
Culling for Extreme-Scale Segmentation Volumes:
A Hybrid Deterministic and Probabilistic Approach

Johanna Beyer, Haneen Mohammed, Marco Agus, Ali K. Al-Awami, Hanspeter Pfister, and Markus Hadwiger

Fig. 1. Adaptive hybrid culling of millions of labeled segments, for applications such as volume rendering and interactive spatial
queries. (a,b) Empty space skipping for volume rendering: (a) Mouse Cortex 2 (13.25 million segments); (b) KESM Mouse Brain
(224,436 segments). (c,d) Visual representations of spatial queries: (c) Phantom Spheres 2, distance computation between two
user-selected segments (4.9 million segments); (d) SEM Mouse Cortex, distance computation between two segments (4,107 segments).

Abstract—With the rapid increase in raw volume data sizes, such as terabyte-sized microscopy volumes, the corresponding segmenta-
tion label volumes have become extremely large as well. We focus on integer label data, whose efficient representation in memory, as
well as fast random data access, pose an even greater challenge than the raw image data. Often, it is crucial to be able to rapidly
identify which segments are located where, whether for empty space skipping for fast rendering, or for spatial proximity queries. We
refer to this process as culling. In order to enable efficient culling of millions of labeled segments, we present a novel hybrid approach
that combines deterministic and probabilistic representations of label data in a data-adaptive hierarchical data structure that we call the
label list tree. In each node, we adaptively encode label data using either a probabilistic constant-time access representation for fast
conservative culling, or a deterministic logarithmic-time access representation for exact queries. We choose the best data structures for
representing the labels of each spatial region while building the label list tree. At run time, we further employ a novel query-adaptive
culling strategy. While filtering a query down the tree, we prune it successively, and in each node adaptively select the representation
that is best suited for evaluating the pruned query, depending on its size. We show an analysis of the efficiency of our approach with
several large data sets from connectomics, including a brain scan with more than 13 million labeled segments, and compare our
method to conventional culling approaches. Our approach achieves significant reductions in storage size as well as faster query times.

Index Terms—Hierarchical Culling, Segmented Volume Data, Bloom Filter, Volume Rendering, Spatial Queries

1 INTRODUCTION

In recent years, huge advances in imaging technology have led to a
massive increase in raw image and volume data sizes. Today, large
volumes, such as those from high-resolution electron microscopy, can
reach hundreds of teravoxels in size. However, in order for scientists
to be able to perform analysis tasks, the raw image data are not even
sufficient. The next crucial step is to label every voxel to identify it as
belonging to a particular segment, which refers to different structures
(e.g., dendrites), or parts of structures (e.g., spines of dendrites). La-
beling voxels of nanometer-scale data was a very time-consuming and
labor-intensive task, often resulting in only sparsely labeled data with
a few thousand segments [4]. However, current state-of-the-art tech-

• Johanna Beyer and Hanspeter Pfister are with Harvard University,
Cambridge, MA, USA. E-mail: {jbeyer, pfister}@seas.harvard.edu

• Marco Agus and Markus Hadwiger are with King Abdullah University of
Science and Technology (KAUST), Thuwal, Saudi Arabia.
E-mail: {markus.hadwiger, marco.agus}@kaust.edu.sa.

• Haneen Mohammed is with Harvard University and KAUST. E-mail:
haneen.mohammed@kaust.edu.sa

• Ali K. Al-Awami is with KAUST and Saudi Aramco, Dhahran, Saudi Arabia.
E-mail: awami.ali@gmail.com

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

niques for automatic segmentation now create densely labeled volumes
with millions of segments within a few hours or days [25, 26]. In this
paper, we focus on volumes where each voxel has an additional 24-bit
or 32-bit integer label, which increases the overall data size (compared
to 8-bit image data) significantly. However, it is crucial for scientists
to be able to efficiently visualize and query the raw data together with
the label data, for example for checking segmentation accuracy and
performing proof-reading, and for a variety of analysis tasks.

Naturally, interactive visualization and analysis of terabyte-sized
label volumes requires efficient data structures, together with hierar-
chical algorithms, that are able to efficiently prune the amount of data
that needs to be processed interactively. The major approaches em-
ploy multi-resolution data structures, and many techniques have been
proposed for their out-of-core management, processing, and visualiza-
tion [6]. However, most existing techniques are limited to continuous
data, e.g., grayscale pixel intensity. Creating efficient multi-resolution
hierarchies for segmented volumes with integer label data poses signifi-
cant challenges. In contrast to continuous pixel intensities, the correct
down-sampling of labels is an additional inherent obstacle. Integer
label data cannot be down-sampled by performing low-pass filtering
followed by sub-sampling, because this would introduce non-existent
labels. Therefore, the typical approach is to choose some subset of
labels when computing a lower-resolution representation [6]. This, how-
ever, leads to missing label data. Nevertheless, for rendering purposes
this is often seen as acceptable. However, for accurately identifying
where specific segments are located (e.g., for distance computations),
it is essential to be able to access the full-resolution label information.

Note that we do not need to access the entire voxel data for such spatial
queries. Rather, we need a full-resolution list (or set) of labels that
occur within a certain region to use as a compact search structure. How-
ever, naively propagating such label data throughout a spatial hierarchy
such as a tree leads to prohibitively large amounts of data. For example,
the accurate list of labels of the root node, which corresponds to the
lowest-resolution down-sampled image data, comprises a list of all
labels of the entire volume, even if the root’s image data are very small.

Efficient culling of label data. In addition to pure storage consid-
erations, it is essential that the lists of labels in a spatial hierarchy are
stored in a way that allows for efficient, random access for culling
computations. We use the term culling to refer to the process of effi-
ciently locating spatial regions in a volume that contain a certain set of
segments, e.g., all the segments currently selected by the user for visu-
alization, whereas all other segments are currently disabled. (Strictly
speaking, culling refers to culling away irrelevant volume regions.)
Culling is a fundamental operation that is essential for both:

(1) Rendering purposes, where, for example, empty space skipping
requires determining which parts of the volume are empty, i.e., do not
contain any segments that are currently enabled for visualization;

(2) Accurate spatial queries, such as locating all nodes containing
some set of segments, or computing spatial distances between segments.

Main goals and properties. Our main goals are therefore to (1)
design a novel hierarchical data structure for compact storage of very
large integer label data; which also does (2) enable efficient hierarchical
traversal for both kinds of culling computations described above.

Our approach combines a deterministic, logarithmic-time access
data structure with a probabilistic, constant-time access data structure
in a data-adaptive manner. For each node in the hierarchy, we choose
the best representation for label data, taking into account memory size
as well as expected run time query performance. Furthermore, our
approach is also query-adaptive. We adapt run time query evaluation
to both the characteristics of the current query, such as the number of
labels in the query, as well as to the availability of the different possible
label data representations in each node encountered during traversal.

Label list trees and multi-resolution label representations. Our
main data structure is a hierarchy of integer label data that we call the
label list tree. Each node of this tree stores label data in what we call
label lists (i.e., we do not store the voxel data in this node, but the
list or set of contained labels). However, for the two different culling
operations described above, we in fact store two different kinds of label
lists in each node. The first kind is for rendering purposes, called a
resolution-adjusted label list, and contains the labels corresponding
to the down-sampled data used for rendering. The second kind is for
exact queries, called a resolution-independent label list, and contains
all label information with respect to the exact full-resolution volume.

Label lists are our concept for storing label data. We use the term
list in a general manner. In fact, each list is a set of labels (i.e., no
duplicates, and order is irrelevant). Furthermore, we conceptually view
each label list as a bit string. A 1-bit at a certain index means that the
corresponding label is in the set, and a 0-bit means that it is not. For,
e.g., 24-bit data, such a bit string is therefore 224 bits long. For actual
storage, we build on extensive work on efficient data structures for
set membership queries in the areas of big data and database indexing,
which, however, we have not yet seen used in the visualization literature.
We encode each bit string using either (1) a deterministic representation,
based on Roaring bitmaps [11], but combined with hierarchical delta en-
coding; or (2) a probabilistic representation, based on Bloom filters [7].
The former is a simple, but highly efficient, compressed encoding of
bit strings that supports fast logarithmic-time random access. The latter
is a probabilistic hashing method that provides constant-time random
access for arbitrarily large data sizes, but results in conservative culling.

Application scenarios. We have implemented and evaluated two
different application scenarios with different requirements: First, we
support fast culling for empty space skipping for efficient volume ren-
dering of densely segmented volumes. Second, we support accurate
spatial queries between segments, which can be used for detailed anal-
ysis. For example, finding all axons in some spatial region of interest
in a neuroscience volume, or computing the spatial distance between a

certain dendrite and axon. Both scenarios have different requirements
on the underlying label data, because spatial queries need to be evalu-
ated with respect to the full resolution, while empty space skipping is
performed with respect to the resolution currently visible on screen.

