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B THE FLOW OF A VECTOR FIELD

In this appendix, we briefly summarize the standard concepts of the
flow of a vector field, as well as the corresponding linear map called the
differential or push-forward, as they are typically defined in differential
geometry. For details, we refer to the books by Lee [11], and Marsden
and Hughes [12]. We follow the notation of Marsden and Hughes [12].

The flow of a time-independent vector field u on a manifold M is a
map φ : J×M→M for a suitable interval J ⊆ R, such that t 7→ φ(t,x)
is the unique maximal integral curve of u through x ∈M [11, Th. 9.12].
That is, φ maps a point x to its image along the integral curve of u after
time t, which we also denote by φt(x). Important properties of φ are:

• The map φt : M→M is a (local) diffeomorphism for all t ∈ J.
• For all t1, t2 ∈ J, x ∈M, φt2(φt1(x)) = φt1+t2(x), φ0(x) = x. The

inverse of φt is φ−t , i.e., φ
−1
t (φt(x)) = φ−t(φt(x)) = x. φ is an

action of the additive group R on M, φt is a one-parameter group.
• The linear map dφt : TxM→ Tφt (x)M, called the differential of φt ,

or the (pointwise) push-forward, is an isomorphism between the
two tangent spaces at each x ∈M and φt(x) ∈M, for each t ∈ J.
dφt maps tangent vectors to all possible curves through a point
x ∈M to the corresponding tangent vectors of the images of these
curves under the diffeomorphism φt , through the point φt(x) ∈M.

When the vector field u is time-dependent, the corresponding time-
dependent flow ψ : J× J×M→M maps a point x ∈M to its image
along the integral curve from time s to time t [11, Th. 9.48], which we
denote by ψt,s(x). The map ψ has similar properties to the map φ :

• The map ψt,s : M→M is a (local) diffeomorphism for all s, t ∈ J.
• For all s, t1, t2 ∈ J, x ∈M, ψt2,t1(ψt1,s(x)) = ψt2,s(x), ψs,s(x) = x.

The inverse of ψt,s is ψs,t , i.e., ψ
−1
t,s (ψt,s(x)) = ψs,t(ψt,s(x)) = x.

• The linear map dψt,s : TxM → Tψt,s(x)M, called the differential
(the push-forward) of ψt,s, is an isomorphism between the tangent
spaces at each x∈M and ψt,s(x)∈M, for each s, t ∈ J. dψt,s maps
tangent vectors to all possible curves through a point x ∈M to
the corresponding tangent vectors of the images of these curves
under the diffeomorphism ψt,s, through the point ψt,s(x) ∈M.

We note that the notation ψt,s(x) can of course also be consistently used
for the case of time-independent flow. In that case, ψt,s(x) = φt−s(x).

C KILLING VECTOR FIELDS

In this appendix, we briefly summarize the standard concept of a Killing
vector field (often also simply called a Killing field, or even simply a
Killing vector), as it is typically defined in differential geometry. For
details, we refer to the books by McInerney [14] and Petersen [15].

In order to be able to describe the deformations a vector field gen-
erates, in particular to be able to talk about isometries, we equip the
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manifold M with a Riemannian metric [4, 15], which is a smoothly
varying symmetric positive-definite bilinear form, i.e., an inner product,
g, or gx, on the tangent space TxM of each x ∈M. It is customary to
suppress the suffix x if no confusion arises. For two arbitrary vectors
x,y ∈ TxM, this inner product is often denoted by any of the following:

g(x,y) = gx(x,y) = 〈x,y〉= 〈x,y〉x . (C.1)

The flow φ , or φt(x), of a time-independent vector field u is said to
generate an isometry if it preserves the metric structure, i.e., if

〈x,y〉x =
〈

dφt(x),dφt(y)
〉

φt (x)
, (C.2)

for all x ∈M, tangent vectors x,y ∈ TxM, and t ∈ J ⊆ R. That is, the
map φt is a Riemannian isometry for all t ∈ J. Eq. C.2 for all x, t,x,y is
equivalent to the flow φ generating an infinitesimal isometry. That is,

d
dt

∣∣∣∣
t=0

〈
dφt(x),dφt(y)

