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Fig. 1. Visual exploration of astrocytes. Our abstraction space panel (middle) allows users to intuitively navigate connectomics
datasets containing both neurons and astrocytes at different levels of abstraction. The two axes of the abstraction space correspond to
astrocytes and neurites, respectively, and range from concrete to abstract. The curve depicts the path taken during exploration, which
can also be animated. (a) 3D mesh of astrocyte and neurites; (b) semi-transparent mesh and skeleton of neurites, simplified skeleton of
astrocyte; (c) abstract node-link diagram of neurites, heat map of astrocyte proximity; (d) 3D nodes for neurites, skeleton of astrocyte.

Abstract—This paper presents Abstractocyte, a system for the visual analysis of astrocytes and their relation to neurons, in nanoscale
volumes of brain tissue. Astrocytes are glial cells, i.e., non-neuronal cells that support neurons and the nervous system. The study of
astrocytes has immense potential for understanding brain function. However, their complex and widely-branching structure requires
high-resolution electron microscopy imaging and makes visualization and analysis challenging. Furthermore, the structure and function
of astrocytes is very different from neurons, and therefore requires the development of new visualization and analysis tools. With
Abstractocyte, biologists can explore the morphology of astrocytes using various visual abstraction levels, while simultaneously
analyzing neighboring neurons and their connectivity. We define a novel, conceptual 2D abstraction space for jointly visualizing
astrocytes and neurons. Neuroscientists can choose a specific joint visualization as a point in this space. Interactively moving this point
allows them to smoothly transition between different abstraction levels in an intuitive manner. In contrast to simply switching between
different visualizations, this preserves the visual context and correlations throughout the transition. Users can smoothly navigate from
concrete, highly-detailed 3D views to simplified and abstracted 2D views. In addition to investigating astrocytes, neurons, and their
relationships, we enable the interactive analysis of the distribution of glycogen, which is of high importance to neuroscientists. We
describe the design of Abstractocyte, and present three case studies in which neuroscientists have successfully used our system to
assess astrocytic coverage of synapses, glycogen distribution in relation to synapses, and astrocytic-mitochondria coverage.

Index Terms—Connectomics, Neuroscience, Data Abstraction, Interactive 3D Visualization

1 INTRODUCTION

In recent years, connectomics and the study of the detailed neural
connectivity of the brain have become a main research focus in neu-
roscience. Scientists are looking at the mammalian brain at nanoscale
resolution to reconstruct individual nerve cell connectivity, and to shed
light on how the brain functions and develops. Interestingly, neurons
(i.e., nerve cells) only make up about 50 percent of all cells in the mam-
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malian brain [4]. The other half is made up by glial cells. These cells
are typically located in the vicinity of neurons and provide supporting
features for them. For example, they supply nutrients and oxygen,
provide insulation, and form myelin. Astrocytes are a subtype of glial
cells, which are crucial for regulating the transmission of electrical
impulses within the brain, and also act as glycogen stores to supply
neurons with energy. However, even though astrocytes are essential
for the brain to function, they have so far received relatively little
attention in connectomics research. One reason for this is probably
that astrocytes are difficult to study. For example, the morphology of
astrocytes is even more complex than that of neurons. Since they are
supporting structures in the brain, they inherently connect to everything,
making a detailed connectivity analysis complicated, if not impossible.
Furthermore, while neurons have well-defined subparts (e.g., axons,
dendrites, spines) that can be analyzed individually, astrocytes are much
less structured, making a detailed analysis of individual parts difficult.

Most visualization and analysis tools for connectomics have focused
on the synaptic connectivity of neurons, or on the overall structure
and morphology of neurons in the brain [1, 2, 7, 9, 34]. To our knowl-
edge, no visualization tool has tackled the analysis of astrocytes so far.
When looking at astrocytes, neuroscientists are not only interested in



the astrocytes themselves, but also in how they interact with nearby
neurons. Therefore, analysis tools should be able to highlight or in-
dicate connections or closeness of astrocytes to neurons at different
scales and levels of detail. For example, showing the entire astrocyte
in a high-resolution 3D rendering will lead to clutter and obstructed
views due to the highly complex morphology. However, a detailed
3D rendering might be the best choice when focusing on small details.
Furthermore, while neurons also have a branching morphology at the
microscopic level, at nanoscale resolution neurons are usually a lot less
tangled than astrocytes. Therefore, during the analysis, it is crucial to
be able to dynamically specify the level of detail that should be used in
the current visualization of astrocytes and neurons, respectively.

In this paper, we present Abstractocyte, a novel tool for the visual
exploration of astrocytes and neurons. We tackle the inherent data com-
plexity of nanoscale brain tissue by supporting a multitude of different
visualizations that display the data at different levels of abstraction.
Visualizations range from detailed 3D surface renderings of segmented
structures to simplified abstractions, e.g., skeletons and graphs. We
allow the abstraction of both entities (i.e., astrocytes and neurons) in-
dependently of each other. This is necessary because biologists need
to be able to explore both types of cells in combination, but often
at different levels of detail, e.g., a detailed mesh of a neurite with a
simplified skeleton of the astrocyte. We achieve this by presenting a
novel interaction interface that we refer to as an abstraction space (see
Fig. 1). This conceptual space allows users to intuitively explore the
space of possible abstractions. Furthermore, we support the analysis of
the glycogen distribution in astrocytes. Our collaborators are currently
investigating whether the glycogen distribution within an astrocyte is
correlated with factors such as the synapse strength of nearby neurons.
Therefore, we cluster and display the glycogen distribution, and map it
to structures of interest, e.g., to nearby synapses or mitochondria.

The main contribution of our work is the design and implementa-
tion of Abstractocyte, as a novel tool for the interactive visualization
of nanoscale astroglial cell morphology. We introduce an abstraction
metaphor that allows users to explore astrocytes in relation to their
surrounding neurons at different levels of visual abstraction, for astro-
cytes and neurons, respectively and independently. Abstractocyte also
supports the visual analysis of the detailed glycogen distribution and
neurite proximity of astrocytes. Furthermore, we demonstrate an intu-
itive and flexible user interface for exploring the 2D visual abstraction
space, which enables interactive and consistent transitioning between
2D and 3D visualizations. We illustrate the usefulness of Abstractocyte
in practice via three case studies from our collaborators in neuroscience.