Contributions. We substantially reduce both the size and query eval-
uation time for label volumes with millions of segments. We achieve
this via a novel hierarchical, data-adaptive data structure called the label
list tree, and a novel adaptive, hierarchical approach for query evalua-
tion. We build this tree in a pre-processing step, encoding the label data
of each node for both resolution-independent (accurate) queries as well
as for resolution-adjusted (rendering) queries. Label data are adaptively
stored in the most-efficient data structure, depending on data character-
istics and expected query performance: (1) Deterministic label storage
is accurate, but is not bounded in size. However, we further reduce the
size of accurate storage via hierarchical delta encoding. (2) Probabilis-
tic label storage scales to arbitrary data sizes, but is conservative due to
possible false positives. At run time, we dynamically evaluate queries
via a hierarchical approach that incrementally prunes the input query
while filtering it down the tree, culling each node probabilistically or
deterministically, based on data and query characteristics.

2 RELATED WORK

We review volume representations for large and labeled data, culling in
visualization, and different data structures for representing label lists.

Representation of labeled volume data. Large volume data sets
are typically subdivided into smaller bricks or blocks, to allow for out-
of-core processing, and to avoid having to load and process the volume
in its entirety [6]. Representations can range from a simple regular grid
of volume blocks to more scalable multi-resolution hierarchies, such as
k-d trees [39, 40], octrees [8, 12, 19, 29], or page table hierarchies [22].

For segmentation volumes, instead of storing a scalar intensity value
per voxel, an integer segment (or label) ID is stored [21]. More compact
representations for segmentation volumes have been proposed. Com-
presso [33], for example, stores segmentation as a separate boundary
map and label list. However, most compact representations require
on-the-fly decoding, and are not geared towards interactive volume
rendering and fast random data access. An alternative approach to
storing volume data is to extract the surface geometry of segmented ob-
jects [27], and subsequently deal with meshes instead of with volumes.

Culling. In visualization and graphics, the term culling refers to
methods that aim to quickly reject (and avoid processing) those parts of
the input data that do not contribute to an algorithm’s output [18]. For
example, a widely used approach for speeding up volume rendering
is to cull all empty space surrounding the actual region of interest in
a volume. This is done by checking the min/max values of a volume
block against the currently set transfer function, to determine if this
block will be invisible or “empty” after rendering. Empty blocks are
then discarded and do not need to be rendered [15] or even downloaded
to the GPU. Culling can be performed hierarchically using a multi-
resolution hierarchy, which allows quickly discarding large regions.

We focus on culling for segmented volumes, i.e., we want to quickly
discards those parts of the volume that do not contain certain label IDs.

Culling for empty space skipping. Empty space skipping is
an efficient way to speed up volume rendering. Most recent scal-
able volume rendering approaches for large data sets use GPU ray-
casting [12, 19, 22, 28]. In all these approaches, volume data are repre-
sented in a multi-resolution data structure that is traversed and sampled
on the GPU during ray-casting [6]. Volume rendering of segmented
volumes is done similarly. However, it typically requires two volumes
to be present: the original data volume, as well as the labeled data [5].
Rendering can then access both volumes per sample and use the current
label to decide which render mode or transfer function to use [21].
Empty space skipping in volume rendering reduces the amount of data
that needs to be loaded as well as sampled during the ray traversal
step and therefore can significantly reduce the memory footprint and
rendering times [20]. Different methods for empty space skipping have
been proposed [2, 12, 19, 20, 23, 37, 41]. However, the actual culling
step (i.e., determining which parts of the volume are empty), always
requires some meta-data for each volume block. For image volumes,

User
interaction

1 0 1 00 1
Query

label 1
label 2
label 3
...
label n

show:

distance(label1, label2)

is_inside_ROI()

Culling queries Data queries

Query
generation

0 0 0 00 1

0 0 0 00 0

Hierarchical query evaluation
(depth-�rst tree traversal)

Roaring Bloom Filter

1 0 0 00 1

Query
updates

label 12
label 32
...
label 876

Labels
in ROI:643.7

distance:

Segmentation
volume

Resolution-adjusted labels

Resolution-independent labels

Optimized label list
data structures

RLE

Roaring

Bloom Filter

Roaring

Bloom Filter

Label list tree

Culling result Data query result

GPU-based volume rendering & exploration

=

Bit string:

Fig. 2. System overview. (Left) Data-adaptive part: Label data are stored hierarchically in the label list tree. Each tree node stores two types of
label lists. The first type is a resolution-independent label list, corresponding to the spatial region of each label list tree node. The second type is a
resolution-adjusted label list, corresponding to the (down-sampled) resolution level of each node. For both, we data-adaptively determine the optimal
representation. (Right) Query-adaptive part: At run time, we support two different types of queries: Approximate culling queries for volume rendering,
and exact data queries for analysis. Queries are evaluated hierarchically, and filtered through each step of depth-first traversal of the label list tree.
The label list representation used in each node, i.e., a deterministic or a probabilistic data structure, is chosen automatically according to query size.

these meta-data consist of min/max values of each block. Segmentation
data typically require a list of labels contained in each block [20].

Culling for spatial queries. Culling is also required for the effi-
cient evaluation of spatial queries on volume data, such as finding all
objects in the vicinity of another object. Several different interactive
query systems for volume exploration have been proposed [4, 9, 32, 36].
Braingazer [9] supports queries on brain and brain connectivity data,
based on semantic and spatial relationships. ConnectomeExplorer [4]
allows scientists to build domain-specific queries on segmentation vol-
umes that are evaluated interactively. More general query techniques
are dynamic queries [1], interactive visual queries [13], and DAX [38],
which is a system for query-driven scientific visualization of large
data sets. However, none of these are geared towards culling highly-
segmented data sets comprising millions of labeled objects.

Representation of set membership. Culling a block of segmenta-
tion data requires knowing the list of labels in the block. This list can
be encoded as a bit string in a straightforward fashion, by setting all
bits of the integer IDs that are present in the set to 1. Bit strings are
efficient to evaluate, and allow random reads and writes. However, they
are not efficient in terms of storage [11]. For sparse data, bit lists can
be efficient, where only the list of all indices with a 1-bit is stored. To
make bit strings more space efficient, different lossless compression
algorithms can be used [42]. Examples include LZW or run-length
encoding. However, these formats typically do not support fast random
access. Roaring bitmaps [11] propose to split the original bit string into
smaller chunks, and to then encode each chunk individually, depending
on their sparsity. Chunks can be encoded either as a dense bitmap, or
as a sparse packed array. More recently, Roaring has been extended to
also support chunks of run-length encoded data [31].

Probabilistic data structures. A convenient way to reduce band-
width and memory requirements of conventional deterministic data
structures is offered by probabilistic data structures. Skip lists [35] are
a data structure for fast search in an ordered sequence of elements. It is
based on a hierarchy of linked lists, where the elements that are skipped
in a level of the hierarchy can be chosen probabilistically. Bloom fil-
ters [7] are a space-efficient data structure for quickly testing whether a
given element is (could be) in a set or not. Bloom filters guarantee that
no false negatives can occur, i.e., existing elements cannot be missed.
However, they do have a certain false positive rate. The false positive
rate of Bloom filters is influenced by the size of the bit array, the number
of hash functions, and the number of entries in the Bloom filter. Exten-
sions to Bloom filters also support deletions [16, 17], as well as better
data locality [3]. However, they are less memory efficient than the
original Bloom filter. Bloom filters have been very successfully applied
in database indexing, search engines, and genome applications [24].
However, to our knowledge, probabilistic data structures have not yet
been employed in the context of large segmented volume data.

3 OVERVIEW

Fig. 2 depicts an overview of our culling architecture. Our system
consists of two major components: (1) We pre-compute a data-adaptive
multi-resolution hierarchy for compactly storing label list data, the so-
called label list tree. (2) At run time, we evaluate a culling query by
query-adaptive, hierarchical traversal of the label list tree, where the
best data structure is used at each node, depending on the query.

The output of our culling system is a list of non-empty volume blocks.
Note that in our current implementation culling is performed on the
CPU, but its output determines which volume blocks are transferred to
GPU memory for subsequent GPU-based rendering or analysis.

3.1 Data-adaptive hierarchy of label data
The first major component of our architecture is the label list tree, which
stores all label data that are required for query evaluation at run time.

Label list tree. This tree is a hierarchical representation of all label
data. It is crucial to note that, in this context, label data always refers
to sets of different label IDs in spatial regions, not to actual voxel
data. While a major consideration is reducing the storage size of all
label data, the performance of using the stored label information for
query evaluation at run time is also crucial. In order to be able to trade-
off between these two goals, we have to choose the data structures
for storing label data and accessing them for queries in a way that is
adapted to the actual data. However, since the data characteristics might
differ significantly for different regions of a large volume, we have to
adapt to the actual data in each tree node individually. That is, choosing
one “best” representation for the entire label list tree is not sufficient.
We adapt to the input data by using the following strategy:

• We store the label data corresponding to each tree node in one of
several types of data structures. Which data structure is used for
any given node depends on the characteristics of the node’s data.

