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Fig. 1. Many real-world volume data sets are sparse, lending appeal to rendering and processing techniques that benefit from such
a property. Using our novel, storage-efficient data structure allows us to efficiently store such data sets as bricked textures on the
GPU. From left to right: Stagbeetle (832×832×494, bricksize 73, 5.01% non-empty, 245.5KB index); Pawpawsaurus Campbelli skull
(958× 646× 1088, bricksize 153, 15.1% non-empty, 50.21KB index); Angiography (416× 512× 112, bricksize 33, 2.27% non-empty,
220.5KB index); Present (492×492×442, bricksize 73, 17.3% non-empty, 78.80KB index). Our data structure introduces only minimal
overhead in terms of memory and run-time, and it allows for efficient brick-level empty-space skipping.

Abstract—In this paper we present a novel GPU-based data structure for spatial indexing. Based on Fenwick trees—a special type
of binary indexed trees—our data structure allows construction in linear time. Updates and prefixes can be computed in logarithmic
time, whereas point queries require only constant time on average. Unlike competing data structures such as summed-area tables
and spatial hashing, our data structure requires a constant amount of bits for each data element, and it offers unconstrained point
queries. This property makes our data structure ideally suited for applications requiring unconstrained indexing of large data, such as
block-storage of large and block-sparse volumes. Finally, we provide asymptotic bounds on both run-time and memory requirements,
and we show applications for which our new data structure is useful.
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1 INTRODUCTION

With the recent advances in general purpose GPU computing,
data structures enabling efficient algorithms on this challenging
architecture are becoming more important. Our novel approach
adds one such data structure to the library of spatial indexing data
structures for GPUs. The proposed data structure is versatile in the
sense that it can be used in arbitrary dimensions and for arbitrarily
complex data types. Unlike some competing data structures, our
method offers unconstrained access to data elements, while at
the same time requiring only a minimal memory overhead. Al-
though our data structure is versatile, with potential applications
including dynamic stream compaction, prefix computation, summed-
area-table-like integration, etc., we believe that the special use case
of block-sparse data representation is potentially of the highest impact.
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As the immense compute powers of modern graphics cards and su-
percomputers alike increase, scientists from a wide range of fields
are able to generate an ever increasing amount of data. Visualizing
this data, even on the machine it was generated, remains a challenge.
While GPUs have been widely accepted as one of the best technolo-
gies to tackle this problem, GPU memory remains a scarce resource.
Our proposed data structure seeks to address this issue, while provid-
ing fast and unconstrained access performance.

The underlying principle of the proposed data structure is the stor-
age of partial sums of the data. By interleaving verbatim storage of
data elements with partial sums of 2k elements (i.e., sums of two, four,
eight, etc. elements), we form a tree that is intuitively best described
as being half-way between input values and a summed area table. Its
properties are therefore also half-way between a regular array and a
summed area table—while summed area tables excel at prefix sums
and point queries in constant time, they fail at achieving memory effi-
ciency for large amounts of data elements. In contrast, our data struc-
ture trades speed for memory. By only storing partial sums, prefixes
can be quickly reconstructed in logarithmic time while at the same
time using considerably less memory.

It is interesting to note that the work-efficient parallel implemen-
tation of the prefix sum [14, 3, 19, 10] uses a binary indexed tree of
partial sums that is equivalent to our data structure as an intermediate
representation in the first (up-sweep) phase of the algorithm. However,



the second (down-sweep) phase of the computation discards the tree
in favour of the summed area table. Fenwick [8], apparently unaware
of the previous work on parallel prefix sums, was the first to propose a
tree of partial sums as the actual data structure, instead of using it only
as an intermediate result. Commonly referred to as Fenwick trees, the
data structure allows for prefix sums and data updates in logarithmic
time. To the best of our knowledge, we are the first to describe a GPU
implementation of a spatial index data structure that uses a Fenwick
tree as the underlying primitive.

Contributions. We provide an extensive asymptotic analysis of the
memory- and run-time requirements for the general d-dimensional
case. We furthermore show that point queries can be performed in
constant time on average, a result that to the best of our knowledge
has not been documented before. We also provide a specialized imple-
mentation that is optimized for the important case of block-sparse data
representations on the GPU. We report run-time and memory require-
ments of our highly practical implementation and we demonstrate that
this new data structure outperforms competing approaches in several
aspects and in several important scenarios.

2 RELATED WORK

Fenwick [8] proposed a novel binary indexed tree originally for the
efficient storage, update and retrieval of cumulative frequencies for
large symbol alphabets. However, the data structure proved to be
more general and was reused in many contexts. Mishra [18] presents
a d-dimensional extension of the binary index tree. We base our
work on these data structures and analyze their suitability as spatial
indexing data structure on the GPU. In the following we review other
GPU data structures suitable for spatial indexing, most notably spatial
hashing, summed area tables, histogram pyramids, and octrees.