2 RELATED WORK

Neuroscience and Connectomics. Connectomics aims to reconstruct
the detailed connectivity diagram of neurons in the brain using high-
resolution and high-throughput imaging [27]. The main goal is to
understand the relation between structure and function of the brain [31].
Visualization for Connectomics. Pfister et al. [30] give a survey of
different techniques for macro-, meso-, and microscale connectivity
visualization for connectomics. An overview of different frameworks
for visualizing the human connectome is given by Margulies et al. [28].

Most previous visualization tools for connectomics focus on high-
level connectivity visualization between entire brain regions. In these
frameworks actual cell morphology is typically abstracted, and the
focus lies on depicting the connectivity between regions or a network
of neurons. For example, NeuroMap [34] uses circuit wiring diagrams
to represent possible connections between neurons. Other tools for
high-level connectivity visualization make use of 2D projections for 3D
tractography data [21] , or use matrix visualizations for showing con-
nectivity information [29]. NodeTrix [38] is a system for the block-wise
(i.e., region of interest based) comparison of human brain networks.
Several toolkits have been developed for the visual analysis of brain
networks [17, 26]. All of these methods, however, focus on high-level
or macro-scale connectivity information between entire brain regions.
Our collaborators are interested in nanoscale brain morphology and
connectivity at the level of individual synapses. On a cell level, indi-
vidual neurons can be represented as nodes in a connectivity graph,

with synapses being the actual links between nodes. Examples for this
are shown in the Viking Viewer [3] and ConnectomeExplorer [7]. Sev-
eral tools allow users to define interactive queries for analyzing brain
connectivity data, such as BrainGazer [9] or ConnectomeExplorer [7].
None of these tools, however, support the visualization of astrocytes.
Astrocyte analysis and visualization. Braumann et al. [8] have intro-
duced an image processing chain to generate structural descriptions of
astrocytes based on graphs. They use confocal laser scanning data and
therefore work on the macro level. Suwannatat et al. [36] use confocal
microscopy and probabilistic segmentation to visualize astrocytes of the
retina. They use a glyph based visualization where individual glyphs
are scaled according to the uncertainty of the segmentation. More re-
cently, Calı̀ et al. [10] have used a CAVE for visualizing high-resolution
neuronal EM datasets. They also segment and render glycogen granules
using Blender and NeuroMorph [22]. None of these methods, however,
support an interactive exploration of the data in 3D with dynamically
changing levels of detail or abstraction.
Visual abstractions for biological structures. To analyze the con-
nectivity of individual neurons, Neurolines [2] introduces a visual
abstraction of neurites that reduces clutter and converts the 3D structure
of neurons into a 2D visualization. A different 2D abstraction of 3D
data was introduced by Borkin et al. [7] for the visualization of artery
trees for the diagnosis of heart disease. More generally, CPR (curved
planar reformation) [23] allows 3D tubular structures such as vessels to
be displayed in a 2D visualization with minimal loss of information. All
these methods focus on anatomical structures that can be represented
as trees or a collection of trees. However, the nanoscale morphological
structure of astrocytes is more difficult, and typically contains loops.
More recently, Smit et al. [32] used a topological similarity measure
and an abstract graph representation to visualize anatomical variations
in complex branching structures for educational purposes. Sorger et
al. [35] used visual abstractions for molecular visualization. They pro-
pose abstraction transforms for smooth transitions between different
visual models (e.g., different developmental phases of a virus).
2D selection/input panels. Kniss et al. [23] introduced multidimen-
sional transfer functions for GPU volume rendering. They also pro-
posed a 2D classification widget or panel that allows users to interac-
tively specify the transfer function mapping in 2D. A more general
concept of interactive UI sliders was recently presented by Tsandilas
et al. [37]. They propose a sketching interface for exploring multi-
dimensional datasets. Abstractocyte uses a panel that allows users to
interactively explore the abstraction space of possible visualizations.
Users can freely navigate within the 2D panel, and directly see their
current position in the abstraction space visualized in the main view.
Animated transitions between visual representations. Heer and
Robertson [19] have shown that animated transitions between different
statistical charts improves graphical perception. Elmqvist et al. [13] in-
troduce animated transitions for exploring multidimensional data with
scatterplots, using animated rotations in 3D space. More recently, Guil-
maine et al. [18] have presented four techniques for animating changes
in radial tree visualizations. Regarding volumetric data, Basch [5]
has investigated animated transitions across multiple dimensions, for
example, transitions between volume rendering and histogram views.
Zwan et al. [39] propose a technique for navigating between nested ab-
straction levels in volumes, using image-based halos and magic lenses.
They demonstrate their technique on a fluid flow visualization. In this
paper, we focus on smooth transitions between different abstraction
levels of volumetric biomedical data. The user can seamlessly switch
from highly detailed surface rendering to simplified views such as 3D
skeletons or 2D node-link diagrams.
Network layouts. Connectomics focuses on the connectivity of neu-
rons. Therefore, most visualization tools for connectomics include
network and graph visualization components. Node-link diagrams are
the most common form for representing the connectivity between brain
regions and/or individual neurons. If the inherent 3D structure of the
anatomical features is still available, connectivity can be shown on top
of the original spatial position [9, 29]. In more abstract connectivity
visualizations, on the other hand, the spatial location of nodes is com-
pletely independent of their original spatial positions [7, 34]. Hybrid
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Fig. 2. Structure of neurons and glia. Neurons transmit signals from
axons to dendrites via synapses. Glia are cells that provide supporting
functions for the neural system. They are highly interconnected with
neurons, but do not transmit nerve impulses. Astrocytes are a type of
glial cell that are especially important for synapse formation and function.

approaches like Neurolines [2] retain some of the spatial information
in their 2D graph layout. In Abstractocyte we use force-directed graph
layouts to compute the abstract 2D views of our data. Kobourov [24]
gives a good introduction to force-directed graph drawing algorithms.
Fruchterman and Reingold [16] originally proposed spring forces where
there are repulsive forces between all nodes, but also attractive forces
between nodes that are adjacent. Later, Frick et al. [15] added new
heuristics to the original spring forces approach by Fruchterman and
Reingold. In Abstractocyte we have added additional heuristics to our
graph layouting algorithm that are specific to our domain (Sec. 6.1).