• We decide for each node if we actually store the same label
data in two separate data structures, one deterministic one and
one probabilistic one. This allows us to choose one at run time,
depending on query characteristics that cannot be known before.

In order to determine the best data structure in each node, we consider
storage size as the first major factor. However, we also take into account
what the expected performance for evaluating queries at run time will
be. The latter is harder to predict, because the query by itself is not
known at pre-processing time when we build the label list tree. In order
to compensate for this problem to some extent, we adaptively decide
whether we store one data structure or two different ones in any node.

Multi-resolution label lists. In addition to the basic strategy just de-
scribed, we furthermore have to accommodate an additional important
consideration. To enable interactive rendering performance, large vol-
umes have to be stored in a multi-resolution hierarchy [22]. In this way,
at run time any region of the original volume can be accessed directly

at a lower (down-sampled) resolution. For label data, however, this also
means that the down-sampled label data of coarser resolution levels do
not anymore correspond to the label data of the original full-resolution
segmentation data. However, at the same time, apart from rendering,
we also have to be able to hierarchically evaluate some types of queries
accurately with respect to the full-resolution data, e.g., spatial distances.
We therefore conceptually store two label list trees. One tree corre-
sponds to the original input data, and the other tree corresponds to the
down-sampled data. Instead of actually storing two separate trees, we
instead store two different kinds of label lists in each node of a single
tree. One list is what we call a resolution-independent label list, and
the other one is what we call a resolution-adjusted label list.

Data-adaptive label list construction. We store the raw data and
label volumes in a bricked multi-resolution format on disk. From
the input data, we compute the two types of label lists for each node
in the multi-resolution hierarchy in a hierarchical data-adaptive pre-
processing step (Fig. 2, left), constructing the label list tree. However,
our system is completely independent of the actual data format used for
raw volume and label data, since we only require lists of labels to be
able to perform culling. We start processing with the highest-resolution
label blocks, which will become the leaf nodes, and then traverse up the
tree to compute the label lists for the next-lower resolution blocks, until
we have computed all label lists up to the root node. For each block of
label data, we first compute data distribution statistics to determine the
most efficient way of storing the label lists of that block. We represent
the set of labels contained in a node either as a deterministic bit string, or
as a probabilistic representation, using Bloom filters [7]. Deterministic
bit strings can be stored as either a full set or as a hierarchical delta
encoding, both internally represented as a Roaring bitmap [31].

3.2 Query-adaptive run time evaluation
At run time, our system supports interactive query generation, query
evaluation, as well as subsequent rendering and data analysis.

Interactive user queries. We have integrated our culling method
into ConnectomeExplorer [4], an interactive volume rendering and
visual query framework for large segmented neuroscience data sets.
Culling is necessary for efficient volume rendering with empty space
skipping, as well as for evaluating spatial proximity queries for visual
analysis. Query evaluation is triggered by the user by either toggling the
visibility of segments, or by using a visual query builder. See Fig. 2 (top
right). The culling result (i.e., the set of non-empty volume blocks) is
used as input to the volume rendering and analysis components and
determines which data need to be downloaded to GPU memory.

Culling query evaluation. We evaluate culling queries in a hierar-
chical top-down fashion. See Fig. 2 (middle). We start by requesting
the label list of the root node and culling it against the query, before
recursively traversing down the tree in depth-first order. If a node does
not contain any segments of the query, traversal is stopped. For a node
containing at least one segment of the query, its child nodes are visited.
Whenever a leaf node containing segments of the query is reached, it is
added to the culling result. The nodes in the final result can either be
used for empty space skipping, or are further evaluated voxel-by-voxel
for detailed quantitative queries. See Fig. 2 (bottom right).

To speed up query evaluation, we incrementally prune the input
query while filtering it down the tree: Segments in the query that are
not in the label list of a visited node are removed from the query before
passing it down to the child nodes. This results in the query getting suc-
cessively smaller during tree traversal, and therefore culling becomes
progressively faster. To further optimize query evaluation, we adapt the
type of label list representation, i.e., deterministic or probabilistic, used
in each traversal step, based on the size and complexity of the query.

4 MULTI-RESOLUTION HIERARCHIES FOR LABEL DATA

Multi-resolution representations of raw image data and integer label
data pose fundamentally different challenges. For continuous image
data, a multi-resolution hierarchy can be created by low-pass filter-
ing and down-sampling, because interpolating continuous data makes
sense. In contrast, integer labels identifying labeled segments cannot
be meaningfully interpolated. For example, smoothly interpolating

1 0 0 11 0

1 0 0 01 1

1 0 0 10 0
0 1 0 10 1

0 0 1 10 0

0 0 0 01 0

1 0 0 01 1
0 1 0 01 1

1 0 0 00 1

1 0 0 10 0
0 0 0 10 0

1 1 0 01 1

1 0 0 10 1
1 1 0 10 1

0 0 1 11 0

1 1 1 11 1

1 0 0 01 1

1 0 0 10 0

0 0 0 10 1

0 0 0 10 1
1 1 0 10 0

0 1 0 10 0

0 0 0 10 0
0 0 0 11 0

0 0 1 10 0
0 0 1 10 0

Segmentation volume Multi-resolution volume Label lists

Resolution-
independent

Resolution-
adjusted

L0

L1

L2

∪

Fig. 3. Resolution-adjusted vs. resolution-independent label lists.
To support different culling scenarios, we compute two types of multi-
resolution label lists: (1) Resolution-adjusted label lists are computed
directly from each resolution level Li (red arrows). They only contain la-
bels that are present in that resolution level. (2) Resolution-independent
label lists are the union of all labels in the corresponding volume re-
gion in the original full-resolution segmentation L0 (green arrows). The
resolution-independent label list of the root node (here: L2) will therefore
contain all labels of the entire volume (here: 6), even if the down-sampled
segmentation data of the root node contains much fewer labels (here: 3).

between labels 6 and 10 might give label 8, which often would not
even exist in the corresponding spatial region. Instead, integer labels
are usually down-sampled by simple sub-sampling or via rank filters,
e.g., choosing the most-frequent label. However, then the label lists of
nodes in coarser resolutions will not be the union of the label lists of
their subtrees. See levels L0, L1, and L2 of the multi-resolution volume
depicted in Fig. 3. We create our multi-resolution segmentation volume
by sub-sampling. Label list creation is described in Sec. 4.1.

4.1 Multi-resolution label lists
Given the problems described above, we have to consider two very
different scenarios of hierarchical traversal that require label lists:

• The label list of each node must be the union of all leaf nodes
below, which are all labels in the corresponding spatial region.

• The label list of each node should correspond to the (down-
sampled) volume block of the current resolution level.

The former scenario is required for all computations that have to be
accurate with respect to the original data, such as exactly finding seg-
ments, or computing exact spatial information such as distances. The
latter scenario can be used for everything that depends on the current
visualization, not on the original data. For example, for empty space
skipping we only need to determine which nodes do not need to be
rendered and thus can be skipped. If a coarser resolution representation
is currently being rendered, the label lists of the full-resolution data are
irrelevant. In this case, using the label lists of full-resolution data would
often lead to significantly over-estimating the number of non-empty
nodes. Corresponding to these two types of requirements, we build a
multi-resolution hierarchy of label lists that stores both kinds of data.

Resolution-independent label lists. In Fig. 3, the right path (green
arrows) depicts how exact label lists for spatial regions are computed
from the full-resolution data L0. The initial label lists of L0 are cre-
ated directly from the label volume. Label lists of nodes in a coarser
resolution level Li (i > 0) are computed from the label lists of Li−1 by
performing a union operation, indicated by ∪ in Fig. 3. For resolution-
independent label lists, the root node will contain all labels of the whole
data set. Therefore, this list is naturally very large for 24-bit or 32-bit
label volumes. The farther away nodes are from the root, the sparser
their label lists will be. We furthermore alleviate label data duplica-
tion by using delta encoding, see below. An important characteristic
of resolution-independent label lists is that no segment will ever be
present in a child node if it is not present in the parent.

