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Abstract

We present a framework that reduces the physical space occupied by a man-made object when it is not in use. That
is, given a segmented 3D mesh of a man-made object, our framework jointly optimizes for joint locations, folding order,
and folding angles for each part of the model, enabling it to transform into a more space efficient configuration while
keeping its original functionality as intact as possible. That is, if a model is supposed to withstand several forces in
its initial state to serve its functionality, our framework places the joints between the parts of the model such that the
model can withstand forces with magnitudes that are comparable to the magnitudes applied on the unedited model.
Furthermore, if the folded shape is not compact, our framework proposes further segmentation of the model to improve
its compactness in its folded state.
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1. Introduction

Real-estate in major cities like London, New York,
and Hong Kong is extremely expensive. Therefore,
many new developments are concerned with building
apartments with a small area. Efficient space usage in5

these apartments is critical and it is important that the
available space can serve multiple functions. We are
therefore interested to compute alternative configurations
of man-made objects that use less space. We introduce a
system that adds joints to pieces of furniture so they could10

be folded into a more space-efficient form, occupying less
space when stored or transported while partially retaining
their original functionality. Furthermore, if the folded
furniture piece is not compact, our system proposes
further segmentation steps of the model so that it folds15

into a compact form.

Over the past few years there were several research
projects that focused on joint-aware shape processing.
Examples include the works of Xu et al. [2] in shape edit-20

ing, Mitra et al. [3] in motion illustration for mechanical
assemblies, Luo et al. [4] in segmentation for 3D printing,
Bächer et al. [5] in fabrication, Zheng et al. [6] in shape
synthesis and the works of Li et al. [7] and Zhou et al. [8]
in space saving.25

The most closely related work to ours was recently
published by Zhou et al. [8]. They boxelize an input 3D
shape by first voxelizing the shape, then using a beam
search method, they solve for the voxels that should be30

connected and for the types of joints between them that
would enable the model to transform into a target 3D
box. Finally, they use a physics simulator to find the path
that the initial shape takes to reach the final folded form.

35

Our work differs from that of Zhou et al. [8] in two
main aspects. First, we formulate the folding problem as
a combinatorial optimization problem that optimizes for
the folding order, folding angle and folding axis of each
part of the model while they optimize for the joint type40

and folding angle and then, use a physics simulator to
generate a valid folding path from the initial configuration
of the model to its folded configuration. In addition, our
framework places the joints between the parts such that
even after the joints are placed, the edited model retains45

its functionality up to a user-defined value, while Zhou
et al. [8] perform no functionality analysis on the edited
models. Figure 1 shows an example of a model folded
using our system.

50

Recently, Li et al [9] independently proposed a solution
for the furniture folding process. While their method is
faster than ours, we have a more extensive treatment of
functional feasibility in our algorithm.

55

2. Related Work

Motion Analysis & Synthesis. Motion analysis and
synthesis have been active areas of research in different
fields for many years. For instance, in the field of robotics,
the planning of robot motion from a start point to an60

end point has been heavily studied. For a good summary
of motion planning algorithms, we refer the reader to the
work of Steven et al. [10]. Other examples of research
projects concerned with motion analysis include the works
of Driskill et al[11], Agrawala et al.[12] and Lambert et65

al.[13] that focus on assembly design and visualization.
Moreover, in the field of computer graphics, Mitra et
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Figure 1: Furniture folding example: The top row is an example of a real life bunk bed that transforms to a space conserving form of a couch
obtained from [1]. The bottom row shows our system’s attempt to fold a 3D model of the same bed. Our system assigns the joints and folds
the bunk bed to a configuration that is very similar to that of the real life example. Selected stages that our system takes to fold the model
are shown in a), b) and c) respectively. The reader is referred to Figure 17 for more details regarding the folding of this model.

al. [3] introduce a novel system that illustrates the motion
of mechanical assemblies by analyzing the geometric
properties of each individual part and the joint-types70

between each adjacent pair of parts. Zhu et al. [14] built
on this work by synthesizing the motion system from
the user specifications, which is the reverse procedure
of Mitra et al. [3]. Another extention of the work of
Mitra et al. [3] is the work of Guo et al. [15] as they75

demonstrate the disassembly sequences of assemblies
based on shape analysis. Finally, in a more recent work,
Shao et al.[16] interpret the functionality of 3D shapes by
analyzing corresponding 2D sketches, and they introduce
an interactive system for this purpose.80

Joint-Aware Editing & Fabrication. There are
multiple recent papers that deal with joint-aware editing
and fabrication. Xu et al. [2] extract the joint structures
from 3D input shapes, and deform the 3D shapes based85

on the extracted joints. Moreover, Bächer et al. [5] aim at
fabricating articulated deformable models for computer
animation. A skinned mesh is taken as input and the
joints are extracted and analyzed to satisfy the specific
kinematics for fabrication. Furthermore, Ceylan et al. [17]90

approximate the motion of 3D automata by designing a
kinematic system.

Given the 3D model of a man-made object, Lau et al.
[18] define a formal grammar to automatically generate95

the parts and connectors needed to physically fabricate
the model. To print large 3D objects, Luo et al. [4]
propose chopper, a method that segments an object into
printable size pieces, and joints are added to connect the

pieces to each other. The robustness of the assembled100

objects are verified by physical simulations. Xin et al. [19]
and Song et al. [20] study the design of 3D puzzles for
fabrication. Moreover, Coros et al. [21] developed an easy
to use framework that enables non-expert users, through
sketching motion curves for the different parts of the105

model, to create animated mechanical characters. Finally,
Cali et al. [22] intuitively add printable joints to 3D
meshes such that, when printed, the model would exhibit
functional articulation without the need for manual
intervention. That is, the parts of the model would be110

able to move to satisfy the function that the model was
intended to perform.

Structure-Aware Shape Editing. Several approaches
have been recently presented in the field of structure-115

aware shape editing. For instance, Gal et al. [23] describe
man-made shapes using 1D wires and their mutual
relations. They keep these relations consistent while
deforming the shape. Moreover, Wang et al. [24] analyze
the hierarchical symmetry structure of shapes.120

Zheng et al. [25] propose a framework to edit a 3D object
while preserving the structure between its components.
Recently, Li et al. [7] derive a stackability measure of
a pair of objects as the gap between the lower and the125

upper envelopes of the objects being stacked. Then, they
deform the models to reach a certain stackability measure
and thus can be stacked tighter. Furthermore, Zheng et
al. [6] generate variations of shapes from a set of input
parts based on a functionality analysis system. Finally,130

for more details, we refer the readers to the most recent
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survey by Mitra et al. [26].