3 BIOLOGICAL BACKGROUND

The average human brain contains around 100 billion neurons. Neurons
are highly interconnected, and transmit nerve impulses by forming
synapses with each other. A single neuron typically consists of a cell
body, multiple dendrites, and a single axon. See Fig. 2. Dendrites are
tree-like structures that receive signals from other neurons, while axons
are long tubular structures that extend from the cell body to forward
signals to other neurons. The term neurite can be used to describe
either an axon or a dendrite. Synapses are made up by a bouton on the
side of the axon, the synaptic cleft, and the post-synaptic terminal on
the receiving dendrite. Dendrites can have synapses either directly on
their trunk, or on small protrusions called dendritic spines.

While neurons make up around 50 percent of the cells in the mam-
malian brain, the other half is made up by glial cells [4]. Glial cells are
non-neuronal cells that typically surround and insulate nerve cells, and
provide supporting features for neurons [20]. An astrocyte is a type of
glia that is star-shaped (Fig. 2). It is mainly responsible for providing
nutrients, balancing the amount of neural transmitters, and maintaining
the blood-brain barrier. Astrocytes make up 20 to 40 percent of all glia,
and are important for synapse formation and function [12]. They also
act as glycogen stores to supply neurons with energy. Our collaborators
are interested in the distribution of glycogen granules within astrocytes,
and whether there is a correlation between glycogen granules and bio-
logical features such as synapse strength. They also want to investigate
how the mitochondria distribution in astrocytes influences cell behavior.

3.1 Neuroscience Workflow
Our collaborators start their workflow by scanning a mouse brain using
electron microscopy, before they register the individual scanned slices
to form a consistent 3D volume. The size of an imaged tissue block
is typically five microns in each dimension, which is imaged at a
resolution of 5×5×15 nm per voxel. This results in volumes of about
1024× 1024× 450 voxels in size. These volumes are then typically
segmented using the semi-automatic methods provided by Ilastik [33]
and TrakEM2 [11]. Segmentations are created for all astrocytes, axons,
dendrites, synapses, spines, boutons, glycogen, and mitochondria.

4 ABSTRACTOCYTE DESIGN

The idea of Abstractocyte originated in meetings with our collaborators,
where they described their problems in analyzing and exploring data
acquired for investigating astrocytes in an intuitive manner. Biologi-
cal structures in brain tissue at nanometer resolution tend to have an
incredibly complex morphology that easily leads to clutter or occlusion
in 3D visualizations. However, not all analysis and exploration tasks
require the data to be shown with full detail. It can often be better
to show different structures at different levels of detail or abstraction.
Therefore, the main goal of our work was to provide neuroscientists
with the framework necessary to study brain cells, including nerve cells
as well as glial cells, in an interactive and intuitive manner, at the visual
abstraction level that is best suited for each individual task. To achieve
this, users have to be able to seamlessly navigate between different vi-
sual abstraction levels, to reduce complexity while preserving essential
features related to morphology, connectivity, and proximity.

4.1 Domain Goals and Tasks
The design of Abstractocyte supports the high-level domain goals
of neuroscientists to (a) explore the detailed morphology of astro-
cytes; (b) analyze proximity patterns between astrocytes and neu-
rites (also called astrocytic coverage); and (c) analyze energy (or
glycogen) distribution patterns. These overall goals can be broken
down into the following specific domain-oriented tasks:
T1 – Explore the astrocytic coverage of neurites and synapses. Our
collaborators are interested in how much of a structure (e.g., a synapse)
is covered or touched by an astrocyte. Synaptic coverage is plastic—it
is different depending on the brain area and the activity of the synapses.
Our collaborators want to investigate whether there is a causal relation-
ship between coverage, synaptic plasticity, and synapse maturation.
T2 – Synapse glycogen analysis. Currently, there is still a debate in
neuroscience whether boutons or spines are energetically more expen-
sive during synaptic transmission. Therefore, our collaborators want
to investigate how and to which extent glycogen granules (which are
a precursor of lactate, and therefore an energy store located in astro-
cytes) are related to boutons and spines. Looking at synapses and their
proximity to glycogen clusters will be a first step in that direction.
T3 – Mitochondria glycogen analysis. Our domain experts are in-
vestigating whether the presence of mitochondria in neurons can help
in the interpretation of the spatial relationship of glycogen granules
and synaptic elements. For example, dendrites that have mitochondria
along their shaft might accumulate glycogen granules around excitatory
shaft synapses, from which spines generate. This would suggest an
involvement of astrocytic energy in the formation of dendritic spines.
T4 – Astrocytic mitochondria coverage of synapses. Mitochondria
are the powerhouses of the cell. In astrocytes, mitochondria can have
other functions, such as modulating intracellular calcium signaling.
This has been shown to be related to synaptic activity, and can be mod-
ulated by mitochondria. Therefore, our collaborators want to explore
and compare the locations of astrocytic mitochondria and synapses.
T5 – Astrocytic mitochondria coverage of their parent astrocyte.
Mitochondria locations within astrocytes are not spread out, but appear
preferentially in microdomains. Our collaborators want to explore
whether this is related to the presence of synapses and, therefore, want
to study the intracellular distribution of mitochondria within astrocytes.

5 ABSTRACTION SPACE

The necessity of supporting different levels of visual abstraction comes
from the observation that the optimal visual representation of neurites
and astrocytes changes depending on the current user objective. For ex-
ample, when neuroscientists want to explore the neuronal connectivity,
they prefer to use an abstract node-link diagram for neurites rather than
a highly detailed mesh (Fig. 1c). On the other hand, when they want to
analyze how close neurites are to a specific astrocyte, they would want
to look at the neurite in more detail, and either color-code the proximity
of the astrocyte onto the neurite’s surface, or show the astrocyte as a
morphological 3D skeleton (Fig. 1b). In order to be able to do this,
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Fig. 3. Visual abstraction space. Left: We define three interpolation methods to support smoothly navigating the 2D abstraction space: face
interpolation, edge interpolation, and no interpolation. When choosing visual abstractions, our system restricts user input depending on the supported
modes of interpolation between specific abstraction levels. Right: (a) Our abstraction space supports transitions between 2D and 3D views, which
are conceptually arranged on separate layers. (b) In the user interface, we depict these layers in simplified form, using a diagonal edge between
them. Edge interpolation for the transition from 3D to 2D, or vice versa, enforces a simultaneous change of the abstraction level for both neurites and
astrocytes. All other abstraction levels in Abstractocyte currently use face interpolation, where both abstraction levels can change independently.

scientists need to be able to change the level of abstraction for different
structures on the fly, as their analysis progresses.