Resolution-adjusted label lists. In Fig. 3, the red arrows show how
the label list of each node at resolution level Li is computed directly

Multi-resolution data Data-adaptive
set representation

Query-adaptive
set representation

Root
(max density):

Inner nodes
(mixed density):
Roaring/
Bloom Filters

Leaves
(low density):
Roaring/
Bloom Filters

Roaring (RLE)

1 11

0 0

1

0 1

Dense query

Sparse query

Bloom
Filters

Roaring

Pre-processing Label
volume data

Label list

Run time

Requested
label list
format:

Fig. 4. Adaptive label list representation and usage. Left: We store
label lists in a label list tree. Each node can store a label list in several
different data structures. The optimal list (set) representation is chosen
based on the data resolution and the node’s label data statistics. We
employ a deterministic representation based on Roaring bitmaps (i.e.,
bit strings, run-length encoding, sparse arrays), and a probabilistic rep-
resentation based on Bloom filters. Right: At run time, we employ a
query-adaptive approach. The query is always represented as a Roaring
bitmap. Depending on the query cardinality and node statistics, for each
node we can use the preferred (i.e., fastest) label list representation.

from the segmentation data of level Li. This is a down-sampled repre-
sentation of labels, not just a spatial subdivision as in the resolution-
independent label lists, and exactly represents the down-sampled seg-
mentation data. Resolution-adjusted label lists are more compact to
store than resolution-independent lists, and the number of labels in the
list is bounded by the number of (down-sampled) voxels in that node.

Adaptive label list usage during traversal. We always compute
and store both types of label lists in each node to enable choosing at
run time which type is required for the current task. During interaction,
depending on the type of query, e.g., spatial analysis or empty space
skipping, we automatically fetch and use the appropriate list type.

4.2 Data-adaptive label list construction

A major goal of our hybrid approach is to combine different data
structures for storing label lists, to combine the best characteristics of
each. We will consider two specific goals: (1) achieving the smallest
memory consumption; and (2) achieving the fastest culling (query
evaluation) performance at run time. To facilitate this, we first analyze
the input data in a data-adaptive pre-processing step. This step performs
a hierarchical data analysis, starting at the leaf nodes corresponding to
the highest resolution, and going up to the root (lowest resolution).

For the label list of each node, we consider the following: (a) Is it
smaller to encode the whole label list, or the difference between the list
of the node and the list of its parent node (Sec. 4.3)? And, (b) In what
data structure should we store the label list (Sec. 5)?

In order to be able to determine the best representation, we first
hierarchically compute data statistics, based on the cardinality of a
set, the size of the data structure in memory, and predicted data access
times. We compute these for both, the resolution-independent as well
as the resolution-adjusted label lists. Fig. 4 illustrates our hybrid data
representation. Typically, the root node of the resolution-independent
label list has a very high cardinality (i.e., many labels) and is stored
with run-length encoding (using Roaring bitmaps). Nodes with medium
cardinality (i.e., inner nodes) are stored either as Roaring bitmaps or
using Bloom filters. We also support the option of storing both Roaring
bitmaps and Bloom filters, and decide on the actual data structure usage
only at run time, based on the actual culling query (see Sec. 6.3).

4.3 Top-down delta encoding of label list hierarchies

Instead of always fully encoding the label list of each node, we employ
a delta encoding scheme that only stores the difference between a node
and its parent node. This concept is somewhat similar to standard video
compression, where each video frame can be stored either as a complete
keyframe, or it is only encoded via the difference to the previous frame.

In our case, the “frames” are different label lists, and the encoding
order is from the tree’s root node toward the leaf nodes.

Starting from the root node, which is always a keyframe, i.e., it
always stores a full label list, we perform top-down tree traversal, and
for every node check whether storing the difference to its parent node
consumes less storage than storing the full label list. We quantify the dif-
ference between two label lists by the Hamming distance Ham(Si,Si+1)
of the corresponding bit strings, where Si is the bit string of a node in
level i, and Si+1 is the bit string of its parent node (we assign level 0 to
the leaf nodes, not the root). The Hamming distance can be computed
as the number of 1-bits after a bitwise XOR of the two bit strings. This
is correct for resolution-independent and resolution-adjusted label lists.

In principle, when encoding the delta between Si and Si+1, we can
check the Hamming distance Ham(Si,Si+1) against the cardinality of
the child set Si. Then, if |Si|< Ham(Si,Si+1), we would disable delta
encoding, because it is larger to store. Instead, the bit string of Si would
then be stored completely. However, in practice, before deciding at any
node whether delta encoding should be used or not, we test actually
encoding both the full label list and the delta label list. Then, instead
of comparing the Hamming distance, we compare the actual memory
consumption of both variants and choose the smaller one. The reason
for this approach is that the size of encoding a Roaring bitmap does
not only depend on the cardinality of the encoded bit string, but does
in fact depend on the actual pattern of 1-bits. For example, if many
consecutive bits are set, they will often be stored more compactly.

After the choice of either full or delta encoding is made, we use an
additional flag to indicate the meaning of the stored bit string as either

1. The bit string encodes the original set Si (no delta encoding).

2. The bit string encodes the difference set Di := XOR(Si,Si+1).

The bit string of the root node is always encoded as the whole set SL−1,
where L is the number of resolution levels, and level L−1 is the level
of the root node. Below the root node, the choice is data-adaptive.

5 DATA STRUCTURES FOR LABEL SET MEMBERSHIP

We now describe the major two data structures that our culling archi-
tecture uses to represent label lists in each label list tree node. See
Fig. 5. Each label list is in fact a set of integer label IDs, which we
conceptually treat as a very long bit string. A 1-bit means that the
corresponding ID is present in the set, a 0-bit means that it is not. For
storing these bit strings, we employ two main data structures in order
to be able to adaptively choose between the two, and thus be able to
combine the advantages of both. A label list can be stored as either a

1. Deterministic data structure (a Roaring bitmap), providing exact
set membership queries with logarithmic-time random access.

2. Probabilistic data structure (a Bloom filter), providing approxi-
mate set membership queries with constant-time random access.

We note that we have designed our system in a modular way to allow
switching out individual components easily in the future, e.g., for using
different underlying data structures. However, we have chosen Roaring
bitmaps and Bloom filters particularly for their efficient storage sizes,
flexibility, and fast access times, as described in more detail below.

5.1 Deterministic set membership: Roaring bitmaps
We use Roaring bitmaps [31] as a lossless compression method for label
bit strings, because they provide deterministic set membership queries
with logarithmic-time random access. Roaring has been developed for
compressing large bit string indices, as they typically occur in large
databases or search engines. Roaring bitmaps are by themselves a
hybrid data structure that splits the input range (224 or 232 different
label IDs) into chunks, where each chunk can be stored using a different
container data structure. Each chunk in Roaring corresponds to 16 bits,
i.e., 216 labels. For 24-bit labels, there can be at most 2(24−16) = 256
chunks; for 32-bit labels at most 64K chunks. All non-empty chunks
are held in a sorted list (array). When evaluating a query, the required
chunks are found using binary search. The labels in a chunk are stored
in one of three types of internal storage containers (see Fig. 5, left):

Bit string
(1 = label present)

0 1 0 11 0 0 0 1 11 1

Input data

Compressed
encoding

hash table

Roaring
bitmap

Bloom
�lter

0 1 0 11 0 0 0 1 11 1{ { {
1 0 1 1

bit string list of runs

start/length

list of labels
6 2 9 11

chunk 1 chunk 2 chunk 3

0 1 0 11 0 0 0 1 11 1

1 0 11 0 1 1 11 1

hash
function

Fig. 5. Data structures for label set membership. Given an input set
of labels (a conceptual bit string), we support two different encodings:
(1) Our deterministic data structure is built on Roaring bitmaps, which
divide 32-bit data into chunks of 16-bit size each. The list in each chunk
is stored as either an uncompressed bit string, a run length-encoded bit
string, or a list of IDs. (2) Our probabilistic data structure is built on Bloom
filters. This enables the compact representation of a sparse bit string
with a fixed amount of storage, while guaranteeing no false negatives.

• Uncompressed bit string: Stores 216 = 64K label IDs. It is there-
fore always 8 KB in size, for storing 64K bits. It is intended for
dense chunks (i.e., many label IDs set to 1), and allows direct
access to each bit. However, if there are less than 4K elements
(1-bits), a sorted array will be used instead, because it is smaller.

• Sorted array: This container explicitly stores a list of all label
IDs (indices of 1-bits). Due to the previous chunking, only the
lowest 16 bits of the label IDs need to be stored. The higher 16
bits are already determined by the chunk ID. This container is
stored as a sorted array for fast binary search. This representation
is only used for 4,096 elements or less (4,096 ·2 bytes = 8 KB).

• Run length encoding: Here, runs of 1-bits are encoded as pairs
of (startID,count) records, stored in sorted order for access with
binary search. A run length container is only used if its size is
smaller than the size of a bit string or list container for the same
data. This container’s size is always 2+4r bytes, given r runs.

We use a publicly available C++ implementation of the Roaring bitmap
data structure [30] that supports fast addition and deletion of elements
from a set, and also offers fast intersection, union, and difference
operators. In correspondence with the description in Sec. 4.2, we use
the same data structure for either encoding a full label list or a delta
label list. The latter encodes only the difference between a parent and
a child node in the label list tree. We chose Roaring because it allows
deterministic logarithmic-time access to label lists, is an open-source,
optimized library, and conceptually still represents a simple bit string.