3. Overview

Given a segmented 3D mesh of a man-made ob-
ject, locations and directions of forces that it should135

withstand, our system goes through several steps to
transform it to a plausible, space saving form that
retains its functionality up to a user-defined threshold
after editing. In what follows, we briefly explain each step.

140

Initialization. In this step, our system processes the
model to decide which of its parts are symmetric and
which parts should be connected together. Consequently,
the algorithm places joints between each pair of parts that
is connected. These joints are then utilized to generate145

a relational graph between the parts of the model and
decide on the axes about which the parts are allowed to
rotate. In addition, for each given direction and location
of a user specified force, our framework analyzes the
model to determine the maximum magnitude of the150

forces that the model can handle without collapsing. The
initialization step performed by our system is explained
in detail in Section 4.1.

Folding. In order to fold a given model, our system jointly155

solves for the order in which the parts should be folded,
the axes about which each part should be folded and the
angle by which each part should be folded while keeping
the functional feasibility of the model up to a user-defined
threshold. Using the order, the axes, and the angles160

generated in this step, our system is able to produce a
collision free folding trajectory for each part of the model.
The order optimization and the folding mechanism are
explained in detail in Sections 4.2.2 and 4.2.3, respectively.

165

Segmentation. After the model is folded, the system
checks the compactness of the folded configuration, and
based on that, it decides whether or not further segmen-
tation of the model is needed. If parts should be further
segmented, the algorithm determines a location and a di-170

rection in which the parts should be split. The system
then proceeds to fold the model with the new segmenta-
tion. This process is outlined in detail in Section 4.2.4.

4. Methodology

In this section, we describe the procedure followed by175

our system to fold a given segmented shape. First, we
discuss the required initialization steps. Then, we list the
steps taken by our system to fold the shape.

4.1. Initialization

Segmentation. Our system takes as input a segmented180

mesh, where the segments form a set of parts, P , that
one would find in a place such as Ikea; a leg, a table

top, etc. That is, we rely on semantic segmentation, i.e.,
each segment is an actual part that one would expect
to be whole. Models with such segmentation can be185

obtained from many online 3D mesh repositories. For the
models used in this paper, we obtain them from Google
3DWarehouse, GrabCAD, or we design them manually
using SketchUp. An example of a semantically segmented
shape that we obtained from Google 3DWarehouse is the190

pergola example shown in Figure 2.

Convex Decomposition. Most collision detection
libraries operate faster when testing collision against a
number of convex shapes. Therefore, we decompose each195

part of the model into a set of convex parts that are then
used when we test for collision with other parts. We used
the HACD technique introduced by Mamou et al. [27] for
convex decomposition.

200

Symmetry Groups. Our system utilizes symmetry
groups in the initialization, the folding and the seg-
mentation steps. Symmetry groups are groups of parts
that are reflectively symmetric about some plane. For
each part, we search for another part that is reflectively205

symmetric to it about some plane, and group both
parts in a symmetry group. To check whether two
parts, Pi and Pj , are reflectively symmetric, we first
obtain their barycenters ci and cj respectively. Our

symmetry plane is defined by a normal n =
cj−ci

‖cj−ci‖210

and a point on the plane p = ci + 0.5 · (cj − ci). Two
parts Pi and Pj are symmetric about this plane if for
each point pi on Pi, there exists a point pj on Pj such
that pj = pi + ‖pj − pi‖ · n. An example of the re-
sult of this step on the Pergola model is shown in Figure 2.215

Joints Assignment. Once a segmented mesh has been
loaded by the user, our system determines the joints to be
placed on each part. Our system first determines contact
regions between pairs of segments, then it places joints at220

these regions. Since the input model is segmented seman-
tically, a pair of parts are in contact at a polygon. There-
fore, to determine the contact regions between a pair of
parts the algorithm first finds the polygons that make up
each part, then it checks whether polygons from each part225

are in contact. An example of joints assignment between
a pair of parts is shown in Figure 3.

• Composing Polygons. To obtain the composing
polygons of a part, we group all the neighboring faces
of the part that have a common normal into a structure230

that we call a Composing Polygon (CP). We then
obtain a 2D Oriented Bounding Box (OBB) of the
vertices of the faces that make up the CP. Each CP is
made up of the four vertices that make up the OBB
and the common normal of the group of faces. Finally,235

with each CP we associate the area of its OBB to be
used in the connection point assignment.
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Figure 2: Initialization: Selected initialization steps performed by our system, a) input: a segmented mesh of the Pergola example, b) joints
assigned by our system are displayed as green spheres, c) our system picks the topmost part to be the root node, r, enclosed in a black circle,
of the relational graph and generates the relational graph using r and the joint information obtained in b, d) our system detects reflectively
symmetric parts and adds them to symmetry groups to be used later in the folding and the segmentation steps, parts that have the same
color belong to the same symmetry group.

Figure 3: Joints Assignment: a) our system investigates the pos-
sibility of placing joints between the green and the purple parts of
the teak chair model. b) a composing polygon of the green part is
marked in red. c) a composing polygon of the purple part is marked
in blue, both CPs are co-planar, and the CP of the purple part lies
inside the CP of the green part. Therefore, we assign joints between
both parts with their locations being that of the vertices of the OBB
of the CP of the purple part.

• Contact. To determine whether or not two parts, Pa
and Pb, are in contact, we search for CPs of Pb that240

have a normal opposite to CPs of Pa. For each pair of
polygons that have opposite normals, we find the CP
with the smaller area and check if this polygon is on
and inside the bigger CP or not. If so, we take the four
points that make up the smaller polygon and add them245

as connection points for both parts. Else, if the smaller
CP is on, but not inside the bigger CP, then Pa and Pb
are in contact with their connection points being the 2D
OBB of the common region between both CPs.