In Abstractocyte, we introduce a 2D visual abstraction space that
allows us to abstract and simplify the visual representation of structures
along two orthogonal, conceptual “axes” (see Fig. 1, center). The first
axis represents astrocytes, and allows users to seamlessly switch the
rendering of astrocytes from detailed (e.g., high-resolution 3D meshes)
to abstract (e.g., a 2D node-link diagram of the astrocyte’s morphology).
The second axis represents neurites, and allows interactively changing
the visual representation of neurites. Fig. 1 shows this abstraction space
and the visual abstractions at four selected points within that space.

5.1 Abstraction Space Elements

The abstraction space is spanned by the two axes that represent neu-
rites and astrocytes, respectively, going from concrete, at the origin,
to abstract. Supported specific abstraction levels along each axis are
represented by points or nodes along that axis. Combined, the abstrac-
tion levels of both axes create a 2D grid of specific abstraction levels.
Fig. 3 (left) shows the different elements in the abstraction space:
Nodes: Each node represents a specific combination of a neurite and
an astrocyte abstraction level (e.g., a 3D mesh for one structure, and a
3D skeleton for the other one). At the exact position of a node, no in-
terpolation between abstraction levels is necessary. The representations
for neurites and astrocytes are combined directly during rendering.
Edges: We support edges between two nodes that are either axis-
aligned, or at a 45-degree angle. In the former case, the edge repre-
sents the linear interpolation between two abstraction levels along the
corresponding axis. In the latter case, the edge represents the linear
interpolation between abstraction levels for both axes at the same time.
A 45-degree edge ensures that the abstraction levels of both axes are
changed simultaneously. This is necessary in certain cases to ensure
consistency of the visualization, for example, when moving from a 3D
representation to a 2D representation. Usually, a visualization where
one of the axes has a 2D, and the other one a 3D representation is not
meaningful. Therefore, we prevent this by restricting user input to a
45-degree edge, so that the dimensionalities for both axes are linked.
Faces: Four neighboring nodes in the abstraction space span an area.
Selecting a point inside that area will automatically compute an interpo-
lated abstraction level. We compute the interpolated value along each
axis separately, and use these values to create the visual abstractions
for neurites and astrocytes, respectively. The combination of neurite
and astrocyte abstraction levels is done automatically during rendering.
Interpolation: For every node and combination of nodes we specify
what type of interpolation it supports depending on the underlying
abstraction. By default, we allow full face-based interpolation between
nodes. However, we can restrict user navigation inside the abstrac-
tion space to edges, i.e., the abstraction level can only be modified
along edges, or even disallow interpolation altogether. The different
interpolation options that we support are illustrated in Fig. 3 (left).

Fig. 4. Abstraction space GUI panel. (Left) Users can draw and save
paths in the abstraction space for a continuous animation through the ab-
straction levels along them. (1, 2, 3) Paths can be replayed or navigated
via a slider to revisit specific levels of abstraction. (1) Detailed surface
rendering of a spine (orange) connected to four different boutons (teal),
and close to mitochondria (blue); astrocyte proximity is visualized using
splatting and color coding (red) on the neurite surfaces; (2) Neurites as
skeleton; (3) 2D node-link diagram showing the connectivity of neurites.

Switching dimensionality of the visual abstraction: Conceptually,
the abstraction space allows switching between arbitrary visual ab-
straction levels of the underlying data. However, when switching the
dimensionality of the underlying data representation and visualization,
some extra considerations need to be taken into account. First, we
want to visually display this switch in dimensionality in the abstraction
space. For this, we have extended the abstraction space to the concept
of layers (Fig. 3a). In the top right corner, the abstraction switches
from a 3D representation to a 2D representation. Therefore, we indicate
the transition from a 3D to a 2D representation by moving from the
upper layer (3D) to the layer below (2D). This also allows us to restrict
user navigation to edge interpolation in the area where the abstraction
moves from one dimensionality to another. Using edge interpolation
makes sure that the resulting visualization is always consistent (i.e.,
valid) and that it does not mix arbitrary 2D and 3D abstraction levels.
After feedback from our collaborators, we have further adjusted the
user interface to the simplified layer representation shown in Fig. 3b.

5.2 Abstraction Space GUI Panel
Our 2D user interface panel for navigation inside the abstraction space
is shown in Fig. 4. Users can freely move the mouse pointer in or-
der to select or change abstraction levels for neurites and astrocytes,
respectively. As the user moves between different locations in the
panel, we smoothly interpolate between abstractions, depending on the
current position and its neighborhood. However, at the same time our
system restricts user interaction to those areas in the panel where valid
abstractions have been defined (invalid areas are grayed out).

We also allow users to draw entire paths in the GUI panel (Fig. 4,
left), which allows re-using and replaying a sequence of abstractions.
This is very useful for repeating standard analysis tasks, where users
can pre-define which levels of abstraction they need at what point, as
well as for presentation and teaching purposes, to reproduce an analysis.



Fig. 5. Astrocyte abstraction levels. Astrocytes displayed at different levels of abstraction. (a) Highly detailed 3D mesh (L0); (b) Transitional phase,
where the 3D mesh contracts and fades to a skeleton (L1.5); (c) Simplified skeleton together with clustered glycogen granules (L3); (d) Astrocyte
shown as proximity map on top of neurites (L4, 3D); (e) Astrocytic coverage shown in 2D node-link diagram of neurites as a heatmap (L4, 2D).