5.2 Probabilistic set membership: Bloom filters
We use Bloom filters [7] as a fully scalable probabilistic encoding
of label bit strings. Bloom filters offer constant-time random access,
independent of the input range of label IDs as well as of the number of
labels stored in one data structure. This makes them a good candidate
for scalability to extremely large data. Bloom filters employ a hashing
strategy that enables checking directly whether an element is present
in a set or not, without the binary search steps required by Roaring
bitmaps. A Bloom filter uses k different hash functions, indexing a
single hash table that is a bit vector of m bits (see Fig. 5, right). We add
each label ID by hashing it, and setting the k bits at the indices given by
the k hashing results in the bit vector to one. To check whether a label
is in a Bloom filter, the label ID is hashed, and the hash table bit vector
is checked whether all k bits at the k corresponding indices are set. If
any of the bits is zero, the label is definitely not in the set. If all k bits
are set, the label may be in the set, but it could also be a false positive.

Bloom filters are very space efficient when the universe U (all pos-
sible label IDs) is large, and the cardinality of the label set S is small:

|U | � |S|. (1)

The universe refers to the number of potential elements that can occur
(e.g., 232 in 32-bit label data), and the cardinality is the actual number

of elements in a set, i.e., the number of different labels in a label list.
The false positive rate of a Bloom filter can be approximated by

rfp =
(

1− e−kn/m
)k

, (2)

where m is the length of the hash table bit vector in bits, k is the number
of hash functions, and n is the number of inserted elements, i.e., n = |S|.
It is important to notice that Eq. 2 is completely independent of the
universe size |U |. For this reason, Bloom filters are very well suited to
very large ranges of label IDs (e.g., 232 labels), when, in contrast, the
actual label set cardinality |S| in a label list tree node is small.

We use the characteristics of Bloom filters for probabilistic, but
conservative, culling. This will never result in incorrectly culling nodes
that should not be culled (i.e., no false negatives). On the other hand,
some nodes might be reported as non-empty that could have been culled
(i.e., false positives), leading to unnecessary processing or rendering.

By changing the hash table size m, we can control the trade-off
between false positives and memory size. In a Bloom filter, set mem-
bership has to be queried for each label individually. Therefore, in a
serialized implementation of Bloom filters, the size of the query, i.e.,
the number of elements the query contains, should be relatively small
for quickly evaluating if the set contains any element of the query.

To summarize, Bloom filters are very memory efficient for label lists
of nodes containing a relatively small number of labels (i.e., typically
the nodes at higher resolution levels). Furthermore, Bloom filters are
fast for queries with a low cardinality, such as detailed distance queries
or renderings of a few specific structures.

6 ADAPTIVE HIERARCHICAL CULLING

We employ a fully hierarchical approach for evaluating culling queries,
which allows us to quickly cull large spatial regions in one step. Our
culling algorithm is modular, and can easily be integrated into exist-
ing volume rendering or query systems, including ray-guided volume
renderers [12, 20]. Generally speaking, the goal of a culling operation
is to locate those leaf nodes of the label list tree that contain at least
one of the labels specified in the query. These can be, for example,
the segments enabled for rendering, or segments that are otherwise of
interest, e.g., for computing distances between segments. Given an
arbitrary input query, it is hierarchically “filtered” through the label list
tree, comparing it against each visited node. Empty nodes and sub-trees
are skipped. Only non-empty leaf nodes are reported in the final result.

6.1 Query representation
Conceptually, the input query is a set of labels, like the label list of each
segmented volume block. This set is created either by a computational
algorithm, or based on direct user input, e.g., by clicking on a volume-
rendered segment on screen. All nodes that do not contain any of the
labels in the query should not be reported in the culling result. To
facilitate fast, optimized set intersection computations during query
evaluation, we represent the label list of a query as a Roaring bitmap,
and employ the Roaring library for individual bit-level computations.

6.2 Hierarchical query evaluation
Given an arbitrary input query Q, i.e., a list (set) of labels of interest,
we can formally define the output of culling as the list (set) of nodes

Sout = {n j}, such that S(n j)∩Q 6= /0 for all j, (3)

where S(n j) denotes the set of labels of a leaf node n j . Fig. 6 illustrates
our hierarchical query evaluation and incremental pruning scheme for
computing Sout. We then perform depth-first label list tree traversal
starting from the root, and evaluate the query for each visited node.

If a node is classified as empty, i.e., when S(n j)∩Q = /0, its entire
sub-tree is culled, i.e., not put into the set Sout, and traversal of that
sub-tree stops. Otherwise, traversal continues toward the leaves. To
determine if a node is empty, we compare the labels in the query with
the node’s labels. However, for efficiency we employ a hierarchical
query pruning scheme (see below). If a label occurs both in the query
and in the node, i.e., when S(n j)∩Q 6= /0, the node is non-empty.

We add all visited, non-empty leaf nodes to Sout.

1 1 0 11 1

1 0 1 00 1 1 0 0 00 1

0 1 0 10 1 0 1 0 10 0

0 0 0 00 1 0 0 0 00 0
Culling query

Label lists

Segmentation data

L3

L2

L1
L0

Q4 Q3 Q2 Q1

L3
L2 L1 0 0 0 10 0L0

Q4 ∩ L3 Q3 ∩ L2 Q2 ∩ L1

Fig. 6. Hierarchical query evaluation. We cull label lists (middle)
against the input query Q, updating temporary queries Qi (top). Starting
with the temporary query Q4 := Q, we update Qi at every step to at most
a subset of the labels in the current node. Thus, the cardinality of a query
decreases as tree traversal proceeds from the root node toward the leaf
nodes. We depict the multi-resolution label data of levels L3−L0, and the
corresponding label lists. Q4−Q1 show how we prune query information
while traversing the tree. In this example, traversal stops recursion one
level above the shown leaf node at level L0, because Q1 is already empty.

Depth-first traversal and incremental query pruning. During
label list tree traversal, we successively prune the input query to the
smallest possible cardinality, which corresponds to the set intersection
of the input query Q with the label list of the currently visited node.

We can do this very efficiently in an incremental manner, by main-
taining a temporary copy Qi of the original query Q in every node along
the path from the root node to the current node (see Fig. 6). That is,
we employ a set of temporary queries Qi ∈ {Q0,Q1, · · · ,QL−1}. The
associated overhead is negligible, since this path always has only one
node per tree level. Therefore, the total number of temporary queries is
always bounded by L, the total number of tree levels. During traversal,
we keep track of the temporary queries, and compute the current Qi at
every traversal step to a child node. We compute each Qi as either:

• Qi := AND(Qi+1,Si), if Si is a whole set (no delta encoding),

• Qi := AND(Qi+1,NOT(Di)), if Di is a difference set,

where Si and Di are as defined in Sec. 4.3. We start recursive traversal
at the root node with i = L− 1, and the initial query passed into the
root node (tree level L−1) is defined as QL := Q.

Whenever the current temporary query Qi is empty, the correspond-
ing sub-tree (including the node itself) is culled, and the recursion of
depth-first traversal is stopped. Traversal then continues on level i+1,
after going back to the parent of the node whose query Qi was empty.

Roaring bitmap evaluation. If the label set Si, or alternatively the
difference set Di, is represented as a Roaring bitmap, the two operations
given above are evaluated directly using the Roaring library, which
either performs a bit-wise AND operation in a bit string container, or
otherwise updates the sorted list or run-length containers accordingly.

Bloom filter evaluation. If the set Si is represented probabilistically
using a Bloom filter, we evaluate the updated temporary query Qi :=
AND(Qi+1,Si) by creating it as a pruned copy of Qi+1 as follows. For
every label in the temporary query Qi+1, we check whether that label
is contained in the Bloom filter of Si (a hashed label list of the current
node). If it is not, we delete that label from the query Qi. If it may be
in the set Si (including possible false positives of the Bloom filter), the
label is kept in the temporary query Qi. We note that this never prunes
the query too much, but it can conservatively prune it too little. The
latter cannot lead to incorrect results, but can reduce efficiency.

6.3 Query-adaptive choice of label list representation
During traversal, out of the label list representations available at some
visited node ni, we dynamically choose the best one for culling against
the temporary query Qi, depending on the cardinality of Qi.

Choosing the best representation. If the label list of a node ni is
stored in both a Roaring bitmap as well as in a Bloom filter, we choose
one of the two representations according to the following criteria:

Fig. 7. Empty space skipping and spatial queries. (a) The empty
space around the segmented dendrite is skipped during volume ren-
dering. (b) We highlight the remaining volume blocks that need to be
traversed after empty space skipping. (c) Finding all labels inside a
cylindrical region of interest, and only showing the largest structures.