Spatial Hashing. Lefebvre and Hoppe [16] propose to use perfect
spatial hashing to efficiently encode non-empty data locations for
computer graphics applications. While they guarantee O(1) access
and very low storage requirements (for low fill density), the construc-
tion of the hash is expensive. Furthermore, unconstrained access, i.e,
access that allows for the identification of empty data not stored in
the table, requires additional storage and implementation overhead.
Garcı́a et al. [9] improve on the data coherence and construction
speed of spatial hashing by utilizing coherent hash functions and
parallel construction on a GPU. They also offer unconstrained access,
but this comes at the cost of storing key,value pairs, a significant
memory overhead that seems only feasible for very low fill densities.
This is further aggravated by the fact that a key age is stored in an
additional 4 bits to allow for fast unconstrained access. In contrast
to hashes, Fenwick trees natively offer unconstrained access. Being
a compact yet dense representation, Fenwick trees are fill-agnostic.
Therefore, they cope with high fill densities extremely well. For
instance, hashing a 81922 image requires 30 bits per non-empty entry.
This includes 26 bits to store the key or pixel position plus 4 age bits.
In contrast, a Fenwick tree would require 16MB (1d) or 24MB (2d).
This means that a Fenwick tree is at least as compact as the hash if
6.67% (1d) or 10.0% (2d) or more of the entries are non-empty. Note
that for larger images or higher fill ratios, the break-even point shifts
further to the advantage of Fenwick trees.

Summed Area Tables. Crow [5] introduced summed area tables for
efficient texture mapping and filtering. Today, they are used in many
contexts to quickly compute the sum of all elements in a rectangular
sub-space. Blelloch [2, 3] describes efficient parallel implementations
of prefix scans, a closely related problem. Sengupta et al. [19],
and Harris et al. [10] present GPU-based implementations that
construct the summed area tables in parallel and in a work efficient
manner. Hensley et al. [11] show real-time graphics applications
using summed area tables. The benefits of summed area tables are (i)
very fast access times and (ii) summed area computations. However,
the update of a summed area table is expensive, since, essentially, it
needs to be rebuilt from scratch. An even more important drawback

of summed area tables in the context of large data visualization is
their memory inefficiency that stems from the need to store very large
numbers to represent the cumulative sums.

Histogram Pyramids. Ziegler et al. [21] and Dyken et al. [7]
present Histogram Pyramids that are used to hierarchically represent
a histogram of non empty spatial regions. The data structure is used
for parallel stream compaction which produces a densely packed
output stream by omitting empty regions. This stream compaction
is used in applications such as real time point cloud generation as
well as iso-surface extraction using marching cubes. In contrast to
our approach Histogram Pyramids are over-complete in the sense that
they store more output elements than input elements. It is also worth
noting that unlike our data structure, histogram pyramids perform
strictly 1d prefix scans and cannot be used as a replacement for higher
dimensional summed area tables.

Hierarchical Space Partitioning. Benson and Davis present octree
textures [1] for storing sparse solid textures. Their approach uses a
sparse octree that represents colors at the intersections of nodes with a
surface model. Lefebvre [17] present a more recent implementation of
octree textures on the GPU. Octrees have been generalized to N3 trees,
in which each node holds pointers to its N3 children. Crassin et al. [4]
present a fast implementation of N3 trees that is used for voxel-based
ray casting of interfaces in large scenes. Labschüetz et al. [13] present
JiTTree, a hybrid data structure that subdivides the input domain into
regular bricks. For each brick, the memory-optimal data structure
is computed. The traversal code is just-in-time compiled to speed
up access times. We show that our data structure represents sparse
volumes with memory requirements similar to JiTTree. This could
make our data structure a good candidate for use in JiTTree’s hybrid
approach.

Adaptive Texture Maps. Kraus et al. [12] propose a sparse data struc-
ture in which an input image or volume is decomposed into bricks. To
retrieve the bricks, an array of indices is stored verbatim. While the
data structure is fast due to the fact that it needs only one memory in-
direction, maintaining a large amount of non-empty bricks results in a
logarithmic storage overhead per index in the amount of bricks, similar
to the memory requirements of summed area tables. This may result in
a difficult tradeoff between the amount of bricks used to represent the
data (and thus, the memory overhead) and the ability to discard large
empty regions.

3 METHODOLOGY

In this section, we will first review the concept behind the 1d binary
index trees presented first by Fenwick [8]. We will then provide a
generalization to higher dimensions similar to [18], followed by an
asymptotic analysis of both run-time and space complexity.

3.1 Review of Fenwick Trees
Fenwick trees [8] are binary index trees that allow for efficient updates
and prefix computations in logarithmic time, and point queries in
constant time. This is achieved by storing partial prefix sums across
all scales. In what follows, we present a variation of the original
Fenwick tree description. Unlike the original publication that treats
the 0th data entry specially to mitigate 1-based counting of data
elements, we treat all input data in the same fashion. This has several
benefits, and, most importantly, it exposes a previously unnoticed
close relation between the Fenwick tree construction and the lifting
scheme for wavelets [20, 6].

Notation. Throughout this paper we will use the following notation.

d : the spatial dimensionality of the data
N : amount of data values along each axis
K : the amount of non-empty data values (fill)

ρ : fill density, ρ = K/Nd



For instance, a 10243 volume with 32M non-zeros will have
N = 1024, d = 3, K = 32M, and ρ = 1/32.

We define the kth (exclusive) prefix of x as

p(x,k) :=
k−1

∑
i=0

xi, (1)

where x := {xi}n−1
i=0 ∈ Nn

0 is the input data consisting of non-negative
integers.