6 VISUAL ABSTRACTIONS FOR BRAIN CELLS

The main goal for visualizing neurites is to be able to identify important
regions and sub-structures, such as the sites of synapses (i.e., boutons
and spines), and their relation to astrocytes. The main goal for visu-
alizing astrocytes is to allow scientists to explore their proximity to
neurites, while at the same time showing important information about
the astrocyte (e.g., glycogen granules or mitochondria). In collabora-
tion with our domain scientists, and keeping in mind the overall domain
goals, we have identified the following visual abstractions (Fig. 5) :
Abstraction Level 0 (L0):

We use surface rendering of the high-resolution 3D
mesh of the segmented data (i.e., neurites, astrocytes,
and all their segmented sub-structures). This is the most
detailed visualization, and allows users to see the data
in its original form and highest detail. Structures are
color-coded by type, to quickly provide an overview of
what type of structures are present.
Abstraction Level 1 (L1):

We use surface rendering with non-photorealistic
shading. We have chosen toon shading to retain the over-
all 3D impression, while abstracting minor bumps or
edges from neurites or astrocytes, respectively. This is
useful when looking at astrocytes, as the high-resolution
mesh is often too detailed and distracts from overall
morphological patterns.
Abstraction Level 2 (L2):

We render the 3D skeletons of neurites or astrocytes,
respectively. Skeletons reduce clutter in the visualiza-
tion, while still maintaining important spatial cues. The
high-resolution mesh of an astrocyte/neurite often oc-
cludes synapse details, while a skeleton is a sparser vi-
sual encoding that still allows seeing morphological (or
topological) features of the structure. By pre-computing
a mapping of each mesh to its skeleton, we can smoothly
interpolate between the two representations.
Abstraction Level 3 (L3):

We present neurites/astrocytes as simplified 3D skele-
tons, where branches have been straightened. This
abstraction can be used to highlight 3D connectivity.
Anatomical details are removed, while the user still gets
an impression of the location, orientation, and branch-
ing pattern of a neurite. Our collaborators use this mode
when they focus on branching patterns and properties.
Abstraction Level 4 (L4):

In this abstraction level, we use different represen-
tations for neurites and astrocytes, respectively. We
further distinguish between abstraction level 4 in 2D
or 3D views, and adjust the representation accordingly.
Neurites are displayed as nodes. In the 2D view, we
show a full node-link diagram where neurites are repre-
sented as nodes, while connections between them (i.e.,
synapses) are shown as links between nodes. In the 3D
view, neurites are also shown as nodes. However, we

omit the links between them. The reason for this is that we typically
have a high number of links, and 3D node-link diagrams get cluttered
easily. This is the most abstract neurite visualization, and is mainly
used for exploring synapses and connectivity. Optionally, we can map
the volume of a neurite to its node size, to give an indication of its size.

The visual encoding of astrocytes in L4 is done differently. We do
not render astrocytes as their own primitives anymore, but project them
onto the closest neurite’s surface. This allows us to show the distribution
or coverage of astrocytes on neurons and their substructures. This is
especially useful to judge how close an astrocyte is to a given neurite.
Combining different visual abstractions: The power of Abstracto-
cyte comes from the ability to combine different visual abstraction
levels for neurites and astrocytes. This allows users to pick the most ab-
stract level for their task that still provides them with enough details to
answer their current questions. Furthermore, we can display additional
information on a segment’s surface mesh, skeleton, or connectivity
graph, by using color mapping and density fields (Sec. 7.2).

6.1 Transitions between Abstraction Levels

While users navigate the abstraction space (by moving the current
mouse position), all views are continuously updated to reflect the cor-
responding levels of abstraction. Positions that are between specific
levels of abstraction are interpolated using the interpolation methods
described above. For transitioning between two abstraction levels that
both employ a 3D visualization (i.e., meshes, skeletons, simplified
skeletons), we linearly interpolate between the two 3D abstractions. In
particular, we interpolate shading for transitioning to non-photorealistic
rendering, and we interpolate vertex positions and opacity for transi-
tioning between a mesh, a skeleton, or a simplified skeleton.

3D to 2D transitions. Transitioning from a 3D representation to a
2D representation is handled differently. First, we restrict user input to
edge interpolation, so that astrocytes and neurites are switching dimen-
sionality at the same rate. Next, we use a customized, force-directed
layout algorithm to convert 3D graphs into valid 2D representations [24].
Neighboring nodes in a force-directed layout repel each other unless
they are connected, in which case they attract each other. We have
added three new rules to the algorithm to make sure we achieve an
optimized layout. First, nodes are attracted to the center of the canvas.
This ensures that the graph does not expand rapidly. Second, nodes are
attracted to their original 2D screen position, i.e., their position before
starting the force-directed layout. Third, nodes are constrained to stay
within a certain radius of their original 2D screen position. Together
with the previous rule, this keeps the graph similar to the original 3D
skeleton, retaining its morphological form while resolving occlusions,
and facilitating smooth transitions.

Additionally, when transitioning from a 3D to a 2D view, we adjust
the weights described above for the force-directed graph algorithm
according to the current interpolation position, to achieve the desired
3D to 2D graph layout transition. The individual forces are accumulated
and applied to the nodes to update their positions accordingly. This
is repeated until the graph is in a steady state, or the user changes the
abstraction level or the viewport.

To optimize the performance of the force-directed graph layouting,
we use 2D spatial hashing to find neighboring nodes efficiently.



Fig. 6. Abstractocyte user interface. The filtering and analysis panel
is displayed on the left. It allows users to interactively filter, select, and
sort the data. The abstraction space panel is shown at the bottom right.

7 VISUAL ANALYSIS

The main goal of the different visual abstractions introduced above is
to support scientists in the analysis of their data. In accordance with
our three main domain goals described in Sec. 4.1, we support the three
different exploration and analysis scenarios described below.

7.1 Visual Exploration of Morphology and Topology
After acquisition and segmentation of a new dataset, the first objective
of our collaborators is to get a good mental image of the data. Therefore,
exploring the morphology and topology of astrocytes as well as neurites
is typically their first objective. Allowing users to look at their data
at different abstraction levels, with smooth transitions between levels,
helps them to identify morphological features for cells of interest. For
example, when using a skeleton representation for an astrocyte it is
easier to follow branches, and see how they interact with their surround-
ings. On the other hand, a simplified 2D graph representation allows
users to quickly see the connectivity between structures, without having
to manually trace and follow structures in 3D. In general, there is no
one specific abstraction level that allows users to see all interesting fea-
tures of a cell of interest. Only frequent transitioning between different
levels of abstraction enables scientists to gain a detailed understanding
of their data. Being able to freely navigate inside the abstraction space
is particularly important for tasks T1 and T5 (Sec. 4.1), to explore the
overall relations of neurites, astrocytes, and mitochondria.

