hierarchical z-buffer visibility. In
Proceedings of the 20th Annual Conference on Computer Graphics and In-
teractive Techniques, SIGGRAPH ’93, pp. 231–238. ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA, 1993.

[14] S. Grottel, M. Krone, C. Müller, G. Reina, and T. Ertl. Megamol – a
prototyping framework for particle-based visualization. IEEE Transactions
on Visualization and Computer Graphics, 21(2):201–214, Feb 2015. doi:
10.1109/TVCG.2014.2350479

[15] S. Grottel, M. Krone, K. Scharnowski, and T. Ertl. Object-Space Ambient
Occlusion for Molecular Dynamics. In IEEE Pacific Visualization Sym-
posium 2012, pp. 209–216. IEEE, Feb. 2012. ISSN: 2165-8765. doi: 10.
1109/PacificVis.2012.6183593

[16] S. Grottel, G. Reina, C. Dachsbacher, and T. Ertl. Coherent culling and
shading for large molecular dynamics visualization. In Proc. of Eurovis
2010, pp. 953–962, 2010. doi: 10.1111/j.1467-8659.2009.01698.x

[17] S. Gumhold. Splatting Illuminated Ellipsoids with Depth Correction. In
Vision, Modeling, and Visualization, pp. 245–252, 2003.

[18] M. Guthe, Á. Balázs, and R. Klein. Near optimal hierarchical culling:
Performance driven use of hardware occlusion queries. In Rendering
Techniques, pp. 207–214, 2006.

[19] P. Haeberli and K. Akeley. The accumulation buffer: Hardware support
for high-quality rendering. In Proceedings of the 17th Annual Conference
on Computer Graphics and Interactive Techniques, SIGGRAPH ’90, pp.
309–319. ACM Press/Addison-Wesley Publishing Co., New York, NY,
USA, 1990.

[20] J. Hasselgren, M. Andersson, and T. Akenine-Möller. Masked software oc-
clusion culling. In Proceedings of High Performance Graphics, HPG ’16,
pp. 23–31. Eurographics Association, Aire-la-Ville, Switzerland, Switzer-
land, 2016.

[21] N. Henning. Vulkan subgroup tutorial.
[22] M. Ibrahim, P. Wickenhäuser, P. Rautek, G. Reina, and M. Hadwiger.

Screen-Space Normal Distribution Function Caching for Consistent Multi-
Resolution Rendering of Large Particle Data. IEEE Transactions on
Visualization and Computer Graphics, 24(1):944–953, jan 2018. doi: 10.
1109/TVCG.2017.2743979

[23] A. Knoll, I. Wald, P. Navratil, A. Bowen, K. Reda, M. Papka, and
K. Gaither. Rbf volume ray casting on multicore and manycore cpus.
Computer Graphics Forum, 33(3):71–80, 2014.

[24] A. Knoll, I. Wald, P. Navratil, M. Papka, and K. Gaither. Ray tracing and
volume rendering large molecular data on multi-core and many-core archi-
tectures. In UltraVis ’13: Proceedings of the 8th International Workshop
on Ultrascale Visualization, pp. 1–8, 2013.

[25] B. Kozlı́ková, M. Krone, M. Falk, N. Lindow, M. Baaden, D. Baum, I. Vi-
ola, J. Parulek, and H.-C. Hege. Visualization of Biomolecular Structures:
State of the Art Revisited. Computer Graphics Forum, 36(8):178–204,
Dec. 2017. doi: 10.1111/cgf.13072

[26] C. Kubisch. Introduction to turing mesh shaders.
[27] M. Le Muzic, L. Autin, J. Parulek, and I. Viola. cellVIEW: a Tool for

Illustrative and Multi-Scale Rendering of Large Biomolecular Datasets.
In K. Bühler, L. Linsen, and N. W. John, eds., Eurographics Workshop on
Visual Computing for Biomedicine, vol. 2015, pp. 61–70. The Eurographics
Association, 2015. doi: 10.2312/vcbm.20151209

[28] N. Lindow, D. Baum, and H.-C. Hege. Interactive Rendering of Materials
and Biological Structures on Atomic and Nanoscopic Scale. Computer
Graphics Forum, 31(3):1325–1334, 2012. doi: 10.1111/j.1467-8659.2012
.03128.x

[29] O. Mattausch, J. Bittner, A. Jaspe, E. Gobbetti, M. Wimmer, and R. Pa-
jarola. Chc+ rt: Coherent hierarchical culling for ray tracing. In Computer
Graphics Forum, vol. 34, pp. 537–548. Wiley Online Library, 2015.