• If |Qi|> cB, i.e., the cardinality of the temporary query at the node
ni is higher than a certain threshold cB, we always cull against
the Roaring bitmap of ni. The threshold is chosen to specify what
cardinality is considered too slow for culling using a Bloom filter.

• If |Qi| ≤ cB, we cull against the Bloom filter of the node ni.

Culling against a Bloom filter is conservative and less accurate than
using a Roaring bitmap. However, if a node ni contains a Bloom filter
representation of its label list, the pre-computation step has determined
that, given the known cardinality |S(ni)| of the node ni, a Bloom filter
is the most space-efficient representation, and that it should be used for
run time queries with a cardinality less than cB. We have heuristically
chosen cB ≈ 10. Optionally, we can enforce deterministic culling for
leaf nodes, to guarantee final culling results without false positives.

7 APPLICATIONS

To demonstrate the usefulness of our general culling method, we have
integrated our architecture into two different applications. The first
one is a ray-guided volume renderer for large segmented neuroscience
data sets [20], and the second application is ConnectomeExplorer [4],
a system for interactive visual queries and visual analysis. See Fig. 7.

7.1 Empty space skipping for volume rendering
We have integrated our culling framework into SparseLeap [20], a multi-
resolution volume renderer aimed at high-resolution neuroscience data.
The system supports rendering of segmented data, and uses a hybrid
image- and object-order approach for empty space skipping. However,
the original implementation uses uncompressed bit strings for repre-
senting label lists, and therefore does not scale to highly segmented
volumes with millions of objects. Therefore, we have replaced the
previous label representation and uncompressed bit string culling of
SparseLeap with our novel method (i.e., the label list tree and hierarchi-
cal query traversal) to support empty space skipping with millions of
objects. See Fig 1 (a,b) and Fig. 7. Volume rendering is performed in a
ray-guided manner, meaning that data blocks are loaded and culled in a
deferred way, only after the ray-caster has reported a block as missing.
Once a missing block has been reported, the system first requests its
label list and executes the culling operation on that block. Only if that
block is non-empty is it actually loaded and subsequently rendered.

Culling for empty space skipping works in the following way: We
first start hierarchical traversal using resolution-independent label lists.
During traversal, this leads to conservative culling. Once we hit a node
of the resolution that is currently used in rendering, we stop traversal,
because we are not interested in any higher resolution than what is
being rendered on screen. At that resolution, we perform culling with
resolution-adjusted labels, to get a completely accurate cull state for
that resolution. Standard empty space skipping would stop here, but
the SparseLeap architecture uses an additional step to propagate the
cull state of the leaf nodes back up to the root, to further optimize the
rendering step. However, this can be done in a completely transparent
manner, simply using the culling information our architecture provides.
Similarly, our internal culling data structures and culling optimizations
are hidden from the volume rendering architecture, as we only provide

a high-level abstract interface. Results and timings for our culling
architecture for empty space skipping are provided in Sec. 8.3. Using
Sparseleap, all our data sets can be rendered at interactive framerates.
A more detailed evaluation of rendering performance is given in [20].

7.2 Spatial queries for analysis

The second use case of our culling architecture is ConnectomeEx-
plorer [4], an interactive exploration and query-guided visual analysis
system for large segmented electron microscopy (EM) data sets. Con-
nectomeExplorer provides a visual query builder, based on a query
algebra, that allows users to build custom queries by either manually
selecting segments in a volume or list view, or by using the provided
query algebra of predicates and operators. Queries are evaluated inter-
actively and result either in a set of segments, or use a set of segments
to compute quantitative results. For example, topological (connectivity)
operators can be used to find connected biological structures, and spa-
tial predicates and operators can be used to compute distances between
two segments. See Fig 1 (c,d). Previously, accurate spatial queries of
labeled segments were slow, and limited to a few thousand segments.
We have integrated our culling architecture into ConnectomeExplorer
to speed up spatial queries and support highly segmented data.

The supported spatial queries include finding the locations of labels,
subsequently computing the distance between labels, and finding all
labels within a region of interest. The algorithm for computing dis-
tances between two segments is based on previous work on distance
algorithms for octree-encoded objects [14]. We have integrated our
culling architecture into the spatial query system and use resolution-
independent (i.e., region-based) label data, through all levels of the
hierarchy. This allows us to quickly and accurately identify candidate
volume bocks for the distance calculations (i.e., blocks containing the
labels used in the distance calculation). The distance computation
algorithm then maintains a list of pairs of tree nodes that potentially
minimize the distance between the two segments. The algorithm pro-
cesses this list by hierarchically subdividing one of the nodes in a pair,
until only pairs with leaf nodes are left. To get a voxel-exact distance
(i.e., smaller than the block size used for the node), the final leaf nodes
need to be manually inspected to compute the exact result.

Table 1. Data set statistics of the volumes used for evaluation (Sec. 8).
We list data resolution, storage size, and number of labels, as well as the
number of resolutions in the label list tree, and the used block size.

Data set Description Label lists info

Phantom Spheres (PS1K)
1,024 x 1,024 x 1,024
Images: 1 GB (8 bit)
Labels: 3 GB (24 bit)

Block size: 323

Resolution levels: 6
Labels: 614 K

Phantom Spheres 2 (PS2K)
2,048 x 2,048 x 2,048
Images: 16 GB (8 bit)
Labels: 48 GB (24 bit)

Block size: 323

Resolution levels: 7
Labels: 4.91 M

KESM Mouse Brain (KESM)
2,380 x 9,216 x 2,039

Images: 42.7 GB (8 bit)
Labels: 128.1 GB (24 bit)

Block size: 323

Resolution levels: 9
Labels: 224 K

SEM Mouse Cortex (MC1)
21,494 x 25,790 x 1,850
Images: 955 GB (8 bit)
Labels: 489 GB (16 bit)

Block size: 323

Resolution levels: 10
(11 levels for images)

Labels: 4,107

Mouse Cortex 2 (MC2)
4,096 x 4,096 x 4,096
Images: 64 GB (8 bit)

Labels: 192 GB (24 bit)

Block size: 323

Resolution levels: 8
Labels: 13.25 M

Fig. 8. Memory consumption of different label list representations.
We report the total size of the label list tree and compare uncompressed
bit strings, Roaring, combined Roaring/delta encoding, and our hybrid
method (using different false positive rates (FPR) for Bloom filters). Left:
Resolution-independent label lists. Right: Resolution-adjusted label lists.

8 EVALUATION AND RESULTS

We evaluate our culling approach using the data sets listed in Table 1.
We report memory sizes and culling performance with respect to ref-
erence implementations using standard bit strings. Our framework is
implemented in C++, OpenGL and GLSL, and our data structures are
based on the CRoaring library [30] and Boost Bloom filters [10]. The
culling system is implemented as a CPU component, and can be easily
integrated into larger GPU volume rendering or visual query systems.
We report more evaluation results in our supplemental material.

8.1 Data sets
Table 1 lists the data sets we use for evaluation and their basic properties.
Our data sets have between 4,107 and 13 million labels, with memory
sizes of from several GB to more than one TB. We include two densely
labeled phantom sphere data sets and three different neuroscience data
sets: SEM Mouse Cortex was manually segmented, KESM Mouse
Brain was labeled with an automatic, but sparse segmentation algorithm,
and Mouse Cortex 2 was densely labeled. We analyze block-based
distribution statistics of labels in the supplemental material.

8.2 Memory footprint
Fig. 8 shows the overall memory consumption of the label list tree
for pre-defined data representations for the label lists. We compare
standard bit strings to Roaring, Roaring with delta encoding, and our
hybrid method. Uncompressed bit strings are by far the most memory-
intensive representation, especially for volumes with many labels. Our
hybrid method is consistently the most compact, by a factor of more
than 50×-100×. The memory consumption of resolution-independent
label lists (Fig. 8, left) is higher than for resolution-adjusted label lists
(Fig. 8, right), especially at lower resolution levels. However, since
the highest resolution makes up roughly 90% of the overall memory
consumption, and both types of label lists share their highest-resolution
representation, the difference in memory size is almost negligible.

Fig. 9 (top) shows the memory consumption of the label list tree
for different resolution levels of the KESM data set. Especially for
level 0 (i.e., the highest resolution), our hybrid method is very compact.
The stacked bar chart in Fig. 9 (bottom) depicts the distribution of the
different data encodings used in our hybrid approach (i.e., Roaring,
deltas, and Bloom filters). We depict this distribution for three different
false positive rates (light to dark green), and per resolution level. It can
be seen that Bloom filters are primarily used in the highest-resolution
levels, while Roaring is used mainly for the lowest-resolution levels.