In addition to providing visual abstractions, we allow users to filter
their data on-the-fly, to exclude unimportant structures from analysis
and visualization. Data can be filtered by manual selection directly
in the visualization, or by using a user interface filter panel. This
panel supports a combination of filters, based on object type, object ID,
and additional parameters, such as connectivity, parents, and substruc-
tures (Fig. 6). Filtered-out objects are removed from all subsequent
visualization and analysis steps. This is important for tasks T1 to T5.

7.2 Visual Proximity Analysis
One of the most important tasks when analyzing brain cells and net-
works is spatial proximity analysis. In Abstractocyte, we can visualize
the proximity of a cell structure A to another structure B, by conceptu-
ally “splatting” structure A onto the visualization of structure B. See
Fig. 7b for an example. To be able to do this interactively, we first
create a 3D binary segmentation texture for structure A, setting voxels
belonging to A to one, all other voxels to zero. If available, we create
this texture directly from voxel segmentation data. If not, we voxelize
the 3D segmentation mesh of structure A. In the next step, we use this
texture for distance queries while rendering structure B. Specifically, at
every vertex position of B, we take a number of samples in the vicinity
of that vertex in the previously generated 3D texture of structure A to

Fig. 7. Visual proximity analysis. (a) The astrocyte (red) occludes the
neurites (cyan and yellow), making it hard to see where the astrocyte
touches or is in close proximity to the neurites; (b) The proximity of
the astrocyte is visualized on the neurite’s surface using splatting and
color mapping (the red areas on the neurite surface). The proximity of
astrocytic mitochondria is visualized in the same way (purple areas).

Fig. 8. Glycogen analysis and visualization. (a) Clustered glycogen
granules depicted in combination with the astrocyte’s skeleton; (b) Glyco-
gen density mapped onto the toon-shaded 3D mesh of an astrocyte.

estimate the distance between the two structures. We usually weight
the resulting distance with a Gaussian curve to obtain a smooth fall-
off. Using this basic approach, we visualize spatial proximity in two
different ways, depending on the dimensionality of the visualization:

Proximity in 3D. In the case where structure B is visualized as a 3D
mesh or a 3D skeleton, we color-code the surface of the mesh or the
skeleton using the technique above. When color-mapping values onto a
skeleton’s surface, we can either directly use the skeleton coordinates
to query the distance values, or we use the corresponding mesh vertex
coordinates. Fig. 5d and Fig. 7b depict examples of this approach.

Proximity in 2D. For more abstract 2D representations, e.g., a node-
link diagram of neurites, we can visualize the distance values as a heat
map on top of the network diagram. For this, we further splat all neurite
nodes into a 2D texture, and attenuate a node’s intensity by its distance
to the astrocyte. The resulting 2D texture can directly be displayed as a
heat map on top of the graph. This approach is depicted in Fig. 5e.

Filtering. Abstractocyte also allows on-the-fly filtering based on
proximity and coverage. This allows us to restrict the visualization to
structures within a certain minimum and/or maximum distance to a
selected structure. For example, this allows looking only at synapses
with a minimum amount of astrocytic coverage. Visual proximity
analysis supports tasks T1 (to analyze astrocytic coverage of neurites),
T2 and T3 (to analyze glycogen), and T4 (to analyze mitchondria).

7.3 Visual Analysis of Glycogen Granules
A major objective of Abstractocyte is to allow scientists to analyze the
glycogen distribution in astrocytes, and to explore the relationship be-
tween glycogen cluster locations and synapses. Glycogen granules are
stores of energy in the form of glucose. Brain energy consumption is of
major interest in neuroscience, where the goal is to find the mechanisms
of how energy is being regulated, distributed, and absorbed by neuronal
cells. Astrocytes hold and regulate a lot of that energy in the form
of glycogen. To tackle these questions, our collaborators identify and
mark the spatial locations of biological granules (in our case glycogen



granules) in the microscopy data. Glycogen tends to appear in clus-
ters in different locations inside the astrocyte. We have implemented
on-the-fly clustering of granules using the DBSCAN (density-based
spatial clustering of applications with noise) algorithm [14].

We support two different ways of glycogen visualization: First, we
can visualize individual granules directly by rendering them as small
spheres in 3D (Fig. 8a). We can also color-code granules based on their
cluster membership. Second, we can compute granule density maps that
we can then use in our 3D and 2D visualizations (Fig. 8b). Computing
the granule density map is done similarly to computing the proximity
between structures (Sec. 7.2), and allows us to map granules to their
closest subcellular structures. Optionally, we can also use granule
clusters instead of individual granules for computing and displaying a
cluster density map on the surface of the closest biological structures
(Fig. 8). For quantitative analysis, users can interactively explore
clusters and their associated attributes, e.g., the number of granules, or
total volume. The analysis of glycogen is important for tasks T2 and
T3, to analyze glycogen in relation to synapses or mitochondria.

7.4 Implementation

Abstractocyte is implemented in C++ and OpenGL 4.3, using Qt for
GUI elements. The application runs on a standard Windows PC and
requires a recent GPU for rendering. All case studies were performed
on a Windows 10 PC with a NVIDIA GeForce GTX 1070 GPU.

Typical mesh sizes in Abstractocyte are around 8 million vertices
with 16 million faces, which can be rendered interactively at more than
40 fps. Our splatting technique for showing proximity values on an
object’s surface is also performed dynamically at run time, and achieves
framerates of around 10 fps. Clustering of glycogen can be done at
run time, and typically takes less than a second for 4,000 granules.
Computing the force-directed layout updates for switching from 3D to
2D views is done iteratively whenever users move the selected position
along a 3D-to-2D edge in the abstraction space and can be done in
real-time as well. We run the force-directed layout algorithm as a
background thread to make sure that users can still interact with our
system while the layout for the 2D views is being computed.