[30] O. Mattausch, J. Bittner, and M. Wimmer. Chc++: Coherent hierarchical
culling revisited. In Computer Graphics Forum, vol. 27, pp. 221–230.
Wiley Online Library, 2008.

[31] J. Pantaleoni, L. Fascione, M. Hill, and T. Aila. Pantaray: Fast ray-traced
occlusion caching of massive scenes. ACM Trans. Graph., 29(4):37:1–
37:10, July 2010. doi: 10.1145/1778765.1778774

[32] J. Parulek, D. Jönsson, T. Ropinski, S. Bruckner, A. Ynnerman, and
I. Viola. Continuous Levels-of-Detail and Visual Abstraction for Seamless
Molecular Visualization. Computer Graphics Forum, 33(6):276–287,
2014. doi: 10.1111/cgf.12349

[33] K. Reda, A. Knoll, K. Nomura, M. Papka, A. Johnson, and J. Leigh.
Visualizing large-scale atomistic simulations in ultra-resolution immer-
sive environments. In IEEE Symposium on Large Data Analysis and
Visualization (LDAV), pp. 59–65, 2013.

[34] R. B. Rusu and S. Cousins. 3d is here: Point cloud library (pcl). In 2011
IEEE International Conference on Robotics and Automation (ICRA), pp.
1–4. IEEE.

[35] N. Subtil. Introduction to Real-Time Ray Tracing with Vulkan. https://
devblogs.nvidia.com/vulkan-raytracing/. Accessed: 2018-03-
31.

[36] I. Wald, G. Johnson, J. Amstutz, C. Brownlee, A. Knoll, J. Jeffers, J. Gun-
ther, and P. Navratil. Ospray - a cpu ray tracing framework for scientific
visualization. IEEE Transactions on Visualization and Computer Graphics,
23(1):931–940, Jan. 2017. doi: 10.1109/TVCG.2016.2599041

[37] I. Wald, A. Knoll, G. P. Johnson, W. Usher, V. Pascucci, and M. E. Papka.
CPU Ray Tracing Large Particle Data with Balanced P-k-d Trees. IEEE
Transactions on Visualization and Computer Graphics, pp. 57–64, 2015.

[38] I. Wald, S. Woop, C. Benthin, G. S. Johnson, and M. Ernst. Embree:
A kernel framework for efficient cpu ray tracing. ACM Trans. Graph.,
33(4):143:1–143:8, July 2014. doi: 10.1145/2601097.2601199

[39] H. Wang, L. Xiao, Y. Cao, Z. Ai, and P. Xu. Visibility-culling-based
geometric rendering of large-scale particle data. In Proceedings - 2016
International Conference on Virtual Reality and Visualization, ICVRV
2016, pp. 197–203, sep 2017. doi: 10.1109/ICVRV.2016.41

[40] P. Wonka, M. Wimmer, K. Zhou, S. Maierhofer, G. Hesina, and
A. Reshetov. Guided visibility sampling. ACM Trans. Graph., 25(3):494–
502, July 2006. doi: 10.1145/1141911.1141914

[41] H. Zhang, D. Manocha, T. Hudson, and K. E. Hoff, III. Visibility culling
using hierarchical occlusion maps. In Proceedings of the 24th Annual Con-
ference on Computer Graphics and Interactive Techniques, SIGGRAPH
’97, pp. 77–88. ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA, 1997. doi: 10.1145/258734.258781

https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB_occlusion_query2.txt
https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB_occlusion_query2.txt
https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB_occlusion_query2.txt
https://devblogs.nvidia.com/vulkan-raytracing/
https://devblogs.nvidia.com/vulkan-raytracing/

	Introduction
	Related Work
	Occlusion Culling Architecture Overview
	Pre-Processing and Object Space Data Structures
	Dynamic Sampling of Occlusion
	Depth Confidence Maps
	Probabilistic Occlusion Culling
	Super-Sampled Rendering

	Depth Confidence Maps
	Probabilistic Sub-Pixel Coverage
	Depth Confidence
	Double-Buffered Depth Confidence Updates
	Per-Pixel Particle Density Functions
	Estimating and Improving Particle Occlusion
	Probability of fast enough culling improvement
	Sample acceptance probability and strategy

	Depth Confidence Pyramid

	Occlusion Culling
	Occlusion Classes
	Occluder Selection
	Occlusion Convergence

	Implementation
	Results
	Rendering Quality
	Performance
	Comparison to Previous Work
	Storage Requirements

	Conclusion and Future Work