8.3 Culling performance
Table 2 gives detailed performance numbers of our culling method, as
applied to empty space skipping. We list the memory consumption, as
well as the query evaluation time for different data sets, and compare
our hybrid culling approach to a standard brute-force culling approach.
The standard approach iterates over all visible blocks of the current view
(non-hierarchically), and checks whether queried labels are contained
or not. Our method consistently performs better in both, memory
consumption and query evaluation time. The only outlier is query Q2
for SEM Mouse Cortex, where our method is more memory efficient,
but the bit string-based approach is slightly faster. The most likely

FP rate: 5%
FP rate: 10%
FP rate: 25%

FP rate: 5%
FP rate: 10%
FP rate: 25%

Fig. 9. Memory consumption of label list and internal encoding.
Top: We show the size of different label list representations at different
resolution levels (full resolution is level 0). We use false positives rates of
5, 10, and 25 in our hybrid method. Bottom: Distribution of the different
data encodings (Roaring, delta, bloom) in our hybrid approach (FP rate:
5, 10, 25), per resolution level. Left: Resolution-independent label lists.
Right: Resolution-adjusted label lists. Data set: KESM Mouse Brain.

reason for this is that the SEM Mouse Cortex data set is very sparsely
labeled (i.e., 4,107 labels), which is small enough that bit strings are a
feasible alternative for storing label lists. A more detailed evaluation of
culling for spatial queries is included in the supplemental material.

8.4 Bloom filter evaluation
In Fig. 10, we evaluate the relationship between the memory consump-
tion of Bloom filters and their false positive rate, based on the KESM
Mouse Brain data set. The smaller the false positive rate, the more mem-
ory a Bloom filter needs. In our framework we have tested different
settings, but heuristically decided on a false positive rate of 5-10 %, as
this seems to be a good trade-off between size and performance. Fig. 8
show the influence of the false positive rate that is used for Bloom
filters on the overall size of the label list tree. Fig. 9 (bottom) indicates
that Bloom filters are primarily used for the highest-resolution levels,
where the nodes contain the smallest number of distinct labels. This
plays into the strength of Bloom filters: A large number of possible
label IDs, but a small number of actual label IDs in the node. A more
detailed analysis is given in the supplemental material.

Table 2. Culling performance for empty space skipping. We compare
our approach using hybrid label lists to standard, non-hierarchical culling
with bit strings. We list the number of nodes touched for culling, the size
of the touched label lists, and the evaluation time for two different queries
(Q1: 2 labels, Q2: 1,000 labels). FP rate 10%, cB = 10.

data culling # nodes label data time
set method touched touched (ms)

KESM
Mouse
Brain

hybrid Q1 261 (1.6 %) 203 KB 7.6
culling Q2 3,109 (19.5 %) 647 KB 25
non- Q1 13,895 (86.9 %) 381 MB 153.2
hierar. Q2 13,895 (86.9 %) 381 MB 142.6

SEM
Mouse
Cortex

hybrid Q1 141 (1.5 %) 48 KB 7
culling Q2 3,269 (34.3 %) 188 KB 27.2
non- Q1 8,190 (85.9 %) 4.1 MB 7.4
hierar. Q2 8,190 (85.9 %) 4.1 MB 6.6

Mouse
Cort. 2

hybrid Q1 417 (1.9 %)) 13.4 MB 12.8
culling Q2 1,713 (7.83 %) 27.7 MB 25.2
non- Q1 12,986 (87.5 %) 25.4 GB 7,019
hierar. Q2 12,986 (87.5 %) 25.4 GB 6,549

Phantom
Spheres

hybrid Q1 273 (1.74%) 3.8 MB 8
culling Q2 12,329 (78.7%) 25.7 MB 92.4
non- Q1 16,332 (87.5%) 9.8 GB 3,357
hierar. Q2 16,332 (87.5%) 9.8 GB 2,976

Fig. 10. Bloom filter memory consumption vs. false positive rate.
We evaluate Bloom filter sizes at different resolution levels (full resolution
is level 0), for different false positive rates. Left: Resolution-independent
label lists. Right: Resolution-adjusted label lists. Data set: KESM Brain.

8.5 Discussion
One of the main advantages of our culling approach is its flexibility:
Our label list tree can handle sparse as well as dense segmentation
volumes, and chooses the underlying data representation adaptively,
based on local data set characteristics. This makes our approach suitable
for large, segmented volumes with areas of different label densities.

Roaring and Bloom filters. Roaring bitmaps offer a compact rep-
resentation of label lists and are especially suited for dense (in terms of
labels) nodes with a high cardinality of label IDs. Roaring is the most
compact data structure if there are long runs in the label list that can
be stored with run-length encoding. The strength of Bloom filters lies
in encoding sparse labels in a large universe of potential labels, which
is typically the case for nodes in the highest resolution levels of the
label list tree. Furthermore, Bloom filters are agnostic to the actual
distribution or pattern of label IDs in a node. Random labels are stored
as efficiently as clustered label IDs. Currently, we set the false positive
rates of Bloom filters heuristically. Ideally, the most efficient false
positive rate would be adjusted not only based on the data set, but also
for each resolution level. While we currently use Roaring bitmaps and
Bloom filters, in the future the underlying data structures of our culling
method could be easily extended or exchanged. Any data structure just
needs to support (a) fast checking of whether an element is part of a
set, and (b) fast intersection operations for updating the query.

Label list tree node size. A major consideration for all block-based
culling techniques is how to choose the best size for a block. Smaller
blocks allow for more accurate culling, but also result in larger label list
trees. Larger blocks are more efficient to store, but culling will be more
conservative. A more detailed analysis was given in [20]. In principle,
our hybrid method is agnostic to the actual block size used.

Data-adaptive, hierarchical queries. Our hierarchical query prun-
ing approach significantly speeds up query evaluation. Smaller (pruned)
queries result in Bloom filters being requested more often during the
query-adaptive culling step. This, in turn, results in a smaller memory
footprint and faster query evaluation. Furthermore, our query-adaptive
approach allows us to trade disk storage space for run-time performance.
By storing two data representations on disk, we can select the ideal
(i.e., most compact and fastest) data representation at run time.

9 CONCLUSIONS

Our culling method for large, labeled volumes combines two main
concepts: First, a novel hierarchical data structure for compact storage
of integer label lists, and second, a hierarchical culling algorithm which
is optimized for efficient handling of large label lists and complex
culling queries. The combination of deterministic and probabilistic data
structures allows us to find the best trade-off between exact culling with
logarithmic-time data access, and conservative culling with constant-
time data access. We have combined these data structures with a novel
hierarchical culling algorithm. Complex culling queries get pruned
at each step of the hierarchy traversal, leading to faster culling times,
and label lists get requested based on the current (pruned) query. This
combination has enabled significant improvements for fast culling of
large, labeled volumes and is scalable to millions of labels.

ACKNOWLEDGMENTS

We thank John Keyser for the ‘KESM Mouse Brain’ data set [34]. This work is partially
supported by King Abdullah University of Science and Technology (KAUST) and the
KAUST Office of Sponsored Research (OSR) award OSR-2015-CCF-2533-01.

REFERENCES

[1] C. Ahlberg, C. Williamson, and B. Shneiderman. Dynamic Queries for
Information Exploration: an Implementation and Evaluation. In SIGCHI
Conference on Human Factors in Computing Systems, CHI ’92, pages
619–626, 1992.

[2] R. S. Avila, L. M. Sobierajski, and A. E. Kaufman. Towards a compre-
hensive volume visualization system. In IEEE Visualization, pages 13–20,
1992.

[3] M. A. Bender, M. Farach-Colton, R. Johnson, R. Kraner, B. C. Kuszmaul,
D. Medjedovic, P. Montes, P. Shetty, R. P. Spillane, and E. Zadok. Don’t
thrash: how to cache your hash on flash. Proceedings of the VLDB
Endowment, 5(11):1627–1637, 2012.

[4] J. Beyer, A. Al-Awami, N. Kasthuri, J. W. Lichtman, H. Pfister, and
M. Hadwiger. ConnectomeExplorer: Query-Guided Visual Analysis of
Large Volumetric Neuroscience Data. IEEE Trans. on Visualization and
Computer Graphics (Proc. IEEE SciVis ’13), 19(12):2868–2877, 2013.

[5] J. Beyer, M. Hadwiger, A. Al-Awami, W.-K. Jeong, N. Kasthuri, J. Licht-
man, and H. Pfister. Exploring the Connectome - Petascale Volume
Visualization of Microscopy Data Streams. IEEE Computer Graphics and
Applications, 33(4):50–61, 2013.

[6] J. Beyer, M. Hadwiger, and H. Pfister. State-of-the-art in GPU-based large-
scale volume visualization. Computer Graphics Forum, 8(34):13–37,
2015.

[7] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM, 13(7):422–426, July 1970.