8 CASE STUDIES

To demonstrate the utility and flexibility of our framework, we present
three case studies that we have recorded in user sessions with our
collaborating domain scientists. All three cases were performed by
a neuroscientist who is working in the field of connectomics and has
several years of experience with analyzing electron microscopy data of
brain tissue. Prior to the case studies, the neuroscientist had a one hour
hands-on training session to get familiar with Abstractocyte.

8.1 Data

For our evaluation and during the initial testing of Abstractocyte our
collaborators have analyzed six different electron microscopy volumes.
All datasets are from mouse brains, specifically from layer one of the
somatosensory cortex. Three volumes are from young adult mice (i.e.,
around 90 days old), while the other three volumes are from old adult
mice (i.e., 3 years old). Each dataset consists of a single astrocyte and
roughly 1,000 segmented objects (excluding glycogen granules). For
our case studies, our collaborators have used a dataset containing 355
axons and dendrites, 388 spines and boutons, 167 synapses, and 181
mitochondria. In addition to these segmented objects, more than 4,000
glycogen granules have been labeled manually using TrakEM [11].

To prepare the data for our visualization tool, we extract high-quality
meshes and skeletons of segmented neurites and astrocytes in a pre-
processing step. For extracting meshes, we use NeuroMorph [22],
and for computing the skeletons we use a GPU-based framework [25]
that implements symmetric parallel and persistence thinning [6]. In
addition, we compute the centroid of each object and pre-compute
correspondences between each 3D mesh and its skeleton. We compute
and store the closest point on the skeleton for each vertex in the mesh,
so that we can interactively transition and interpolate between the two.

Fig. 9. Case study 1: Evaluating the astrocytic coverage of spines
and boutons. (a) Node-link diagram showing neurites as nodes and
synapses as links (yellow: dendrites, orange: spines, blue: boutons,
cyan: axons). The astrocytic coverage of neurites is shown in the node-
link diagram as a heat map; (b) The user selects a node (spine) with high
coverage, and filters the graph according to the node’s connectivity; (c)
3D rendering of the spine (orange) that seems to make a synapse with an
axon (faded cyan). This synapse was missed in the initial segmentation
of our collaborators and only discovered by using Abstractocyte.

8.2 Case Study 1: Astrocytic Coverage of Synapses
Astrocytic coverage refers to how many neuronal structures and sub-
structures are in contact (or lack of contact) with astrocytes. Our
collaborators are interested in how many structures are in contact with
astrocytes, but also what the percentage of coverage/proximity is for a
selected structure, such as a synapse. Astrocytes play an important role
in synaptic physiology. For instance, in the recycling of neurotransmit-
ters. This function is crucial for synaptic transmission performance, as
excess of neurotransmitter in the synapse might lead to misactivation
of neighboring synapses, synaptic over-activation, and eventually cell
death. Astrocytic wrapping of the synapse limits these effects, which is
why our collaborators wanted to investigate this in their datasets.

The scientist started the session by first getting a high-level overview
of the neurites in the dataset using the node-link diagram (Neurite
L4, 2D). Next, he looked at the astrocytic coverage of neurites in
the node-link diagram, by enabling the heat-map visualization for
astrocytes (Astrocyte L4, 2D). He quickly found a spine node with
high astrocytic coverage (radiating red node in Fig. 9a). Abstractocyte
can quantitatively estimate the total coverage of a structure (in this
case the spine) by computing the average distance of all vertices in the
spine to the astrocyte. The smaller this value, the closer a structure
is to the astrocyte. Next, the scientist examined the spine and filtered
the dataset to only contain the spine, its parent (i.e., dendrite) and
connected components (Fig. 9b). Then, he switched back to a detailed
view of the spine and the connected components (Neurite L0). For
displaying the astrocytic coverage, the scientist used the proximity
splatting technique in Abstractocyte (Sec. 7.2) (Astrocyte L0). At this
point, the scientist was able discover that the selected spine was actually
making a synapse with a bouton that had been missed in the labeling
process (Fig. 9c), which explained the high astrocytic coverage of the
spine. Subsequently, the scientist was able to go back to the original
volume data to fix the segmentation of the missed synapse and bouton.

8.3 Case Study 2: Analyzing Glycogen Distribution
In this second case study, our collaborators investigated how glycogen
granules are related to boutons and spines (i.e., the locations on neurites
where synapses are located). Glycogen granules in astrocytes are
energy reserves and are used particularly during sustained activity.
Therefore, our collaborators wanted to look at glycogen granule clusters
in relation to their closest synapses. By looking at the detailed glycogen
distribution and proximity to synapses, they hope to be able to answer
the following questions: Does the glycogen distribution correlate with
the location of synapses? Does the size of a glycogen cluster correlate
with some synapse attributes (e.g., the strength of a synapse)?

Our collaborator wanted to use the same dataset as in the previous
case study, so he was already familiar with the general morphology
of the astrocyte and neurites. To analyze the glycogen distribution, he
first looked at the detailed toon-shaded astrocyte mesh (Astrocyte L1),
and enabled the rendering of individual glycogen granules as small



Fig. 10. Case study 2: Glycogen distribution. Glycogen is clustered
and mapped to the closest boutons and spines or mitochondria. The
node-link diagram (i.e., neurites and synapses) shows the glycogen
distribution overlayed as a heatmap; (a) The user selects a bouton with
a high value of glycogen mapped to it, and filters the graph based on the
connectivity of the selected bouton. The 3D rendering shows that the
bouton (magenta) forms two synapses with two different spines (gray),
and therefore hypothetically requires more energy; (b) Glycogen mapped
to neuronal-mitochondria. The darker, the more glycogen is mapped
onto a mitochondria; (c) The same mitrochondria belongs to a dendrite
(yellow) forming five synapses (black) with different boutons (teal).

spherical objects within the mesh. Next, he first visualized the distance
to the glycogen granules on nearby spines and boutons (Neurite L0).
After getting a first overview of the glycogen distribution, he performed
on-the-fly clustering of the granules and mapped the resulting clusters
to their closest spines and boutons. In Abstractocyte, we can visualize
this by computing the volume of the glycogen clusters mapped to these
spines/boutons and color-code the surface or node accordingly. Next,
our collaborator sorted the resulting spines and boutons by their mapped
glycogen volumes and selected the top result (Fig. 10a). Upon closer
inspection of the identified bouton, our collaborator discovered that
the bouton makes two synapses with two different spines, respectively
(Fig. 10a). Hence, he continued to investigate the astrocytic coverage of
the bouton (similar to case study 1), and determined that the astrocyte
wraps around both of these synapses for support. This indicates that
boutons that make two synapses might require more energy, which our
collaborator now wants to investigate in more detail in the future.