In few cases, further manual intervention might be250

required from the user’s side to adjust the locations of
the joints. For instance, if the model is not clean, that is
the parts are missing some triangles, or the parts are not
in a co-planar contact or the parts are intersecting, the
user intervenes to either fix the model or adjust the joint255

locations manually.

Figure 4: Axes assignment example: For this model, we show the
nine possible axes, marked in blue, red and green, about which the
seat can rotate with a positive angle. The seat can only rotate about
four of the possible eight axes (marked in blue and red) without
colliding with the parent part. Therefore, as a form of computation
reduction, our algorithm enables the rotation of the part only about
four of these eight axes in addition to the axis perpendicular to them,
marked in green.

Axes Assignment. Once the joints for each part have
been generated, each part will have a multiple of four
joints connecting it to other parts in the model. For260

each set of four joints, the part can rotate about nine
different axes. Eight of these axes are the vectors between
each consecutive pair of joints. That is two possible axes
between each consecutive pair of joints, with these axes
being parallel and opposite. A part can only rotate about265

four of the possible eight axes without causing collisions.
Our algorithm rotates the part about the eight possible
axes to pick the four axes about which the part can
rotate without causing collisions. The last possible axis
of rotation is the normal of the composing polygon. A270

demonstration of the possible axes of rotation is shown in
Figure 4.
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Relational Graph. Our framework employs a hierarchi-
cal transformation of the parts of the model to fold the275

model. It relies on a relational graph of the model where
the nodes represent the parts and the edges represent
the joints between them. The structure of the graph
determines the parent-child relationships between the
parts of the model needed to hierarchically transform a280

part.

Our system first picks a part of the model to be the
root of the graph. Then, it generates a relational graph
of the model using the connectivity information obtained285

from the joint generation step.

• Root Picking. Our system utilizes the symmetry
groups obtained earlier to pick the root node, r, of the
relational graph. That is, it searches for parts that do290

not belong to a symmetry group and nominates them
as potential candidates to be the root of the graph.
Amongst these parts, it searches for the part with the
largest OBB volume and chooses it to be the root of the
graph. If multiple parts have the same, largest, OBB295

volume, then we pick a part amongst these parts at ran-
dom to be the root.

• Graph Generation. We use a Breadth First Search
(BFS) method that starts from the root node and uti-300

lizes the connectivity information obtained earlier to
generate the relational graph. The reason we chose BFS
over other search methods, such as Depth First Search
(DFS), is that unlike DFS, BFS correctly captures the
parent/child relationships as they appear in the model.305

For example, for a model such as the shelf in Figure 10,
the root node would be one of the sides, if we follow
a DFS search for example, that would cause only one
of the planks connected to the root to be the child of
the root, while the root becomes the child of the other310

plank. However, if we use a BFS method, we will have
both planks connected to the root as its children. We
favor the result obtained by the BFS method as our al-
gorithm attempts to fold a child node on its parent as
described in Section 4.2.3, which will result in folding315

the planks on the side, instead of folding one plank on
the side and the side on the other plank, which will re-
sult in a worse solution compared the one obtained by
folding both planks on the side.

Maximum Force Magnitudes. Our framework an-320

alyzes the model to calculate the maximum magnitude
of the forces that the model can handle without collaps-
ing. That is, for each user-defined force’s direction and
location, we search for the maximum magnitude that
will not cause it to collapse. We encode the collapsing325

of a model as the rotation of one of its parts by some
angle that is above some user set rotation threshold
εr. Ideally, we do not want the model to move at all,

Figure 5: Folding Order: A small shelf could be folded in different
ways. With the root node being enclosed in a black circle, the top
folding uses a different folding order compared to the bottom folding.
Moreover, the bottom folding order produces a more plausible folded
form for this model.

however, since there is an error between the simulation
of applying forces and physically applying the forces, we330

introduce this threshold. For all of our experiments, we
set εr = 3◦. This maximum magnitude will be utilized in
Section 4.2.3 to compare the maximum force magnitudes
that the initial model and the edited model can withstand
without collapsing. We use the Bullet Collision Detection335

and Physics SDK [28] to simulate the effect of applying
forces on the model.

We refer the reader to Figure 2, for a demonstration
of semantically segmented shape, and for the Symmetry340

Groups, Joints Assignment, and the Relational Graph gen-
eration steps performed by our system.

4.2. Folding Algorithm

We interpret folding a shape as minimizing the differ-
ence between the folded shape and its convex hull. That345

is, at its folded state, the shape should be as convex as pos-
sible. The folding problem is a combinatorial optimization
problem. That is, in order to transform the input model
to a space conserving configuration, our algorithm should
solve three queries.350

• What order should be followed to fold the parts of the
model?

• How to fold a part?

• Would further splitting of some parts result in a folded
model that consumes less space compared to the original355

folded model?

Throughout this text, we refer to these three problems as
the Order, Folding, and Segmentation problems. In what
follows, we present our solutions to these queries.

4.2.1. Algorithm Overview360

Our algorithm solves the three problems above as
demonstrated in Algorithm 1. First, it solves simultane-
ously for the Order and the Folding problems in the Fold
function. After a solution for these problems is obtained,
the algorithm calls the ProposeSegmentation function to365
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check whether it is worthwhile to solve the Segmentation
problem or not. If so, it solves the Segmentation problem
by calling the Segment function, then solves again for the
Order and the Folding problems for the new parts result-
ing from the Segmentation step.370

Algorithm 1 Algorithm Overview

1: procedure FoldAndFit(Model)
2: repeat
3: InitializeModel(Model)
4: FoldedModel← Fold(Model)
5: if ProposeSegmentation(FoldedModel) then
6: Model← Segment(FoldedModel)
7: Refold← True
8: else
9: Refold← False

10: until !Refold

4.2.2. Order Optimization

The folding order of the parts of the model is of
significant importance when it comes to folding a model.
That is, for many models, deciding to fold part Pa first
then part Pb can have a significant impact on the space375

consumed by the final, folded shape. A simple example
of this is shown in Figure 5. An optimal folding order
is an order that would result in an optimal folding, a
folding that transforms the model to a plausible, space
conserving form. Our task for this step of the algorithm,380

is to find such an order.

