

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Time-Dependent Flow seen through Approximate Observer Killing Fields

Markus Hadwiger,¹ Matej Mlejnek,¹ Thomas Theußl,² Peter Rautek,¹

King Abdullah University of Science and Technology (KAUST) ¹Visual Computing Center, KAUST ²Core Labs, KAUST

Flow Visualization is Observer-Relative

Steady vs. unsteady flow Flow features (vortices, ...)

One frame of reference cannot depict all features

Continuous observer field adapted to input flow

relative to approximate observer Killing field

Mathematical Framework

Observer field from global optimization

- Carefully define desired differential properties
- Minimize them over all of space-time

Observers and Killing Vector Fields

Wilhelm Killing (1847-1923)

Observer Definition

Space that is in relative rigid motion

• Relative to what? Another observer

Points stay at constant distance

- Motion described by isometries
- Point trajectories are world lines

Isometries of Euclidean space

- Time-dependent translations
- Time-dependent rotations

Describing Rigid Observer Motion

Euclidean isometries: time-dependent translations and rotations c(t) $\mathbf{Q}(t)$

Easier to work with derivatives (infinitesimal isometries)

 $\mathbf{w}(t) := \dot{c}(t) \qquad \mathbf{\Omega}(t) := \dot{\mathbf{Q}}(t)\mathbf{Q}(t)^{T}$

Describing Rigid Observer Motion

Euclidean isometries: time-dependent translations and rotations

$$c(t)$$
 $\mathbf{Q}(t)$ Lie group $SO(n)$ Easier to work with derivatives (infinitesimal isometries)(linear!) $\mathbf{w}(t) := \dot{c}(t)$ $\mathbf{\Omega}(t) := \dot{\mathbf{Q}}(t)\mathbf{Q}(t)^T$ Lie algebra $\mathfrak{so}(n)$

Killing fields are infinitesimal isometries (Lie algebra of isometry group)

$$\mathbf{u}(x,t) := \mathbf{w}(t) + \mathbf{\Omega}(t) (x - o(t))$$

Rigid Motion as Killing Vector Field

Killing field (time-dependent)

$$\mathbf{u}(x,t) = \mathbf{w}(t) + \mathbf{\Omega}(t) (x - o(t))$$

$$\begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix}$$
Killing's equation:

$$\nabla \mathbf{u} + (\nabla \mathbf{u})^T = 0$$

Evaluating Killing Vector Fields

Translation corresponds to velocity of *some* point o(t)

$$\mathbf{u}(x,t) = \mathbf{u}(o(t),t) + \mathbf{\Omega}(t) (x - o(t))$$

$$\mathbf{w}(t) = \mathbf{u}(o(t), t)$$

Infinitesimal translation of $o(t)$

Evaluating Killing Vector Fields

Translation corresponds to velocity of *some* point o(t)

$$\mathbf{u}(x,t) = \mathbf{u}(o(t),t) + \mathbf{\Omega}(t) (x - o(t))$$

$$\mathbf{w}(t) = \mathbf{u}(o(t), t)$$

Infinitesimal translation of $o(t)$

Killing Fields are Independent of "Origin"

Choice of o(t) is arbitrary (well-known property of Killing fields)

$$\mathbf{u}(x,t) = \mathbf{u}(o(t),t) + \mathbf{\Omega}(t) (x - o(t))$$

Killing Fields are Independent of "Origin"

Choice of o(t) is arbitrary (well-known property of Killing fields)

$$\mathbf{u}(x,t) = \mathbf{u}(o(t),t) + \mathbf{\Omega}(t) (x - o(t))$$

Observer Fields: One Observer

One Killing field describes one observer i

$$\mathbf{u}_{i}(x,t) = \mathbf{u}_{i}(o_{i}(t),t) + \mathbf{\Omega}_{i}(t) (x - o_{i}(t))$$

 $\mathbf{u}_{i}\left(x,t
ight)$ is a Killing field

Observer Fields: Multiple Observers

Continuous observer field **u**

$$\mathbf{u}_{i}(x,t) := \mathbf{u}(o_{i}(t),t) + \mathbf{\Omega}_{i}(t)(x - o_{i}(t))$$

World lines $o_i(t)$: integral curves of **u** and $\mathbf{\Omega}_i(t) := \frac{1}{2} \left(\nabla \mathbf{u} - (\nabla \mathbf{u})^T \right) (o_i(t), t)$

 $\mathbf{u}_i(x,t)$ is a Killing field $\mathbf{u}_i(x,t)$ is arbitrary

Observer Fields: Multiple Observers

Continuous observer field ${f u}$

$$\mathbf{u}_{i}(x,t) := \mathbf{u}\left(o_{i}(t),t\right) + \mathbf{\Omega}_{i}(t)\left(x - o_{i}(t)\right)$$

World lines $o_i(t)$: integral curves of **u** and $\mathbf{\Omega}_i(t) := \frac{1}{2} \left(\nabla \mathbf{u} - (\nabla \mathbf{u})^T \right) (o_i(t), t)$

 $\mathbf{u}_{i}(x,t)$ is a Killing field $\mathbf{u}(x,t)$ is arbitrary

Continuous observer field **u**

$$\mathbf{u}_{i}(x,t) := \mathbf{u}\left(o_{i}(t),t\right) + \mathbf{\Omega}_{i}(t)\left(x - o_{i}(t)\right)$$

World lines $o_i(t)$: integral curves of **u** and $\mathbf{\Omega}_i(t) := \frac{1}{2} \left(\nabla \mathbf{u} - (\nabla \mathbf{u})^T \right) (o_i(t), t)$