In the final step of this case study, our collaborator was interested in
how the glycogen distribution is related to neuronal-mitochondria. To
investigate this, he performed the same initial steps as above but mapped
glycogen clusters to their closest mitochondria (Fig. 10b). Among the
mitochondria that had the highest coverage of glycogen, he was able
to identify a mitochondria that belonged to a dendrite that made five
consecutive synapses on its shaft, indicating that the operation of these
synapses also requires a lot of energy in a small spatial area (Fig. 10c).

Prior to Abstractocyte, our collaborators had to resort to the generic
Blender 3D rendering software for rendering high-quality meshes of
the astrocyte and glycogen granules [10]. They had no way of easily
analyzing the distance of glycogen granules to their closest synapses,
and could not interactively filter their data or switch between different
visual representations. Using Abstractocyte, the scientist was able to
quickly identify relevant neurite structures and further analyze them.

8.4 Case Study 3: Astrocytic-Mitochondria Coverage
Mitochondria are the site of the cellular respiration process, and are
responsible for providing energy to the cell. In astrocytes, however,
mitochondria can also buffer calcium, thereby influencing intracel-
lular calcium signaling, and potentially regulating synapse activity.
Therefore, our collaborator wanted to use Abstractocyte to explore the
location of astrocytic mitochondria in relation to synapse locations.
Mitochondria tend to appear in clusters or microdomains in astrocytes.
Therefore, the scientist also wanted to explore the intracellular distribu-
tion of mitochondria within astrocytes.

In this case study, the scientist first looked at the astrocyte in a
skeleton representation (Astrocyte L2), with the mitochondria mapped
onto the surface of the skeleton. This allowed the scientist to quickly see
the morphology of the astrocyte with highlighted locations indicating
mitochondria. This way, our collaborator could look at the actual

distribution of mitochondria within the astrocyte. His questions were
about how much of the astrocyte’s body has mitochondria in it, and
whether mitochondria are distributed evenly or, for example, skip fine
structures. In this specific dataset, our collaborator could not identify
any mitochondria in fine branches of the astrocyte. However, there were
some regions within the astrocyte where mitochondria were clustered.
Therefore, he explored that area in more detail, especially the synapses
close to that area. For this, he filtered the data using the proximity
filtering feature (Sec. 7.2) to the astrocytic-mitochondria. Next, he
switched to a node-link diagram (Neurites L4, 2D) of the filtered data,
and was able to discover a spine with four synapses to four different
boutons, see Fig. 4 (1). Fig. 4 (left) shows how the scientist was
navigating inside our abstraction space panel during this last part of the
case study. Thus, our collaborator switched back to the 3D rendering
(Astrocyte L3, Neurite L0), and could identify a handful of synapses
connected to one spine that was in very close proximity to an astrocytic-
mitochondria. It is believed that mitochondria of astrocytes can buffer
calcium which, in turn, can be released and used to signal and regulate
synapse activity. Our collaborator speculated that this might be the case
for the identified synapses, and wants to further investigate this.

9 DISCUSSION

During the case studies we also collected qualitative feedback from
our collaborators. Overall, the scientists felt that Abstroctocyte offers
a level of flexibility to their analysis and exploration tasks that they
did not have before. They moved freely between different abstraction
levels and also regularly used interpolated abstraction values, e.g.,
semi-transparent surface meshes with underlying skeletons.

They outlined three main advantages: First, because Abstractocyte
allows displaying neurites and astrocytes at the same time, but with
different abstraction levels, it enables users to preserve the context of
one, while investigating details of the other. For example, keeping a
skeleton of the astrocyte while investigating neurites and synapses helps
to see the relation of the astrocyte to the current structures of interest.
Second, the proximity visualization allowed our collaborators to get
an immediate impression of which structures are close to a structure
of interest. Together with the proximity filtering feature, this allowed
them to investigate those structures right away. Third, our collaborators
were very impressed with the immediate visual feedback during their
glycogen analysis case study. The immediate visual feedback sped up
their analysis, and allowed them to explore several different hypotheses
without having to dive into more elaborate statistical computations right
away. Within just the first hour of using Abstractocyte, our collaborators
were able to discover things they had not known about their data before.

Limitations. The main limitation of Abstractocyte with respect to
analyzing large EM volumes of astrocytes is that our collaborators have
so far only collected datasets containing a single astrocyte. Therefore,
Abstractocyte currently does not support filtering for specific astrocytes,
or the visual comparison of multiple astrocytes. However, supporting
multiple astrocytes in a single dataset is straightforward to add in
the future. Another limitation with respect to analyzing EM brain
volumes is that our current system focuses on the visual analysis aspect.
While we do provide the most important quantitative measures, e.g., for
clusters, proximity, or coverage, our focus is not on replacing a fully-
fledged statistical analysis. On the contrary, we see Abstractocyte as
the tool for neuroscientists to quickly explore initial hypotheses about
their data before they continue to a more detailed statistical analysis.

10 CONCLUSIONS AND FUTURE WORK

Abstractocyte allows neuroscientists to visually explore astrocytes and
neurites at different levels of detail. It enables scientists to intuitively
choose the visualization that is most appropriate for their current anal-
ysis task, by offering an easy-to-use user interface that allows them
to explore all possible combinations of abstractions. We think that by
giving users the power to easily switch between abstraction levels in a
continuous way, we encourage them to explore their data in more detail.
By using smooth transitions between different abstraction levels we can
preserve the visual context and correlations throughout the transitions,
enabling users to stay focused on their current task, while still providing



the necessary contextual information. In addition to dynamic visual
abstractions, we have incorporated methods for the visual analysis of
glycogen granules and mitochondria that allow a more detailed analysis
of astrocytes in relation to their neighboring neurites.

We believe that the abstraction space introduced in this paper can be
generalized and applied to different visualization problems in a wide
variety of domains. In the future, we would therefore like to work on
allowing other scientists to explore the space of possible visualizations
that is suitable for their domain and their specific kind of data.
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