3.1.1 Construction

Following the wavelet lifting idea [20, 6] as illustrated in Fig. 2, we
split the sequence of input data elements xi into even and odd posi-
tions. Data elements at even positions are stored verbatim in the final
Fenwick tree. Data elements at odd positions are lifted to the next level
by adding their even predecessor. The new level (odd+even elements)
consists of half the elements of the previous level and is the new input
to the recursive lifting scheme. The result is a hierarchical represen-
tation of partial sums. Figure 3 provides an exemplary Fenwick tree
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Fig. 2. Lifting scheme of the Fenwick tree (top) and, for comparison,
the lifting scheme of the Haar Wavelet (bottom). The two schemes dif-
fer in their prediction (P) and update (U) steps. This results in range
expansion and increased storage requirements for even elements xe in
the Haar Wavelet when compared to the Fenwick tree

construction. The top row shows an example of 1d input data. Each
element consists of a value (top of rounded rectangle) and a range of
indices that were summed up in this element (bottom of rounded rect-
angle). The second row shows the first partial sums. Odd elements are
lifted to the next level (the third row in Fig. 3). This process is repeated
recursively until only one element is left that contains the sum of all
elements.

Algorithm 1 provides pseudo-code for a linear time, sequential con-
struction of a 1d Fenwick Tree.

Algorithm 1 Fenwick Tree Construction (in-place)
procedure FWTBUILD(x) . x := (x0, . . . ,xn−1)

s← 2 . stride
i0← 1 . start position
while i0 < n do . iterate levels

for i = i0 . . . ,n−1 step s do
xi← xi + xi−1 . update odd positions

end for
i0← i0 + s . update start position
s← 2s . update stride

end while
return x

end procedure
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Fig. 3. Iterative construction of a 1d Fenwick Tree. Even elements are
copied verbatim to the next level, whereas at odd positions, even and
odd elements are added. Each node shows the data value at the top
and the range of the partial sum at the bottom.

The resulting tree is a full binary tree. It is typically stored implic-
itly in an array whose length is equal to the input array. However, for
our optimized GPU implementation we will later describe how the
construction is done in parallel and the levels are stored separately for
better memory efficiency.

3.1.2 Prefix Sum

To compute a prefix sum of a Fenwick Tree, the partial sums in the
tree are accumulated. An example is illustrated in Fig. 4. To keep our
description consistent with the pseudo code listed in Alg. 2 and the
actual implementation, we illustrate the computation of the exclusive
prefix sum for element i= 7 (which is equivalent to the inclusive prefix
sum of element i = 6). Fig. 4 shows the traversal that starts at element
i = 6 and traverses the tree, summing up elements x6, x5, and x3.

The series of indices (6,5,3 in the example of Fig. 4) that is nec-
essary to traverse the tree is efficiently computed using bit arithmetic
on the query address (7 in the example of Fig. 4). To describe the
arithmetic of the traversal we define the two operations, flip1(x), that
flips the least significant (l.s.) 1-bit of a binary string x, and flip0(x)
that flips the least significant 0-bit of a binary string x. For example,
flip1(10110b) = 10100b and flip0(10110b) = 10111b. Using the flip1
operation, we provide pseudo-code for the exclusive prefix computa-
tion in Alg. 2.

In the example of Fig. 4, k initially equals 7, first adding x6 to
the accumulation register. k equals to (00111b) in binary form.
flip1(00111b) produces (00110b) which sets the index to k = 6. The
next iteration adds x5 to the accumulation register and sets k = 4 by
executing the bit arithmetic flip1(00100b). In the third iteration x3 is
added to the accumulation register and k gets set to 0, which terminates
the prefix sum computation.

Algorithm 2 Fenwick Tree Exclusive Prefix
procedure FWTPREFIX(x,k) . prefix of xk

α ← 0 . accumulation register
while k > 0 do

α ← α + xk−1 . accumulate contribution
k← flip1(k) . clear k’s l.s. 1-bit

end while
return α

end procedure
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Fig. 4. Exclusive prefix computation on a 1d Fenwick Tree. Using bit
arithmetics of the prefix position (in this example, 7 = 0111b) results in
three terms to be added, (x6 = 2,x5 = 10,x3 = 16), one for each set bit in
the prefix position.

3.1.3 Point Query
A point query q(x,k) at index k is the difference of two adjacent ex-
clusive prefix computations q(x,k) = p(x,k+1)− p(x,k). It is easily
seen that the computation of the two exclusive prefix sums p(x,k+1)
and p(x,k), share partial sums which after the subtraction cancel each
other out. For point queries, the two adjacent prefix computations thus
do not need to be computed entirely but only up to the partial sums that
cancel each other. Fig. 5 illustrates the paths that are taken to compute
a point query at index k = 5. The adjacent prefix sum computations
both reach the node with index 3 (with value 16 = ∑

3
i=0 xi) which ends

the traversal.

Algorithm 3 Fenwick Tree Point Query
procedure FWTVALUE(x,k) . value xk

l← k+1 . prefixes k, l := k+1
α ← 0 . accumulation register
while l > 0 and k 6= l do . early out for k = l

α ← α + xl−1− xk−1 . difference of prefix
k← flip1(k) . clear k’s l.s. 1-bit
l← flip1(l) . clear l’s l.s. 1-bit

end while
return α

end procedure
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Fig. 5. A point query is a difference of adjacent prefixes. As soon as the
paths of these prefixes reach the same node, the result is finalized.

At this point, the remaining contributions of the two prefix sums
are equal and will cancel each other out. The omitted computation of
adjacent partial sums of Fenwick trees has a profound impact on the

performance of point queries. The average point query requires look-
ups of only 2 elements on average. The corresponding pseudo-code is
provided in Alg. 3.

3.1.4 Updates

One of the remarkable properties of Fenwick Trees are efficient up-
dates. Fig. 6 shows an update of element 0 from value 1 to a new
value of 5. In Fig. 6 the update (+4) needs to be propagated to all
elements that contain element 0 in their partial sum.