Folding Order. We define a folding order, O, as a
permutation of the parts of the model. For example, for
a model with four parts, and the root node being the385

first part, P1, a possible order could be, O = [P3, P2, P4],
meaning that P3 should be folded first, then P2, then P4.
The root node, r, is not taken into consideration in the
folding order since it remains fixed throughout the folding
process. Therefore, for a model with n parts, the number390

of possible orders is (n − 1)!. Therefore, to find a folding
order that would lead to an optimal folding, one could
use a brute-force algorithm to search over the (n − 1)!
possible folding orders, which would be costly in terms of
speed for large values of n. Instead, we used a Genetic395

Algorithm (GA) based search to find an optimal folding
order.

The population used by the GA is a population of
possible orders, permutations, of the parts of the model.400

Each order O is a sequence of subsets, Si ⊂ P . Our first
attempt was to limit Si to only contain a single part of
P . However, experimenting with different models lead
us to the conclusion that for some models, a plausible,
folded output can only be obtained if we allow multiple405

parts to fold simultaneously. An example of such case is
demonstrated in Figure 8. Therefore, we allow each Si to

contain one or two parts. Throughout our trials we found
that if Si is to contain two parts, it is better if the two
parts are in a child-parent relationship or belong to the410

same symmetry group.

Genetic Algorithm. To fold a given model, the algo-
rithm proceeds as demonstrated in Algorithm 2. Below is
a description of the Algorithm.415

• Parameters. The user of our system sets some ini-
tial parameters to be used by the GA. The user sets
ps, the size of the population of orders O. In addition,
the user sets ne, nc and nm, which set the size of the
Elite Population, the number of pairs to be chosen for420

the Crossover operation, and the number of orders to
be considered for the Mutation operation respectively.
Finally the user sets the term sat, which states the per-
centage of the population that should be examined to
check for the saturation of the population. We refer the425

reader to Table 1 for the values set for these parameters
for all of our results.

• Initialization. The algorithm starts by initializing a
population of orders O = {O1, ..., Ops}. This is done by
first generating a population of random orders of size430

10ps each of which is composed of either subsets of car-
dinality one, subsets of cardinality two or a mix of both.
For each subset of cardinality two, the two elements of
the subset must have a parent-child relationship or be-
long to the same symmetry group. From all of these435

orders, a random set of orders of size ps is selected to
be the initial population pop.

• Evaluation. As mentioned earlier, we interpret folding
an object as transforming it to a configuration that is as
close as possible to its convex hull. Therefore, the algo-
rithm proceeds to evaluate each order of the population
using the fitness function expressed by Equation 1.

E = V (ch(P ′)) (1)

where V is a function that calculates the volumes, ch is
the convex hull function and P ′ is the set of all parts in
the model after the model was folded by the order being440

evaluated.

• Elite Population. After the initialization and the eval-
uation steps, the algorithm proceeds to sorting the pop-
ulation according to the fitness function described in
Equation 1 and it extracts the best ne elements of the445

population to be considered in the new population.

• Crossover and Mutation. The algorithm then calls
the crossover function to generate new elements from
existing elements in the population. First it selects a
pair of elements using a roulette-wheel selection method.450

Then it selects an index of the order at random after
which it swaps the remainder of both orders to generate
a new pair of orders. The algorithm further processes
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the order to ensure it is valid. This operation is re-
peated for a user specified number of times, nc. After455

the crossover stage, the algorithm proceeds to mutate a
user specified number of elements of the population nm.
Order mutation is done by interchanging the locations
of two subsets of the order.

• Saturation Check and Termination. After new ele-460

ments are generated via the crossover and the mutation
stages, a new population is formed by combining the
elite population and the crossover, mutated population.
This population is checked against the old population to
check whether or not the algorithm reached a saturation465

stage where the new population does not vary signifi-
cantly from the original population. That is, the algo-
rithm checks a percentage, sat, of the current and the
old populations, and compares them against each other.
If both percentages in the old and the current popula-470

tions remain equal for more than three iterations, then
a saturation stage is reached. Once a saturation stage is
reached, the algorithm terminates, picks the best fold-
ing order, folds the model according to that order and
returns the folded model.475

Algorithm 2 Fold Model

1: function Fold(Model)
2: Saturated← False
3: Pop← InitalizePopulation(ps)
4: Pop← EvaluatePopulation(Pop,Model)
5: while !Saturated do
6: EPop← ExtractElitePopulation(Pop, ne)
7: CPop← CrossOverPopulation(Pop, nc)
8: MPop←MutatePopulation(CPop, nm)
9: MPop← EvaluatePopulation(MPop,Model)

10: NPop← EPop+MPop
11: Saturated← IsSaturated(Pop,NPop)
12: Pop← NPop

13: O ← GetBestOrder(Pop)
14: FoldedM ← FoldInOrder(O,Model)
15: return FoldedModel
16:

17: function EvaluatePopulation(Pop)
18: for i = 1→ i = size(Pop) do
19: FoldedM ← FoldInOrder(Pop[i],Model)
20: Pop[i].fitness ← EvaluateF itness(FoldedM)

return Pop

4.2.3. Folding

After a folding order is specified, our algorithm folds
the model according to this order. This step constitutes
the function FoldInOrder mentioned in Algorithm 2. In
what follows we describe how to fold each subset Si of an480

order O.

Folding Energy. Folding a part amounts to bringing
it as close as possible to another fixed part in the model
so that the new folded configuration consumes less space485

compared to the original one. Therefore, folding the ele-
ments of Si amounts to bringing them very close to some
fixed subset of parts, Sif , in the model. That is, for each
element of Si, we need find an axis/angle combination
such that the angle is the maximum, collision-free angle490

that would bring the elements of Si to Sif . If |Si| = 1,
then |Sif | = 1, and will contain the parent of the element
in Si. However, if |Si| = 2, and the elements in Si are in a
parent-child relationship then |Sif | = 1, and will contain
the grandparent of the child node in Si. However, if the495

elements in Si belong to the same symmetry group, then
|Sif | = 2, and will contain the two parents of the two
elements. To optimally fold a subset Si we must consider
the effect that this folding will have on the model both
locally and globally. That is, the folding of Si should500

minimize the space occupied by Si along with Sif . In
addition, the folding must minimize the space occupied
by the model as a whole.