〉
φt (x)

:= lim
t→0

〈
dφt(x),dφt(y)

〉
φt (x)
−
〈
x,y
〉

x

t
= 0,

(C.3)

under the same conditions. Another equivalent condition is that the
metric g vanishes under the Lie derivative [15, Prop. 8.1.1]:

(Lu g)x = 0, for all x ∈M. (C.4)

In detail, this means that for all x ∈M, and all x,y ∈ TxM,

(Lu g)x (x,y) :=
d
dt

∣∣∣∣
t=0

〈
dφt(x),dφt(y)

〉
φt (x)

= 0. (C.5)

This is usually compactly written as the condition Lu g = 0.
The time-dependent case is very similar. Here, a flow ψt,s of a time-

dependent vector field u is said to generate an isometry if it preserves
the metric structure for each fixed start time s0 ∈ J, i.e., if

〈x,y〉x =
〈

dψt,s0(x),dψt,s0(y)
〉

ψt,s0 (x)
, (C.6)

again for all points x∈M, tangent vectors x,y∈ TxM, and t ∈ J⊆R [12,
Def. 6.15]. That is, ψt,s0 is a Riemannian isometry for all start times
s0 ∈ J and end times t ∈ J. This is again equivalent to the flow ψ

generating an infinitesimal isometry, which similar to above means

d
dt

∣∣∣∣
t=s0

〈
dψt,s0(x),dψt,s0(y)

〉
ψt,s0 (x)

:= lim
t→s0

〈
dψt,s0(x),dψt,s0(y)

〉
ψt,s0 (x)

−
〈
x,y
〉

x

t− s0
= 0,

(C.7)

under the same conditions. Equivalently, the metric g vanishes under
the, now however time-dependent, Lie derivative [12, Prop. 6.16]:

(Lu g)x = 0, for all x ∈M. (C.8)

This now means that for all x ∈M, all x,y ∈ TxM, and all s0 ∈ J,

(Lu g)x (x,y) :=
d
dt

∣∣∣∣
t=s0

〈
dψt,s0(x),dψt,s0(y)

〉
ψt,s0 (x)

= 0. (C.9)



This is again usually compactly written as the condition Lu g = 0.
If one of the equivalent Eqs. C.2, C.3, or C.4 (time-independent

flow) holds for all points x ∈M, the vector field u generating the flow is
called a Killing vector field [15, Ch. 8], named after the mathematician
Wilhelm Killing [10]. If one of the equivalent Eqs. C.6, C.7, or C.8
(time-dependent flow) holds for all points x ∈ M, the vector field u
generating the flow is called a time-dependent Killing vector field.

Another equivalent condition is that a vector field u (time-dependent
or time-independent) is a Killing field, if and only if the

(1
1
)

tensor ∇u,
denoting the once-contravariant, once-covariant second-order tensor
called the (spatial) velocity gradient tensor, is skew-symmetric at all
points x ∈ M. We note that this condition is independent of coordi-
nates. See Petersen [15, Prop. 8.1.2] for the time-independent case, and
Marsden and Hughes [12, p.99] for the general formulation using Lu g.

We can also state this condition by saying that u is a Killing field if
and only if, at all points x ∈M on the manifold M, we have [1, 17],〈

∇u(v) ,v
〉

x
= 0, (C.10)

where ∇u, the velocity gradient tensor of u at the point x, is evaluated
for the direction v given at the same point x, i.e., v∈ TxM. This equation
must hold for all directions v ∈ TxM and all points x ∈M [1, 17].