In contrast to prefix sum computations which reset the l.s. 1-bits
in the query position, updates compute their position by flipping l.s.
0-bits. Algorithm 4 provides the matching pseudo-code. Note that if
a differential update is performed (e.g., incrementing or decrement-
ing), the differential update value of ∆ in Alg. 4 is known and a trivial
optimization is to skip the initial point query fwtValue(x,k).

Since each entry in the Fenwick Tree is a partial backward sum,
updates need to be propagated forward in the tree.

Algorithm 4 Fenwick Tree Point Update
procedure FWTUPDATE(x,k,y) . xk← y

∆← y−fwtValue(x,k) . differential update value
while k < n do

xk← xk +∆ . update xk
k← flip0(k) . set k’s l.s. 0-bit

end while
end procedure
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Fig. 6. Updates have to be propagated forward, since the Fenwick tree
stores backwards partial sums. Depicted is an update of position 0 from
an old value of 1 to a new value of 5. The difference of 5−1 = 4 is added
to all nodes containing position 0 in their partial sum.

3.2 Generalization

Generalization to higher dimensions is performed using binary
indexed trees of binary indexed trees [18]. The easiest way to under-
stand the concept is to consider practical storage layouts that arise if
all nodes of one level are packed tightly together. Figure 7 depicts the
layout for the 1d case and a Fenwick tree of 192 (bit-)elements. Level
Li stores 2−i−1N verbatim data values, where N is the total amount of
input data values.
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Fig. 7. 1d storage layout of a 192-element Fenwick tree. Level L0 con-
tains 96×1 bit, L1 48×2 bit etc. For practical reasons, we pad elements
per level tightly while aligning each level to 32 bits (gray-blue).

In contrast, for two and more dimensions, multiple level indices are
used to refer to reductions along each axis. For two dimensions, the
storage layout resembles a RIPMap [15] and is depicted in Figure 8.
Generally, a level Li j stores the sum of (2iN)× (2 jN) data values and
there are (2−i−1N)× (2− j−1) elements in level Li j. It is interesting to
note that certain levels store the exact same amount of elements, which
are sums of the exact same amount of data values. To formalize this,
we introduce the concept of a sum-of-levels λ (Li j) := i+ j (the same
concept is also valid for higher dimensions). All levels sharing the
same sum-of-levels λ obviously contain the same amount of elements
and sum over the same amount of data values. In what follows, we
will call such levels similar. One important quantity for the analysis
of generalized Fenwick trees in d dimensions is the amount of such
similar levels. From the sum-of-levels concept it follows that for each
λ , the amount of similar levels can be computed using a composition
of ` by d integers picked from {0, . . . ,λ}. Formally, this composition
is defined as

comp(λ ,d) :=
(

λ +d−1
d−1

)
, (2)

where the offset of −1 in the binomial coefficient stems from the fact
that we allow 0 as an element in the composition. Similar levels use
the same shade in Figure 8.

The algorithms presented in Section 3.1 can be generalized by nest-
ing while loops for each added dimension. The kth such loop scans
the kth component of the d-dimensional address.
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Fig. 8. 2d storage layout. Level L00 stores (N/2)× (N/2) single data
values, L10 N/2×N/4 sums of 2×1 data values, and, in general, level Li j
stores (2−i−1N)× (2− j−1N) elements, each of which is a sum of 2i× 2 j

data values.

3.3 Asymptotic Analysis
For this asymptotic analysis, we will assume an input data set of suffi-
ciently large, finite size N, in which each element is stored using b bits.

Memory Complexity. The finest level L0 will store N/2 values each
at exactly b bits. Each of these values is in the range [0,2b− 1]. The
next level will store N/4 sums of two such b-bit elements, resulting
in a range of [0,2b+1− 2], and so forth, with the N/2`+1 elements of
the `th level occupying a range of [0,2b+`−2`]. If fractional bits can
be stored efficiently, each data element at level ` therefore requires
log2(2

b+` − 2` + 1) bits, resulting in the following equation for the
total amount of bits per element.

Mtheo(b) =
∞

∑
`=0

log2
(
2b+`−2`+1

)
2`+1 (3)

Practical implementations may choose to not store fractional bits and
instead round to the nearest full bit. This results in a storage cost of

Mprac(b) =
∞

∑
`=0

b+ `

2`+1 = b+1. (4)

To the best of our knowledge, Eq. 3 has no closed form solution and
has to be solved numerically.

For higher dimensions d, we use the sum-of-levels concept in-
troduced in Subsection 3.2. Each sum-of-levels λ instance contains
N/2d+λ data elements. Each data element stores a value in the range
[0,2λ (2b−1)]. In total, there are

comp(λ ,d) =
(

λ +d−1
d−1

)
(5)

instances of sum-of-levels λ blocks. Combined, this amounts to

Mtheo(b,d) =
∞

∑
λ=0

comp(λ ,d)
log2

(
2λ+b−2λ +1

)
2d+λ

. (6)

Practical implementations that round up fractional bits in Eq. 6 will
achieve

Mprac(b,d) =
∞

∑
λ=0

comp(λ ,d)
λ +b+1

2d+λ
= b+d (7)

bits per element. Again, to the best of our knowledge, Eq. 6 has to be
solved numerically.