We define the folding measure of folding a set of parts505

Si as a weighted sum objective function that is a variant of
the fitness function described in Equation 1. The folding
energy is proportional to the volume of the convex hull
containing the parts in Si along with their fixed set, Sif ,
and the convex hull containing all the parts of the model510

as stated in Equation 2.

E1 = wg · V (ch(P ′)) + wl · V (ch(Si, Sif )) (2)

where wg and wl are weights set by the user, for all of the
results presented in this paper, we set wg = wl = 0.5.

Therefore, to fold the parts in Si together, we solve for515

a set of transformations for the parts in Si that minimizes
the folding measure stated above. These transformations
must also posses two other characteristics. First, they
should not allow the parts in Si to penetrate each other
or other parts of the model. In addition, the path taken520

by the parts in Si to their folded configurations must be
continuous and collision free.

Transformation. Since we only allow rotational joints
in our system, transforming a part, Pi amounts to rotat-525

ing it about the center of the joint connecting it to its
parent part, ParPi

. To transform a part, we first analyze
its position in the relational graph, and depending on the
path that it lies on, we either transform it using a sim-
ple hierarchical approach or using a more complex motion530

constraint solvers.

• Hierarchical Approach. If a part, Pi does not belong
to a cycle in the relational graph, then its motion will
only affect its descendants in the graph and therefore,
could be simply transformed using a simple Hierarchical
Approach. We denote by ti the transformation matrix
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of Pi. This matrix is computed as shown in Equation 3.

ti = Trans(cori) ·Ri · Trans(−cori) (3)

where Trans(cori) is a translation matrix by the vector
cori, which is the center of the joint connecting Pi to
ParPi

. Moreover, Ri is a rotation matrix that is equiv-
alent to rotating Pi about the origin by a quaternion,535

qi. We follow the same conversion found explained by
Akenine-Moller et al. [29] to obtain a rotation matrix

R from a quaternion q =
(
qx qy qz qw

)t
.

Moreover, since we are using a hierarchical represen-540

tation, the final transformation matrix, Ti of Pi is
Ti = TParPi

· ti. Where TParPi
is the total transforma-

tion of ParPi
.

• Motion Constraints Approach. Moving a part, Pi545

that belongs to a cycle in the relational graph could
result in moving nodes that are not in the descendants of
Pi, and therefore, a simple hierarchical approach would
not transform all the parts correctly. Instead, motion
constraints must be set to correctly solve for the motion550

of all parts in the graph depending on the motion of Pi.
Examples of such models are shown in Figures 10 and
13. We use the Bullet Collision Detection and Physics
SDK [28] to solve for the motion of such parts.

Functional Feasibility Energy. A model that serves555

a certain function, should still be able to serve the same
function after editing, that is after adding joints between
its parts. We interpret the functionality of a part as
the forces that it can withstand without collapsing. For
instance, the functionality of a table, amounts to being560

able to hold objects of a range of weights on its top
without collapsing. We encode this functionality as the
maximum magnitude of a force applied to the table top
as shown in Figure 6.

565

Adding joints between different parts of a model
weakens the model. That is, it reduces the maximum
magnitudes of the forces that the model can handle with-
out collapsing. However, not all joint placements weaken
the model equally. That is, for a joint j placed between570

two parts Pa and Pb, the joint location could dramatically
affect the functional feasibility of the model. As shown
in Figure 6, placing the joints on the outer sides of the
legs makes the table unstable and therefore functionally
infeasible, while placing the joints on the inner sides of575

the legs makes the table functionally feasible. Therefore,
in addition to occupying less space, our framework aims
to edit the model such that it can withstand forces that
are equal in direction, location and are comparable, up
to a user defined value, to the maximum magnitudes,580

calculated in the initialization step, that the initial model
can bare without collapsing.

Figure 6: Functional Feasibility: a) Original table model with user
specified force locations and directions, b) unstable case, after insert-
ing one joint between the right leg and the tabletop on the outer side
of the leg, applying the force in red, with the maximum magnitude
obtained in the initialization step, makes the table unstable, c) un-
stable case, after inserting two joints on the outer sides of both legs,
and applying the force in the middle, the table becomes unstable, d)
stable case, adding both joints on the inner sides of the legs, makes
the table stable, even when all forces are activated.

Users of our framework set the location, and the direc-
tion of the forces that they think define the functionality585

of the model. With this in mind, we define the functional
feasibility energy for a force i as stated in Equation 4.
Our framework will seek to minimize this energy.

E2,i =

∞,
‖mfc,i‖2
‖mfo,i‖2

< εf

0,
‖mfc,i‖2
‖mfo,i‖2

≥ εf
(4)

where ‖mfo,i‖2 is the maximum magnitude of force i590

that the model can withstand originally, ‖mfc,i‖2 is
the maximum magnitude of force i that the model can
withstand at a certain configuration, i.e, a certain joint
combination.

595

The aim of this energy term is to direct our algorithm
to finding the folding order, folding angles and axes
combinations that would produce the most compact
model such that it supports a minimum percentage of the
maximum forces that the original model can withstand.600

We define the functional feasibility energy for a force i
as the ratio of the maximum force magnitude applied to
the current configuration versus the original maximum
magnitudes of force i applied to the original, fixed model.
This directs the framework to favoring joint placements605

that would enable the model to withstand a force with
a maximum magnitude that is greater than or equal to
a percentage, εf , of the original maximum magnitude of
force i. For Instance, if placing a rotational joint reduces
the functional stability below εf , compared to placing610

a fixed joint, a fixed joint is favored by this energy function.

Combined Energy. Our framework seeks order, joint
and angle combinations that would transform the model
to a more space convenient configuration while maintain-615

ing a minimum functional feasibility for the edited model.
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Figure 7: Competing Goals: a) The original bunk bed model with the
locations and directions of the user supplied forces shown in green,
b) bottom force is active, with magnitude equal to εf = 0.7, the
bottom force moves the bottom bed with an angle above εr, making
the model unstable as it is not supported by anything other than the
back of the bunk bed, at εr = 3◦, the same applies for the top bed,
the outcome of the folding produced by our algorithm is shown in c)
using εf = 1, in d) εf = 0.7 and in e) εf = 0.5. Note that when εf
is set to a high value in ’d’, the framework placed joints between the
top bed and the ladders, and fixed the top and the bottom beds to
the back.