D TIME DERIVATIVES RELATIVE TO RIGID OBSERVER MO-
TION (ROTATING AND TRANSLATING REFERENCE FRAMES)

To be able to compare two observers O0 and O1, we use two different
bases. For the observer O0, we use a basis {ei} that is not spinning
(with respect to O0). For O1, we use a basis {ẽi} that is spinning
relative to O0, i.e., relative to {ei}. Denoting the relative spin of the
two bases by ΩΩΩ, for O0 the time derivative of each basis vector ẽi is

d
dt

ẽi = ΩΩΩ ẽi. (D.1)

In contrast, however, for O1 the basis {ẽi} is the one that is not spinning.
We now use the Einstein summation convention for implied summation
over repeated indexes [5, p.59], and refer geometric vectors v to a basis
{ẽi} by writing v = ṽi ẽi, with components ṽi. We can then expand

dv
dt

=
d
dt

(
ṽi ẽi

)
=

(
d
dt

ṽi
)

ẽi + ṽi
(

d
dt

ẽi

)
, (D.2)

denoting by d/dt the time derivative in the direction u for O0. The
second term on the right-hand side results from the product rule applied
to the components ṽi and the basis {ẽi}. For O0, {ẽi} is spinning
according to Eq. D.1, i.e., for O0 this term will be ΩΩΩv. However, for
O0 we can also write Eq. D.2 w.r.t. the (static) basis {ei}, which gives

dv
dt

=
d
dt

(
vi ei

)
=

(
d
dt

vi
)

ei =
∂v
∂ t

+∇v(u) . (D.3)

For O1, in contrast, however, the right-hand term in Eq. D.2 will be
zero for the basis {ẽi}, because for O1 the basis {ẽi} is not spinning.
Comparison of the two observers then gives the observed time derivative

D

Dt
v =

(
d
dt

ṽi
)

ẽi =
dv
dt
−ΩΩΩv =

∂v
∂ t

+∇v(u)−ΩΩΩv. (D.4)

Likewise, since the vector field u describes rigid motion, where ∇u=ΩΩΩ

and thus ∇u(u) = ΩΩΩu, for the observed time derivative of u we obtain

D

Dt
u =

∂u
∂ t

+ΩΩΩu−ΩΩΩu =
∂u
∂ t

. (D.5)

Putting both results together, we finally obtain the full expression

D

Dt
vu =

∂v
∂ t
− ∂u

∂ t
+∇v(u)−ΩΩΩv. (D.6)

This agrees with the general derivation using Lie derivatives, giving
Eq. 16 in the paper, when the field u is an exact Killing field (∇u = ΩΩΩ).

E THE DERIVATIVE (TANGENT) OF OBSERVED PATH LINES

We can compute the derivative of an observed path line t 7→ pu(t,r)
with r fixed (Eq. 44 in the paper) as follows. To identify the path
line, we denote some fixed position on the path line at some time s
by ps := p(s) ∈M. We denote another position on the same path line
at some other time τ by pτ := ψτ,s(ps) ∈M (using ψ , corresponding
to v, not ψu). See Eq. 35 in the paper. In the derivation below, it is
important to note that we use τ as a fixed parameter, and pτ as a fixed
spatial position, at which we want to evaluate a specific derivative.

Starting from Eq. 36 in the paper, using the chain rule we can derive

d
dt

∣∣∣∣∣
t=τ

t 7→ pu(t,r) =
∂

∂ t

∣∣∣∣∣
t=τ

ψ
u
r,t
(
ψt,s(ps)

)
,

=
∂

∂ t

∣∣∣∣∣
t=τ

ψ
u
r,t(pτ )+

∂

∂x

∣∣∣∣∣
x=pτ

ψ
u
r,τ (x) ·

∂

∂ t

∣∣∣∣∣
t=τ

ψt,s(ps),

= dψ
u
r,τ (pτ )

(
−u(pτ ,τ)

)
+dψ

u
r,τ (pτ )

(
v(pτ ,τ)

)
,

= dψ
u
r,τ (pτ )

(
vu(pτ ,τ)

)
. (E.1)

The differential dψu
t,s(x) is the push-forward of ψu

t,s(x), which linearly
maps vectors from the tangent space TxM at x to vectors in the tangent
space Tψu

t,s(x)M at ψu
t,s(x). In the derivation above, we have used that

∂

∂ t

∣∣∣∣∣
t=τ

ψ
u
τ,t(pτ ) =−

∂

∂ t

∣∣∣∣∣
t=τ

ψ
u
t,τ (pτ ) =−u(pτ ,τ) . (E.2)

Using this relation, we can compute the first derivative term above as

∂

∂ t

∣∣∣∣∣
t=τ

ψ
u
r,t(pτ ) = dψ

u
r,τ (pτ )

(
−u(pτ ,τ)

)
. (E.3)

F OBJECTIVITY OF RELATIVE VELOCITIES

We briefly prove that the relative velocity field vu = v−u is objective.
In our case, v denotes the input field, u denotes the observer field,
and vu denotes the observed field. However, the property of a relative
velocity field being objective is independent of these semantics.