[8] I. Boada, I. Navazo, and R. Scopigno. Multiresolution Volume Visualiza-
tion with a Texture-based Octree. The Visual Computer, 17(3):185–197,
2001.

[9] S. Bruckner, V. Šoltészová, M. E. Gröller, J. Hladuvka, K. Bühler, J. Yu,
and B. Dickson. BrainGazer - Visual Queries for Neurobiology Research.
IEEE Trans. on Visualization and Computer Graphics (Proc. IEEE Visual-
ization ’09), 15(6):1497–1504, 2009.

[10] A. Cabrera. Boost Bloom Filters. https://github.com/queertypes/
boost-bloom-filters, 2018. Last accessed 2018-7-31.

[11] S. Chambi, D. Lemire, O. Kaser, and R. Godin. Better bitmap performance
with roaring bitmaps. Softw. Pract. Exper., 46(5):709–719, 2016.

[12] C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemann. Gigavoxels: Ray-
guided streaming for efficient and detailed voxel rendering. In Interactive
3D Graphics and Games, pages 15–22, 2009.

[13] M. Derthick, J. Kolojejchick, and S. F. Roth. An Interactive Visual Query
Environment for Exploring Data. In Tenth Annual ACM Symposium on
User Interface Software and Technology (UIST ’97), pages 189–198, 1997.

[14] E. Dyllong and C. Grimm. A modified reliable distance algorithm for
octree-encoded objects. Applied Mathematics and Mechanics (PAMM),
7(1):4010015–4010016, 2007.

[15] K. Engel, M. Hadwiger, J. M. Kniss, C. Rezk-Salama, and D. Weiskopf.
Real-Time Volume Graphics. A. K. Peters, Ltd., 2006.

[16] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher. Cuckoo
filter: Practically better than bloom. In Proceedings of the 10th ACM
International on Conference on Emerging Networking Experiments and
Technologies, CoNEXT ’14, pages 75–88, 2014.

[17] L. Fan, P. Cao, J. Almeida, and A. Broder. Summary cache: A scal-
able wide-area web cache sharing protocol. IEEE/ACM Transactions on
Networking, 8(3):281–293, 2000.

[18] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer
Graphics: Principles and Practice (2Nd Ed.). Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1990.

[19] E. Gobbetti, F. Marton, and J. Guitián. A single-pass GPU ray casting
framework for interactive out-of-core rendering of massive volumetric
datasets. The Visual Computer, 24(7):797–806, 2008.

[20] M. Hadwiger, A. K. Al-Awami, J. Beyer, M. Agus, and H. Pfister. Sparse-
Leap: Efficient Empty Space Skipping for Large-Scale Volume Rendering.
IEEE Transactions on Visualization and Computer Graphics (Proc. IEEE
SciVis ’17), 24(1):974–983, 2018.

[21] M. Hadwiger, C. Berger, and H. Hauser. High-Quality Two-Level Volume
Rendering of Segmented Data Sets on Consumer Graphics Hardware. In
IEEE Visualization, pages 301–308, 2003.

[22] M. Hadwiger, J. Beyer, W.-K. Jeong, and H. Pfister. Interactive Volume
Exploration of Petascale Microscopy Data Streams Using a Visualization-
Driven Virtual Memory Approach. IEEE Trans. on Visualization and
Computer Graphics (Proc. IEEE SciVis ’12), 18(12):2285–2294, 2012.

[23] M. Hadwiger, C. Sigg, H. Scharsach, and K. Bühler. Real-Time Ray-

Casting and Advanced Shading of Discrete Isosurfaces. Computer Graph-
ics Forum (Proc. Eurographics ’05), 24(3):303–312, 2005.

[24] S. D. Jackman, B. P. Vandervalk, H. Mohamadi, J. Chu, S. Yeo, S. A.
Hammond, G. Jahesh, H. Khan, L. Coombe, R. L. Warren, and I. Birol.
Abyss 2.0: Resource-efficient assembly of large genomes using a bloom
filter. bioRxiv, page 068338, 2016.

[25] N. Kasthuri, K. J. Hayworth, D. R. Berger, R. L. Schalek, J. A. Conchello,
S. Knowles-Barley, D. Lee, A. Vázquez-Reina, V. Kaynig, T. R. Jones,
et al. Saturated reconstruction of a volume of neocortex. Cell, 162(3):648–
661, 2015.

[26] V. Kaynig, A. Vazquez-Reina, S. Knowles-Barley, M. Roberts, T. R. Jones,
N. Kasthuri, E. Miller, J. Lichtman, and H. Pfister. Large-scale automatic
reconstruction of neuronal processes from electron microscopy images.
Medical Image Analysis, 22(1):77 – 88, 2015.

[27] L. P. Kobbelt, M. Botsch, U. Schwanecke, and H.-P. Seidel. Feature
sensitive surface extraction from volume data. In Proceedings of the 28th
Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’01, pages 57–66, 2001.

[28] J. Krüger and R. Westermann. Acceleration Techniques for GPU-based
Volume Rendering. In IEEE Visualization, pages 287–292, 2003.

[29] E. Lamar, B. Hamann, and K. I. Joy. Multiresolution Techniques for
Interactive Texture-Based Volume Visualization. In IEEE Visualization,
pages 355–362, 1999.

[30] D. Lemire, O. Kaser, N. Kurz, L. Deri, C. O’Hara, F. Saint-Jacques,
and G. Ssi-Yan-Kai. Roaring bitmaps: Implementation of an optimized
software library. Software: Practice and Experience, 48(4):867–895, 2018.
spe.2560.

[31] D. Lemire, G. Ssi-Yan-Kai, and O. Kaser. Consistently faster and smaller
compressed bitmaps with roaring. Softw. Pract. Exper., 46(11):1547–1569,
Nov. 2016.

[32] C.-Y. Lin, K.-L. Tsai, S.-C. Wang, C.-H. Hsieh, H.-M. Chang, and A.-S.
Chiang. The neuron navigator: Exploring the information pathway through
the neural maze. In Proceedings of the 2011 IEEE Pacific Visualization
Symposium, pages 35–42, 2011.

[33] B. Matejek, D. Haehn, F. Lekschas, M. Mitzenmacher, and H. Pfister.
Compresso: Efficient compression of segmentation data for connectomics.
In International Conference on Medical Image Computing and Computer-
Assisted Intervention (MICCAI), pages 781–788, 2017.

[34] D. Mayerich, J. Kwon, C. Sung, L. C. Abbott, J. Keyser, and Y. Choe.
Fast macro-scale transmission imaging of microvascular networks using
KESM. Biomedical Optics Express, 2:2888–2896, 2011.

[35] W. Pugh. Skip lists: A probabilistic alternative to balanced trees. Commun.
ACM, 33(6):668–676, 1990.

[36] A. Sherbondy, D. Akers, R. Mackenzie, R. Dougherty, and B. Wandell.
Exploring connectivity of the brain’s white matter with dynamic queries.
IEEE Trans. on Vis. and Computer Graphics, 11(4):419–430, 2005.

[37] L. M. Sobierajski and R. S. Avila. A hardware acceleration method for
volumetric ray tracing. In IEEE Visualization, pages 27–34, 1995.

[38] K. Stockinger, J. Shalf, K. Wu, and E. W. Bethel. Query-Driven Vi-
sualization of Large Data Sets. In IEEE Visualization, pages 167–174,
2005.

[39] K. R. Subramanian and D. S. Fussell. Applying space subdivision tech-
niques to volume rendering. In IEEE Visualization, pages 150–159, 1990.

[40] V. Vidal, X. Mei, and P. Decaudin. Simple empty-space removal for
interactive volume rendering. Journal of Graphics Tools, 13(2):21–36,
2008.

[41] R. Westermann and B. Sevenich. Accelerated volume ray-casting using
texture mapping. In IEEE Visualization, pages 271–278, 2001.

[42] K. Wu, K. Stockinger, and A. Shoshani. Breaking the curse of cardinality
on bitmap indexes. In Scientific and Statistical Database Management,
pages 348–365, 2008.

https://github.com/queertypes/boost-bloom-filters
https://github.com/queertypes/boost-bloom-filters

	Introduction
	Related Work
	Overview
	Data-adaptive hierarchy of label data
	Query-adaptive run time evaluation

	Multi-Resolution Hierarchies for Label Data
	Multi-resolution label lists
	Data-adaptive label list construction
	Top-down delta encoding of label list hierarchies

	Data Structures for Label Set Membership
	Deterministic set membership: Roaring bitmaps
	Probabilistic set membership: Bloom filters

	Adaptive Hierarchical Culling
	Query representation
	Hierarchical query evaluation
	Query-adaptive choice of label list representation

	Applications
	Empty space skipping for volume rendering
	Spatial queries for analysis

	Evaluation and Results
	Data sets
	Memory footprint
	Culling performance
	Bloom filter evaluation
	Discussion

	Conclusions