We formulate this goal as a summation of the folding
energy, E1, stated in Equation 2 and the functional
feasibility energy for a force i, E2,i, stated in Equation 4.
This formulation is demonstrated in Equation 5.620

E = E1 +

nf∑
i=1

E2,i (5)

where nf is the number of user specified forces.

For some cases, as the one shown in Figure 7, E1 and
E2 become competing goals, at this point it is left up to625

the user to favor foldability over functional feasibility or
vice versa. Adjusting εf generates results that trace a
set similar to a Pareto Optimal Set, at one end of the
set foldability is preferred, at the other end, functional
feasibility is preferred. An example of this set for the bunk630

bed model is shown in Figure 7.

Angle/Axis Optimization. Given a subset of parts
Si to fold, the algorithm optimizes for the angles and
axes of the parts in Si that would minimize the energy635

described in Equation 5. The objective here is to fold each
element of the Si as much as possible about its different
rotation axes and pick the folding that best minimizes the
objective function mentioned in Equation 5. An overview
of this process is demonstrated by Algorithm 3. Even640

though the goal of finding the best angle/axis combination
that minimizes Equation 5 does not change depending on
whether the node at hand belongs to a cycle or not in
the relational graph, the search method used is different
depending on whether the node belongs to a cycle or not.645

• Node not Belonging to a Cycle. For nodes that
do not belong to a cycle, if the set Si contains only
one element, the algorithm searches for the maximum
rotation angle about each of the possible rotation axes650

of the element at hand. This is done by iterating
over all rotation axes and incrementally searching for
the maximum angle by which the element can rotate
without causing any collisions in the model. That is for
each axis, we start by angle=0 and keep incrementing655

the angle by increments of 5◦ till we reach 180◦ or
collide with another part, whichever comes first. For
each (axis, angle) combination, the objective function is
evaluated and the result is stored in a scores structure.
After all rotation axes have been processed, the best660

score is chosen from the scores structure and its
respective (axis, angle) combination is applied to the
model to fold Si.

If Si contains multiple elements, the algorithm searches665

for a combination of axes and angles (an axis and
angle for each element) that would minimize the
objective function. It does so by traversing recursively
all possible axes combinations, and calculating their
respective maximum angle by which each element670

can rotate. For all (axes, angles) combinations, the
scores structure is maintained and updated as in the
single element case. The best score is then picked
from the scores structure and its respective (axes, an-
gles) combinations are applied to fold the elements in Si.675

When we come to folding multiple parts simultaneously,
some parts might hinder other parts from folding by
larger angles due to collision problems. Therefore,
to solve this problem and ensure that the parts are680

folded to their maximum angles, we repeat the folding
multiple times until the outcome of the folding does not
change. An example of this case is shown in Figure 8.

• Node Belonging to a Cycle. Finally, if we come685

to searching for the folding axis of a part, Pi that
belongs to a cycle in the relational graph, then, in
addition to rotating about all the axes of Pi we must
also assign axes to all the parts that belong to the
cycle in which Pi falls. For example, in the folding690

bed model in Figure 13, the algorithm will pick either
the part of the bed closer to where one would rest
his/head, or the part closer to where would rest his/her
feet as the root. This will lead to a graph that has
a cycle, the sides of the bed and the head rest and695

feet rest will form this cycle. Therefore to test for
the rotation of any of these parts about an axis, one
must also assign axes to the remaining parts of the
cycle so the part could physically move. Therefore,
if the algorithm encounters a node that falls within700

such a cycle, instead of searching for the rotations over
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Figure 8: Folding pairs: a) Original model to be folded, b) and c) our
algorithm’s attempt to fold the seat-back and the planks above it on
the right side of the model. In b), the algorithm folds the planks on
the right, it stops to avoid colliding with the left part of the model. In
c), the algorithm folds the seat-back on the right and stops to avoid
colliding with the topmost part of the model. In d) the algorithm
folds both the seat-back and the top planks on the right together
and reaches a configuration similar to c), however, since we repeat
the folding of pairs in e) we reach a plausible, folded configuration
of these parts.

its axes, it incrementally searches for all the combi-
nations of the axes of the parts that fall within the cycle.

For each axes combination, we virtually install hinges705

and motors supplied by the Bullet Collision Detection
and Physics SDK [28] to move the nodes that belong
to the cycle about their designated axes. We install
hinges on all the nodes at their respective axes and set
the hinge limits to be [−π, π] to enable all the nodes in710

the cycle to move freely. We then install a motor on the
part that we wish to move. The motor then moves the
part about its designated axis and therefore moves the
other parts in the cycles in a motion that is physically
correct. The motor continues to move the part till a715

collision is encountered. At this point we get the angle
the motor stopped at, and set that as the folding angle
for Pi.

4.2.4. Segmentation

Our algorithm for solving the Ordering and the Folding720

problems is capable of folding a model to a plausible,
space conserving configuration if the model is known to
be foldable as in Figures 7, 10, 11, 13, and 14. However,
if the model is not foldable by design, our algorithm will
produce a configuration that is space conserving but not725

necessarily plausible. This gives rise to the question,
can we slightly manipulate the shape so that it would
consume less space and look more plausible at its folded
state compared to the original folding? In what follows,
we present our solution to this problem.730

Possible operations to consider to manipulate a shape
include scaling, smoothing, clipping and segmenting a
mesh. For our proposes, we seek a shape manipulation

Figure 9: Segmentation: a) the blue part’s Folding Potential is not
maximized after folding due to the seat attached to it, if the blue
part is to come any closer to the topmost part of the model, the seat
will collide with the topmost part. The blue part is nominated for
segmentation, with a segmentation location and direction shown in
red and orange respectively. The purple part belongs to the same
symmetry group as the blue part, therefore it is nominated for seg-
mentation as well. b) the outcome of the segmentation step done
on the blue and the purple parts in a), four segments, with the blue
part and the purple part belonging to one symmetry group, and the
grey and orange parts belonging to another symmetry group. c) the
folding outcome of the bench model is of high concavity, and the part
responsible the most for this high concavity is the blue part. There-
fore the blue part is nominated for segmentation based on concavity
with a segmentation location and direction shown in red and orange
respectively. d) the outcome of the segmentation step done on the
blue part in c).
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Algorithm 3 FoldInOrder