We consider the observer transformation of the relative velocity field

vu(x, t) = v(x, t)−u(x, t), (F.1)

which, following Truesdell and Noll [18, p.43], with slightly adapted
notation, transformed from an observer O0 to another observer Ō0,
denoting a different reference frame by ¯(·) instead of by (·)∗, is

(v̄− ū)(x̄, t̄) =
(

Q(t)v(x, t)+ ċ(t)+ Q̇(t)Q(t)T (x− c(t)
))
−(

Q(t)u(x, t)+ ċ(t)+ Q̇(t)Q(t)T (x− c(t)
))

,
(F.2)

where the point c(t) is an arbitrary origin. See also Holzapfel [8, p.184].
It is crucial to note that here x,c(t) ∈M denote specific points on the
manifold M, independent of any coordinate system, and not relative
position vectors. We can further clarify by defining the vector-valued
function w(t) := ċ(t), and the point o(t) := c(t), to write this as

(v̄− ū)(x̄, t̄) =
(

Q(t)v(x, t)+w(t)+ΩΩΩ(t)
(
x−o(t)

))
−(

Q(t)u(x, t)+w(t)+ΩΩΩ(t)
(
x−o(t)

))
,

(F.3)

with ΩΩΩ :=Q̇QT the skew-symmetric tensor giving the spin of observer
O0 relative to Ō0, and w(t) the relative velocity of the point o(t). We
can now see that, in fact, w(t) and ΩΩΩ(t) describe a Killing field (Eq. 2).

All terms except the relative active rotation Q, applied pointwise to
velocity vectors in each tangent space TxM, cancel out, and so we get

v̄ū(x̄, t̄) = Q(t)vu(x, t). (F.4)

Therefore, according to the definition and transformation properties of
an objective vector field [18, p.42], the vector field vu is objective.
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Fig. 11. Optimizing observer fields for the 2D VORTEX STREET with different parameters λ ,µ , increasing µ from left to right leading to successively
higher Killing energy: (a) λ = 0.5,µ = 0.5; (b) λ = 1.0,µ = 2.0; (c) λ = 10.0,µ = 6.0; (d) λ = 16.0,µ = 18.0. (Top row) LIC of each observer field u with
velocity masking; (Middle row) Killing energy ‖Ku‖F ; (Bottom row) Observed time derivative ‖D/Dt vu‖2.

G PARAMETER EXPLORATION

Fig. 11 shows results for different parameter settings λ and µ in addi-
tion to Fig. 4 in the main paper. Here we can see that increasing µ starts
to develop swirly motion in the observer field, due to matching the
input flow more closely. This reduces the time derivative but results in
significantly higher Killing energy corresponding to more deformation.

H DISCUSSION OF DIFFERENCES FROM Topology-Inspired
Galilean Invariant Vector Field Analysis [2]

The Galilean-invariant approach by Bujack et al. [2] is similar to ours
in spirit, as their result is also not, quoting, “one well-suited frame of
reference, but the simultaneous visualization of the dominating frames
of reference in the different areas of the flow field” [2, abstract].

They achieve this by observing that the sign of the determinant of
the velocity gradient tensor (called the Jacobian in [2]) is Galilean-
invariant. Based on this, they define Galilean-invariant critical points
as the critical points of the determinant of the velocity gradient tensor.

They then use contour tree pruning to keep only the most prominent
critical points, and cluster the vector field domain according to these
critical points. Finally, they subtract a weighted sum of the velocities
at the critical points (in our terminology an observer velocity field) to
construct a Galilean-invariant vector field.