Table 1 compares theoretical and practical memory consumption
per element for common combinations of data dimensionality d and
input bit rate b. In contrast to summed area tables, which essentially
require O

(
logd

2(N)
)

bits per data element, Fenwick trees correspond

to substantial savings in memory requirements—a O(1) memory con-
sumption is basically offset by one additional bit per dimension. Ta-
ble 2 lists the relative difference in percent between practical and the-
oretical memory consumption per element. As can be seen, practical
implementations that chose to round up fractional bit rates will lose at
most about 21%.

Table 1. Bitrate as a function of data dimensionality d and input bit rate
b. The first number corresponds to the theoretical bitrate Mtheo(b,d)
(Eq. 6), rounded to three digits, whereas the number in parentheses
corresponds to the precise bit rate of a practical implementation without
fractional bit allocation Mprac(b,d) (Eq. 7).

d = 1 d = 2 d = 3 d = 4
b = 1 1.701 (2) 2.487 (3) 3.335 (4) 4.219 (5)
b = 2 2.867 (3) 3.776 (4) 4.713 (5) 5.659 (6)
b = 4 4.969 (4) 5.948 (6) 6.933 (7) 7.910 (8)
b = 8 8.998 (9) 9.997 (10) 10.99 (11) 11.972 (12)

b = 16 16.999 (17) 17.999 (18) 18.995 (19) 19.977 (20)



Table 2. Relative difference between Mtheo(b,d) and Mprac(b,d) in per-
cent and rounded to two digits (also known as slack ). As can be seen,
for the most common combinations of dimensionality d and input bit rate
b, the slack is at most about 21%.

d = 1 d = 2 d = 3 d = 4
b = 1 17.59% 20.61% 19.93% 18.50%
b = 2 4.62% 5.92% 6.10% 6.03%
b = 4 0.62% 0.87% 0.97% 1.13%
b = 8 0.02% 0.03% 0.06% 0.19%
b = 16 <0.01% 0.02% 0.02% 0.12%

Run-time complexity. Using the lifting concept borrowed from
wavelet theory, construction of d-dimensional Fenwick trees is in
O(Nd). Updates and prefixes are in O(2d logd

2(N)) in the average and
worst-case, as observed by [18]. Point queries, however, are in O(1)
on average. To see this, we would like to refer the reader back to Algo-
rithm 3 and Figure 5. The 1d algorithm essentially scans the address
from the least significant bit to the most significant bit. It terminates
at the least significant 0-bit. For data in which each data dimension
is a power-of-two 2L, the L least-significant bits of a random address
are uniformly distributed. Therefore, there is a chance of 0.5 for the
algorithm to terminate with a single memory fetch, a chance of 0.52

to terminate after two memory fetches and so forth. In the limit, we
therefore obtain

Rpoint = lim
L→∞

L

∑
i=0

i+1
2i+1 = 2 ∈ O(1). (8)

For non-power-of-two data dimensions, a 0 bit is generally more likely
to occur in a valid address, maintaining the O(1) complexity of point
queries even for those domains. For higher dimensions d, the address
vector is scanned in the same fashion for each dimension, resulting in
a recursion of the form

Rpoint(1) = 2

Rpoint(d) = lim
Ld→∞

Ld

∑
i=0

[
i+1
2i +1

Rpoint(d−1)
]
= 2d ∈ O(2d), (9)

which is constant in the amount of data N.
The worst-case complexity is still in O(2d logd

2(N)), but as we
will show in Section 6, constant-time point-queries can be observed
in practice even under the GPU’s massively parallel computation
paradigm in which threads executing faster queries may have to wait
on those performing slower queries.

Since fast point queries can be fused with the logarithmic prefix
computations, Fenwick trees are well-suited for unconstrained access
on binary occupancy data—empty cells or bricks can be determined
in constant time, allowing for, e.g., fast brick-based empty space skip-
ping, whereas retrieving the data for a occupied cell or brick can still
be achieved in logarithmic time.

4 PROPERTIES OF THE DATA STRUCTURE

In this section, we will discuss the most important properties of this
data structure.

Fill-Agnostic. We are mostly concerned with data for which K� Nd

since in these cases the data can be stored more efficiently than in a
dense array. However, we also show that our data structure is fill-
agnostic and provides good results for any fill density ρ . The prop-
erty fill-agnostic is beneficial for practical applications since it makes
the memory requirements for the spatial indexing data structure pre-
dictable. Other index data structures (most noteworthy spatial hashing)
are typically not fill-agnostic. Although it is more likely for most data
structures to become small in memory for small ρ , it is not guaran-
teed at all. Many data structures rely on an uneven distribution of data

values (dense clusters in an otherwise mostly empty space) to success-
fully scale. Construction of these data structures on the GPU therefore
might fail for data sets that happen to have unsuitable properties. One
of the biggest problems with these data structures is the unpredictable
memory consumption. The only way to find out if a non-fill-agnostic
data structure can be constructed for a specific data set is to actually
attempt the construction.

A fill-agnostic data structure can guarantee its memory require-
ments beforehand and the success of the construction is therefore
predictable.

Unconstrained Access. Constrained access means that the result of a
point query at an empty position is undefined.

In contrast unconstrained access means that point queries at arbi-
trary positions return the correct result. In general any data structure
with constrained access can trivially be extended by adding 1 bit of
occupancy data per index. However, this results in additional storage
and a runtime overhead. Our data structure allows unconstrained
access without additional occupancy storage.

Constant Number of Elements. Our data structure is constant in
the number of elements, which means that the resulting tree indexes
the same number of elements as the input sequence had non-zero
elements.