1: function FoldInOrder(O,Model)
2: for i = 1→ i = size(O) do
3: S = O[i]
4: if S.length()==1 then
5: NModel← FoldSet(0, S,Model)
6: else
7: NModel←Model
8: repeat
9: Model← NModel

10: NModel← FoldSet(0, S,Model)
11: until AreSimilar(NModel,Model)

12: function FoldSet(ind,S,Model)
13: if ind > S.size() then
14: Score = PickBestScore(Scores)
15: FoldedModel =

ApplyScoreData(Model, Score)
16: return FoldedModel
17: mind = S[ind]
18: for i = 1→ i = Model[mind].axes.size() do
19: a←Model[mind].axes[i]
20: θ ← PickMaxAngle(mind,Model, a)
21: Model[mind].a← a
22: Model[mind].θ ← θ
23: if ind == S.size() then
24: Score = EvaluateFolding(Model)
25: Scores.Push(Score)
26: else
27: return FoldSet(ind+ 1, S,Model)

operation that would not change the overall look of the735

shape, and would coincide with our goal of introducing
joints that would make the model consume less space in its
folded state. Therefore, we decided to manipulate a shape
using segmentation, since it basically amounts to dividing
a part into multiple parts and adding joints between them.740

Throughout our attempts to fold shapes that are not
foldable by design we came to the realization that there
are two main features of these shapes that prevent them
from having a plausible folded configuration. These745

features are Folding Potential and Concavity.

Folding Potential. Throughout our trials, we noted
that the parts of a shape that is foldable by design tend
to fold over their respective rotation axes by an angle that750

would bring them very close to their parents. This angle
is ninety degrees for all of our test models. Therefore,
after folding a shape, we check the folding angle of each
part and nominate the part with the smallest folding
angle for further segmentation.755

Concavity. Since we define folding as bringing a shape
to a configuration that is as convex as possible, a folded
configuration that is concave is in direct opposition of
our goal. Therefore, after folding a shape, we check each760

part to see if it is causing the folding to be concave.
That is, for each part, we shoot a number of rays that is
proportional to its volume from the surface of the part
to the convex hull containing the folded shape. From
these rays, we pick the rays that do not hit any other765

part before hitting the convex hull. We sum the lengths
of these rays and store this sum as the concavity score of
the part. Finally, we nominate the part with the largest
concavity score for further segmentation.

770

Segmentation Algorithm. As mentioned earlier, we
wish to slightly modify the shape so that it posses a
plausible folded configuration. Therefore, we choose to
only apply one type of segmentation at a time. That
is, we check if the Folding Potential of a part is greater775

than zero, if so, the part is segmented and no check for
Concavity is performed. Otherwise, the Concavity check
is applied, and depending on the Concavity score, the
algorithm decides whether to segment the model or not.
This process is outlined in Algorithm 4.780

After a part is nominated for segmentation, all that re-
mains is to determine how we will segment the part. More-
over, we need to decide into how many parts will we divide
the part, at what location, and in what direction.785

• Number. At each splitting iteration, we split a part
into two parts. We chose to split a part into two parts
only as we wish to add as few parts as possible to our
original model to reduce the complexity of the order
generation and folding phases of our algorithm. In ad-790
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Algorithm 4 Segmentation

1: function Segment(Model)
2: P = C = False
3: [P,NModel] = SegmentForPotential(Model)
4: if !P then
5: [C,NModel] =
SegmentForConvexity(Model)

6: if P or C then return NModel
7: else return Model

Figure 10: Folding of models with cycles: a) shows the Multi-layer
table model with the user specified forces indicated in red, b) and
c) shows selected iterations of how our algorithm folds the model
at εf = 0. d) shows the shelf model with the user specified forces
indicated in red, e) and f) show selected iterations of how our algo-
rithm folds the model at εf = 0.8. The motion of the parts in these
models were implemented using the ’Motion Constraints Approach’
mentioned in Section 4.2.3

.

dition, the algorithm analyzes the concavity and folding
potential after a model is folded and though would split
the model further if the need arises.

• Direction. Splitting a part requires a splitting direc-
tion and a splitting point. The splitting direction should795

be a direction at which the object varies most so that
the splitting would contribute to a folding result that is
more compact since the the part is split into two parts
along this direction. Therefore we run a Principal Com-
ponent Analysis on the part to be split, and choose the800

splitting direction to be the component with the greatest
variance to be the splitting direction. For some exam-
ples, it proved better to use the component with the sec-

Figure 11: Folding of the table model: a) a picture of real life model
that is half folded obtained from [30], b) through e) demonstrate
selected iterations that our system takes to fold the table at εf = 0.9.

ond greatest variance. Therefore we run the algorithm
with both choices and choose the result that is more805

compact. We refer the reader to Table 1 for the choice
of PCA vectors used for each model we segmented.

• Location. We wanted to split a part at a plausible lo-
cation, a location that splits the part into two semanti-
cally meaningful parts that one would find in a place like810

Ikea. Therefore, using the convex decomposition infor-
mation obtained from the initialization step, we choose
locations that are at the intersection of convex clusters
to be candidates for the splitting location. We also wish
to split the part into two parts that are somewhat sim-815

ilar in terms of size, splitting a part into parts that are
not proportional is not desirable. Therefore, among the
points present at the intersection of convex clusters, we
look for the one closest to the center in the splitting
direction obtained above. This point is expressed more820

formally in Equation 6.

arg min
sp
‖(sp − c) · d‖2 (6)

s.t. sp ∈ ccp

where sp is the location that we are looking for, c is
the center of the part, d is the splitting direction ob-
tained above and ccp is the set of points present at the
intersection of convex clusters. If the part to be split is825

composed of only one convex cluster as in the seats in
Figure 16, then we split at the center of the part.

• Symmetry Group. If the part to be split belongs to
a symmetry group, then we split the part symmetric
to it as well. The splitting point will be reflected over830

the symmetry plane and the splitting direction would
remain the same. For each reflectively symmetric pair
of the newly generated parts, a new symmetry group
is generated and added to the model. An example of
the segmentation step performed by our system based835

on Folding Potential and Concavity on the Pergola and
the bench models respectively is demonstrated in Figure
9.