This differs from our approach in the following ways:

• Their approach is Galilean-invariant (although, in fact, it is
slightly more since the translation can be time-dependent) but not
objective, whereas our approach is objective.

• They compute a finite number of observers, whereas we compute
a continuous field of observers.

• Their approach works on one time step at a time without consid-
ering time derivatives, i.e., each time step is treated as a separate
time-independent vector field. Achieving smooth results over
time is left for future work. In contrast, our approach treats time
inherently, optimizing over all time steps simultaneously.

• Their approach was designed for 2D vector fields. An extension to
3D is left as future work. In contrast, our approach was designed
to seamlessly work in both 2D and 3D.

• They require several parameters for topological simplification,
clustering, and constructing the Galilean-invariant vector field,
whose influence on the final visualization is not clear. In contrast,
our approach has essentially one parameter (λ ) that chooses a
smooth trade-off between the as-rigid-as-possible (approximate
Killing field) property and the as-steady-as-possible (small ob-
served time derivative) property of the observer velocity field.

The paper [2] also briefly discusses issues of possible ambiguities
and misinterpretations of the resulting visualizations, as the resulting
images show different regions of the flow for different observers. Also,
the authors argue that interactive methods to switch between different
observers might be helpful in understanding the visualizations. We
leave this as future work.

I FLOW FIELD DATA SETS

We briefly give more information on the data sets that we have used.

I.1 Four Centers
The four centers vector field given by Günther et al. [6, Sec. 6.2] is
computed from the originally steady 2D vector field in the spatial
domain [−2,2]× [−2,2], and the temporal domain [0,2π], defined by

v(x,y) :=

(
−x(2y2−1)e−(x

2+y2)

y(2x2−1)e−(x
2+y2)

)
, (I.1)

with the observer transformation (which makes the final field unsteady)(
cos(t) sin(t)
−sin(t) cos(t)

)(
x
y

)
. (I.2)

For this paper, the field was sampled on a 64×64×64 Cartesian grid.

I.2 2D Vortex Street
This data set has been simulated by Tino Weinkauf [20] using the Free
Software Gerris Flow Solver [16].

Data downloaded from
http://www.csc.kth.se/˜weinkauf/notes/cylinder2d.html

I.3 3D Vortex Street
This is a direct numerical Navier Stokes simulation by Simone Camarri
and Maria-Vittoria Salvetti (University of Pisa), Marcelo Buffoni (Po-
litecnico of Torino), and Angelo Iollo (University of Bordeaux I) [3]
which is publicly available [9].

We use a uniformly resampled version which has been provided by
Tino Weinkauf and has been used in von Funck et al. [19].

Data downloaded from
http://www.csc.kth.se/˜weinkauf/notes/squarecylinder.
html

I.4 Ocean
This is a three-dimensional unsteady flow field obtained by Haller et
al. [7] from the Southern Ocean state estimation model of Mazloff et
al. [13]. The spatial domain is bounded by longitudes [11◦E,16◦E],
latitudes [37◦S,33◦S], and depth [7,2000] m.

In this paper we use a time-dependent 2D slice corresponding to the
ocean surface given on a 390×210 regular grid with 14 time steps.

Data downloaded from
https://github.com/LCSETH/
Lagrangian-Averaged-Vorticity-Deviation-LAVD/tree/
master/3D/data

J SOURCE CODE

MATLAB source code for the major computations described in this
paper can be found online in the source code repository listed at
http://vccvisualization.org/research/
killingobservers/

http://www.csc.kth.se/~weinkauf/notes/cylinder2d.html
http://www.csc.kth.se/~weinkauf/notes/squarecylinder.html
http://www.csc.kth.se/~weinkauf/notes/squarecylinder.html
https://github.com/LCSETH/Lagrangian-Averaged-Vorticity-Deviation-LAVD/tree/master/3D/data
https://github.com/LCSETH/Lagrangian-Averaged-Vorticity-Deviation-LAVD/tree/master/3D/data
https://github.com/LCSETH/Lagrangian-Averaged-Vorticity-Deviation-LAVD/tree/master/3D/data
http://vccvisualization.org/research/killingobservers/
http://vccvisualization.org/research/killingobservers/
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