Compactable. Since each level of our data structure results in a
predictable number of bits the bit stream can be compacted. In
contrast data structures with unpredictable sizes of elements or bit
count cannot be further compacted, which sometimes results in slack
or waste of storage.

Payload-Agnostic. The data structure does (like most spatial indexing
data structures) support any kind of payload. One of the advantages
of a payload-agnostic data structure is its versatility and therefore the
reduced implementation effort when multiple kinds of data types need
to be supported.

5 GPU-BASED IMPLEMENTATION

We have implemented our data structure on the GPU using OpenGL
Compute Shaders using the 4.50 core profile.

Construction. The key observation is that sub-trees of the Fenwick
tree can be built in parallel, resulting in a truncated tree. We can
therefore generate an arbitrary amount of the levels of the tree in
parallel, synchronize, and continue building the remainder of the
tree in the next pass. This is important when 1-bit occupancy data
(block or cell occupy or empty) are concerned, since we would like
the output bit stream to be packed as tightly as possible to keep the
memory footpring small. Any parallel implementation has thus to
ensure that concurrent threads access only mutually exclusive parts
of the stream, or they have to resort to expensive synchronization
operations.

Considering the aforementioned constraints, we chose to split
the total work in two asymmetric compute shaders, which we call
reduce-by-256 and reduce-by-8. The first one takes tightly packed
bits in an unsigned integer Shader Storage Buffer Object (SSBO) as
input, and it generates the first eight levels of the tree as an output.
Starting with 1-bit values in the nodes at level 0 of the tree, entries
at level 1 range from 0 . . .2, at level 2 from 0 . . .4, and, generally, at
level L from 0 . . .2L. While these values could be packed tighter using
fractional bits, for practical reasons we allocate (L+1) bits to each of
them and store them tightly packed as (L+1)-bit values into an output
SSBO. In contrast, each level is aligned to the next unsigned integer.
Each invocation of this shader consumes 4096 bits of the input stream
(128 bytes), with 32 invocations forming a local work group. To store
intermediate results, each local work group uses 16KB = 32× 512
bytes of shared local memory, which provides each invocation with



512 bytes (128 unsigned integers) for exclusive use. Each invocation
thus outputs L0 : 2048× 1bit, L1 : 1024× 2bits, . . . , L7 : 16× 8bits
output bits, which are all 32-bit aligned. The unprocessed result is
stored at a 32-bit alignment in a carry SSBO comprising 1/8th of the
size of the original (N/256× 32bits, where N is the amount of input
bits) and it is used as input for subsequent passes.

The reduce-by-8 shader reads, per invocation, 256 unsigned
integers from the carry buffer and outputs tightly packed k-bit values,
where k is the current level of the tree plus one. It emits 128,64,32
values, and, therefore, maintains 32-bit alignment as well. Again,
128 unsigned integers of shared local memory are used by each
invocation, resulting in 16KB for each local work group. In this local
memory, values are stored as 32-bit aligned unsigned integers to avoid
the costly bit arithmetics of the reduce-by-256 shader. This shader
is repeated until the full tree is constructed. SSBO barriers are used
between any of the passes to ensure coherent state of the input and
output buffers.

The particular choice of reducing the data 256:1 in a first pass and
then continuing with 8:1 reductions are motivated as follows. Starting
with the full-size occupancy volume, memory footprint considerations
are of utmost importance. Using 16K of local memory (and 48K of
local memory as cache), the reduce-by-256 pass starts with as much
work as fits into the limited local memory and performs as much
reduction as possible without the need to either synchronize adjacent
workgroups or pad to 32bit alignment. The reduce-by-8 passes then
use a 32bit aligned data values, and we reduce by as many levels
as we can without using 32× parallelism in a workgroup using the
limited local memory. Future architectures may choose the size of
these reduction passes differently, but we found that our approach
benefits of the larger cache, as opposed to 48K local memory and 16K
cache.

Computing the memory optimal instance. We search for the most
memory efficient instance of our data structure by computing the
memory requirements for different brick sizes. We first construct an
binary occupancy volume storing a value of 1 if a voxel is occupied
and a value of 0 if a voxel is empty. We then brick this volume
using a set of candidate brick sizes by performing a reduction with a
logical OR operator inside each brick. The brick size candidates are
power-of-two numbers, for which 1 voxel is used as padding in either
dimension. For instance a brick size of 43 results in bricks that carry a
payload of 33 voxels. The memory requirement for the Fenwick tree
follows trivially from the brick size. The size of the payload (i.e., the
contents of the non-empty bricks) is computed separately for each
brick size using the reduced occupancy volume. Generally, smaller
brick sizes lead to a better approximation of the empty space and
allow for the rejection of more bricks. However, the index overhead
gets larger for smaller bricks, since more nodes of the Fenwick tree
are required. Further, the overhead for the padding of bricks becomes
larger relative to small brick sizes.

Reconstruction. The GPU based implementation of the recon-
struction and the prefix sum make use of hardware accelerated bit-
operations. The flip0(·) and flip1(·) operation are implemented using
the optimized GLSL function findLSB().

6 RESULTS

We tested our implementation on a workstation equipped with a dual
Xeon E5-2680 clocked at 2.70GHz and running Windows 7. The sys-
tem was equipped with 64GB of RAM and a single NVIDIA GeForce
Titan Black.