Each $\mathbf{u}_i(x,t)$ is a Killing field (one per observer) Choose $\mathbf{u}_i(x,t)$ to be an approximate Killing field: min. *Killing energy* $K\mathbf{u} := \nabla \mathbf{u} + (\nabla \mathbf{u})^T$

Time Derivatives

Original observer: No relative observer motion

Galilean observer: Constant-velocity translation

$$\frac{\partial \mathbf{u}}{\partial t} = 0 \qquad \mathbf{\Omega} = 0$$

$$\frac{\mathscr{D}}{\mathscr{D}t}\mathbf{v}_{\mathbf{u}} = \frac{\partial \mathbf{v}}{\partial t} + \nabla \mathbf{v}(\mathbf{u})$$

Galilean observer: Constant-velocity translation

$$\frac{\partial \mathbf{u}}{\partial t} = 0 \qquad \mathbf{\Omega} = 0$$

$$\frac{\mathscr{D}}{\mathscr{D}t}\mathbf{v}_{\mathbf{u}} = \frac{\partial \mathbf{v}}{\partial t} - \frac{\partial \mathbf{u}}{\partial t} + \nabla \mathbf{v}(\mathbf{u}) - \mathbf{\Omega}\mathbf{v}$$

Rigid motion observer: Exact Killing field

$$abla \mathbf{u} = \mathbf{\Omega}$$

$$\frac{\mathscr{D}}{\mathscr{D}t}\mathbf{v}_{\mathbf{u}} = \frac{\partial \mathbf{v}}{\partial t} - \frac{\partial \mathbf{u}}{\partial t} + \nabla \mathbf{v}(\mathbf{u}) - \mathbf{\Omega}\mathbf{v}$$

Rigid motion observer: Exact Killing field

$$abla \mathbf{u} = \mathbf{\Omega}$$

$$\frac{\mathscr{D}}{\mathscr{D}t}\mathbf{v}_{\mathbf{u}} = \frac{\partial \mathbf{v}}{\partial t} - \frac{\partial \mathbf{u}}{\partial t} + \nabla \mathbf{v}(\mathbf{u}) - \nabla \mathbf{u}(\mathbf{v})$$

General observer: Arbitrary observer field

$$\frac{\mathscr{D}}{\mathscr{D}t}\mathbf{v}_{\mathbf{u}} = \frac{\partial \mathbf{v}}{\partial t} - \frac{\partial \mathbf{u}}{\partial t} + \nabla \mathbf{v}(\mathbf{u}) - \nabla \mathbf{u}(\mathbf{v})$$

Observed Time Derivative is a Lie Derivative

General observer: Arbitrary observer field

$$\frac{\mathscr{D}}{\mathscr{D}t}\mathbf{v}_{\mathbf{u}} = L_{\mathbf{u}}(\mathbf{v}_{\mathbf{u}}) = \frac{\partial \mathbf{v}}{\partial t} - \frac{\partial \mathbf{u}}{\partial t} + \nabla \mathbf{v}(\mathbf{u}) - \nabla \mathbf{u}(\mathbf{v})$$

Time-dependent Lie derivative of $\mathbf{v_u} = \mathbf{v} - \mathbf{u}$ with respect to \mathbf{u} Important: Lie derivatives of objective vector fields are objective

Optimization

Global L₂ minimization over space and time (sparse linear system)

$$\min_{\mathbf{u}} \int_{\tau,\xi} \left(E_K + \lambda D_t + \mu R \right) \left(\mathbf{u}, \xi, \tau \right) \, \mathrm{d}\xi \, \mathrm{d}\tau$$

Goals: approximately Killing, small observed time derivative

$$E_{K}(\mathbf{u},\xi,\tau) := \frac{1}{2} \| K\mathbf{u}(\xi,\tau) \|_{F}^{2} \qquad D_{t}(\mathbf{u},\xi,\tau) := \frac{1}{2} \| \frac{\mathscr{D}}{\mathscr{D}t}\mathbf{v}_{\mathbf{u}}(\xi,\tau) \|_{2}^{2}$$

Global L₂ minimization over space and time (sparse linear system)

$$\min_{\mathbf{u}} \int_{\tau,\xi} \left(E_K + \lambda D_t + \mu R \right) \left(\mathbf{u}, \xi, \tau \right) \, \mathrm{d}\xi \, \mathrm{d}\tau$$

Goals: approximately Killing, small observed time derivative

$$E_{K}(\mathbf{u},\xi,\tau) := \frac{1}{2} \left\| K\mathbf{u}(\xi,\tau) \right\|_{F}^{2} \qquad D_{t}(\mathbf{u},\xi,\tau) := \frac{1}{2} \left\| \frac{\mathscr{D}}{\mathscr{D}t}\mathbf{v}_{\mathbf{u}}(\xi,\tau) \right\|_{2}^{2}$$

regularizer $R(\mathbf{u},\xi,\tau) := \frac{1}{2} \left\| \mathbf{v}_{\mathbf{u}}(\xi,\tau) \right\|_{2}^{2}$

Visualization

Visualization Using Observer Fields

vorticity

Visualization depends on chosen observation time

Visualization Using Observer Fields

Generalize stream/path/streak/time lines to **observed** variants Can transform the input field according to observer field

Conclusions

One observer velocity field: Infinite set of reference frames **Observed** time derivative (Lie derivative) Global optimization: Approximately Killing, as steady as possible

Observer field-relative visualization

- Must choose observation time
- Can compute observation time field

Observed flow field is **objective**

• Objective flow features (direct computation or in observation time field)

Thank You!

Visit us at vccvisualization.org

MATLAB code on github!