Figure 9 provides a stacked bar plot of the time in ms taken to con-
struct full Fenwick trees of various sizes. We show the time taken by
the fist reduce-by-256 pass, as well as subsequent reduce-by-8 passes.
The reduce-by-256 pass processes input bits in a packed alignment,
thereby minimizing the memory footprint. While it is reasonably opti-
mized for speed, it performs involved bit arithmetic to compute the

first 8 levels of the tree. It is therefore slower than the following
reduce-by-8 pass, which operates on k-bit values aligned to 32bit un-
signed integers, but maintaining compact storage has high priority in
this stage. The expense of the luxury of 32 bit alignment is that we re-
quire a temporary carry buffer comprising 1/8th the size of the input
buffer. The input sizes were chosen to be power-of-two fractions and
multiples of 11.25Mbit, which corresponds to the amount of work that
the 2,880 cores of our GPU can perform in parallel. For this experi-
ment, our input is an array consisting of 1bit occupancy values.
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Fig. 9. Time to build full Fenwick trees of different input sizes on the
GPU. We show both the time in ms for the first reduce-by-256 pass
(dark) and the subsequent reduce-by-8 passes stacked on top.

We also measured the time required to reconstruct the full binary
input occupancy volume from Fenwick trees of various sizes. For this,
we chose a size of 256 invocations per local work group. Figure 10
provides a plot of the amount of point queries that can be performed
per second as a function of the input data size. The average-case
asymptotic cost of each point query is in O(1), but the worst-case
complexity is in O(log2 N), where N is the input data size. Despite
the GPU’s computation model, which may force invocations which
terminate early to wait on invocations with higher computational load,
the benefits of our average O(1) point query complexity are obvious
for reasonably large input data sets, for which we achieve up to 22.4
billion point queries per second. Also shown is a naı̈ve O (log2(N))
implementation that computes the difference of two prefixes. Its per-
formance decreases as expected when data size increases—1.38 billion
point queries per second for 2.88Mbit of data (log2(N) = 22) and only
1.18 billion per second for 184.3Mbit of data (log2(N) = 28).
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Fig. 10. Time to reconstruct a full binary occupancy volume from the
Fenwick tree on the GPU. We show billion point queries over the input
data size. Dark green: our O(1) point query algorithm. Light green:
naı̈ve O (log2(N)).

Finally, we evaluate the performance of a bricked volume renderer
equipped with our data structure. We first classify noise in the volume
by thresholding. Then, we build a full resolution, binary occupancy
volume and subsample this occupancy volume to match a sequence
of pre-selected brick sizes. Subsampling in this context is performed
using a logical OR operation. Our renderer uses a payload of 2k− 1
for each brick, plus one voxel padding to facilitate proper trilinear



interpolation. Each brick thus comprises 2k × 2k × 2k voxels. We
compute the storage requirements for each brick choice k = 0, . . . ,8,
and select the brick size minimizing our storage requirements. Each
brick is then stored in a 3D texture atlas. A GPU-based Fenwick
tree is computed from the occupancy volume corresponding to the
optimal brick size. After uploading the data thus obtained to the
GPU, we measured times to render a wide range of volumetric
data sets, including medical (CT and MRI) and industrial CT data
sets of various sizes. Table 3 summarizes the data sets used in this
paper and our findings. For each data set, we measured the time to
render (a) Phong-lit isosurfaces and (b) semi-transparent structures
from our bricked representation. For both cases, we rendered to a
1024× 768 view port, and we used a raymarching step size of 0.25
voxel diagonals. For semi-transparent renderings, we did not use any
early ray termination, but brick-based empty-space skipping was used.
We then repeated the experiment using a naı̈ve volume renderer with
the same parameters. As can be seen from Table 3, the compression
ratio for some data sets can be significant, ranging from 1.39:1 up
to 40.25:1. These figures include the slack introduced by the brick
padding. While using our brick-based volume renderer that stores
brick indices in a Fenwick tree comes at a cost, we would like to
note that any bricked volume renderer necessarily has a performance
overhead over naı̈ve implementations, including the need to perform
exact ray-brick intersections and retrieving the bricks from the texture
atlas. It is generally accepted that this cost is more than compensated
for by the benefits, such as the ability to scale to larger volume sizes.

For isosurface extraction, our method was faster than a naı̈ve ap-
proach on the majority of the data sets. The reason is that, in these
data sets, bricks are fairly large and the isosurface is spatially coher-
ent. The overhead of our data structure is therefore more than com-
pensated for by the ability to efficiently skip empty regions in the data.
For semi-transparent rendering, the traversal cost of our data structure
becomes more pronounced, but we still achieve a better performance
than a naı̈ve implementation for half of the data sets in our reposi-
tory. We would like to particularly note the case of the Vessel data set,
which due to its massive amount of small and intricate structures poses
a challenge for less memory efficient bricking data structures. For this
data set, we observe very good performance for semi-transparent ren-
dering when compared to naı̈ve approaches. However, isosurface re-
construction is a lot worse. We believe this is caused by severe loss of
ray coherence, which results in GPU threads of the same workgroup
performing drastically different work loads.

6.1 Future Work
GPU-based Fenwick trees are a powerful and versatile data structure,
in part due to the hitherto undocumented constant run-time of the point
query operation and their close relation to the (unnormalized) Haar
wavelet basis, which seems to have gone unnoticed in the past. In this
work, we exploited this relation by constructing Fenwick trees using
a lifting scheme, which avoids the majority of the implementation
hassle otherwise arising from non-power-of-two dimensions.

In the future, we would like to generalize this—and other—related
data structures by using a simple algebraic framework. In particu-
lar, we can consider pre-computation of summed area tables, Fen-
wick trees, orthogonal wavelets and potentially other data structures
in terms of a linear transform

y := A x, (10)

where x ∈ Rn is an input data vector, and A ∈ Rn×n is a non-singular
matrix. Computing a prefix then becomes equivalent to evaluating the
following equation during run-time.

prefix(x,k) = (1, . . . ,1︸ ︷︷ ︸
k×1

,0, . . . ,0)A −1y := pkA
−1y. (11)

Clearly, for summed area tables pkA
−1 = êk (the kth standard

unit vector), offering optimal asymptotic prefix computation speed,

whereas for Fenwick trees, each column of A −1 has a logarithmic
amount of non-zero entries on average. Using this framework, we will
explore operations more complex than prefixes that are of practical
relevance in our community. In particular, if an orthogonal, discrete
wavelet basis with m vanishing moments is used for the reconstruction
matrix A −1, any vector v whose components sample a polynomial of
degree m or less should have an efficient run-time evaluation v ·A −1.
This would allow for generalizations of summed area tables. Summed
area tables allow for integration over rectangular domains, whereas,
using wavelets, it would become possible to integrate the product of
data and a polynomial kernel over a rectangular domain. This could
have applications in texture filtering and selective blurring as it arises,
e.g., in rendering depth of field.
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Fig. 11. Transformation between Fenwick tree coefficients and a (un-
normalized) Haar basis.

Fenwick trees can also be transformed into a (unnormalized) Haar
wavelet basis by the simple prediction and scaling depicted in Fig. 11.
This could enable even more efficient storage on disk by performing
run-length encoding of the sparse wavelet-domain representation of
the input data.

Another venue for future research is to analyze the application of
Fenwick trees to compute prefix scans of floating point data, which
were beyond the scope of this paper due to the intricacies rounding
errors introduce into the analysis.

Finally, we would like to note that our brick-sparse volume repre-
sentation could be easily altered to allow for construction of data being
streamed onto the GPU, thus avoiding the need to store the full occu-
pancy volume and/or data volume on the GPU at any time.

7 CONCLUSION

In this paper we presented a versatile GPU data structure based on
Fenwick trees. We have provided an extensive theoretical analysis
of the proposed data structure, combined with notes on its practical
implementation and a performance evaluation. We have furthermore
outlined the proposed data structures use for bricked sparse represen-
tation of volumetric data sets, which we believe has the potential to
have high impact.
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Table 3. Data sets used in this paper. For each data set, the first column provides a representative picture plus the log-histogram. We then provide
name, resolution, and range R for each data set. Next listed is the threshold τ used to classify noise in the data (noise is colored green in the
histogram, and is defined as data values x ≤ τ), followed by the fill ratio ρ of the input volume (top) and the fill after bricking (bottom). Next are
the optimal block size for reducing the size of the volume in GPU memory as much as possible, followed by the size of the Fenwick tree and the
overall compression ratio achieved by our approach. We finally list average rendering performance in milliseconds for our approach and a naı̈ve
unbricked volume renderer, both rendering to a 1024×768 view port and both using a step size of 0.25 voxel diagonals (top: extraction of a single,
Phong-lit isosurface at τ, bottom: semi-transparent rendering without opacity-based early ray termination). Note that the compression ratio includes
overhead due to a 1-voxel padding for each block and that exact brick-intersections are included in the timings for our method.

Dataset Description Fenwick Tree parameters Rendering Performance

τ ρ bricks size ratio with FWT w/o FWT

Aneurysm 0.43% 31.05ms 25.15ms

512×512×512 704 ⇓ 33 1.19MB 40.25:1

R = [0 . . .3000] 0.85% 30.12ms 21.83ms

Angiography 0.49% 8.83ms 13.98ms

416×512×112 160 ⇓ 33 220.5KB 16.73:1

R = [0 . . .685] 2.27% 9.74ms 10.33ms

Backpack 21.7% 5.09ms 7.18ms

416×512×373 50 ⇓ 73 72.23KB 1.39:1

R = [0 . . .4071] 46.4% 18.18ms 9.73ms

Bonsai 10.4% 4.09ms 2.79ms

256×256×256 37 ⇓ 73 12.39KB 3.30:1

R = [0 . . .255] 19.4% 4.52ms 2.71ms

King Snake 43.7% 10.03ms 15.11ms

1024×1024×795 10150 ⇓ 313 7.54KB 1.78:1

R = [0 . . .65535] 47.5% 15.11ms 26.46ms

Pawpawsaurus Campb. 10.6% 9.05ms 31.29ms

958×646×1088 24000 ⇓ 153 50.21KB 5.30:1

R = [0 . . .65535] 15.1% 25.07ms 35.07ms

Present 7.56% 6.74ms 7.17ms

492×492×442 280 ⇓ 73 78.80KB 3.75:1

R = [0 . . .4095] 17.3% 14.87ms 10.18ms

Stag Beetle 4.06% 11.88ms 31.08ms

832×832×494 0 ⇓ 73 245.5K 13.19:1

R = [0 . . .4095] 5.01% 14.38ms 33.33ms

Vessel 2.50% 970.86ms 943.39ms

1024×1024×1024 30 ⇓ 33 9.54MB 4.72:1

R = [0 . . .255] 8.69% 77.58ms 387.60ms

Xmas Tree 1.67% 21.10ms 27.24ms

512×499×512 110 ⇓ 33 1.16MB 9.30:1

R = [0 . . .4095] 4.31% 27.38ms 24.58ms
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