5. Results

We used our system to generate two categories of results.840

The first category demonstrates the ability of our system
to fold models that are foldable by design in a manner that
is similar to their folded state in real life. Examples in this
category include a bunk bed as in Figure 7, a multi-layer
table as in Figure 10, a foldable table as in Figure 11,845

a folding bed as in Figure 13, and a desk-crate as in
Figure 14. The second category demonstrates the ability
of our system to transform models that are not foldable
by design to foldable models. Furthermore, it proposes
segmentation steps that would make the original model850
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Figure 12: Folding of the kitchen model: a) kitchen model with three segments and the user specified forces indicated as red arrows, b) a
real life picture of the model in its original and folded states obtained from [31], c) and d) demonstrate the folding iterations taken by our
algorithm to fold the model, e) the result of the segmentation step explained in Section 4.2.4, applied on a), the model is segmented vertically,
resulting into a model with five segments, the new segments are displayed using a different texture compared to the older ones. f) through h)
demonstrate selected iterations that our algorithm takes to fold the newly segmented model at εf = 0.9.

Figure 13: Folding of the bed model: a) and b) show pictures of the
real life model in its original and folded states respectively obtained
from [32], c) the original model with the user specified forces indi-
cated by red arrows, d) through f) demonstrate selected iterations
that our system takes to fold the model at εf = 0.8.

foldable. Examples in this category include a shelf as in
Figure 10, a kitchen as in Figure 12, a pergola as in Figure
15, a bench as in Figure 16, and a sofa-bed as in Figure 17.

Our algorithm proposes segmentation that is similar855

to the segmentation of the models in real life. That
is, given a segmented model, if we merge some of its
segments, and pass the model to the algorithm to fold,
the algorithm will recover the original segmentation and
fold the model in a manner similar to the way it was860

folded in real life. This is demonstrated in the sofa-bed
and the kitchen examples in Figures 12 and 17 respectively.

Table. 1 documents the figures recorded for each model
using our system. We compute the energy of the part865

before and after folding as described in Equation 1.
Furthermore, we compute the saved energy ratio (svr)

Figure 14: Folding of the desk-crate model: a) real life pictures of
the model in its original and folded states obtained from [33], b)
Original desk-crate model with the user specified forces indicated
by the red arrows. , c) through f) demonstrate selected iterations
that our algorithm takes to fold the model. g)the folded model in f)
cannot withstand 60% of the maximum magnitudes handled by the
original model as the chair begins to move, h) and i) show a folding
that can handle 60% of maximum magnitudes of the original forces,
that is, at εf = 0.6. It installs fixed joints for the chair.

as 1-(E’/E), where E is the energy of the shape at its
initial state, and E’ is the energy of the shape after
it is folded. Our system saved more than 50% of the870

space occupied by the initial model for most of the models.

As for the animation of the results, since we are using
quaternions to represent the rotation of each part, inter-
polating between the initial state of a part and its folded875

state was done using SLERP, a quaternion interpolation
technique explained in the work of Shoemake et al. [35]. As
for the animation of the parts that contain cycles within
their respective relational graph, we use the Bullet Col-
lision Detection and Physics SDK [28] to animate the880

folding for these models. Please refer to the supplemen-
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Table 1: Results Summary: For each model we state its original energy, E, folded energy, E’, saved energy ratio, ser, number of parts, p,
number of connection points, c, total time taken for folding, segmentation and refolding, t, the type of segmentation applied to the model st,
a Folding Potential segmentation is denoted as f and a Concavity based segmentation is denoted by c, the number of parts segmented by the
algorithm, sn, which PCA vector was used as a segmentation direction pca, size of the population used to search for the folding order ps, the
minimum stability ratio εf , the population saturation percentage, sat, and the number of forces applied to the model nf . we list multiple
results for models, where varying parameter εf gives interesting and meaningful variations.

model εf E E’ ser(%) p c t(mins) st sn pca ps sat(%) nf

Bunk Bed
0 4.23 1.89 55.3 5 16 0.035 na 0 na 1 20 na
0.5 4.23 1.89 55.3 5 16 2.48 na 0 na 2 20 4
0.7 4.23 3.39 19.89 5 16 2.53 na 0 na 2 20 4

Table
0 3.86 1.47 61.9 5 16 0.39 na 0 na 7 20 na
0.9 3.86 1.47 61.9 5 16 5.69 na 0 na 7 20 2

Sofa/Bed
0 6.46 3.73 42.2 6 20 0.54 c 1 2nd 5 20 na

0.5 6.46 5.34 17.34 6 20 10.94 c 1 2nd 5 20 3

Bench
0 5.39 1.91 64.59 7 24 0.23 c 2 1st 1 20 na
0.5 5.39 2.60 51.77 7 24 9.61 c 2 1st 4 20 2

Kitchen
0 8.37 4.92 41.22 5 16 0.9682 c 2 2nd 4 20 na

0.9 8.37 4.92 41.22 5 16 11.42 c 2 2nd 4 20 5

Desk-Crate
0 2.60 0.98 62.10 10 36 10.18 na na na 12 40 na
0.6 2.60 1.27 50.91 10 36 61.37 na na na 12 40 3

Bed 0.8 2.42 0.63 74.0 7 28 134.3 na na na 10 20 3

Multi-layer Table 0 6.68 2.46 63.15 11 64 95.84 na na na 10 20 na

Shelf 0.8 4.02 1.32 66.87 6 24 8.44 f 2 1st 5 20 2

Pergola
0 6.46 3.73 42.25 6 24 8.11 f 2 1st 10 20 na
0.7 6.46 4.28 33.75 6 24 105.59 na na na 10 20 4

Figure 15: Folding of the pergola model: a) the original pergola
model with nine segments, the user set forces indicated by red ar-
rows,b) through d) show selected iterations that our algorithm takes
to fold the model, e)the sides of the pergola are segmented into two
segments, each with a different texture, resulting in a pergola model
with eleven segments, f) through h) show selected iterations that our
algorithm takes to fold the newly segmented model using εf = 0, i)
the model becomes unstable if a hinge is placed on the outer side of
the sides, or on the top side of the seat. That is, applying a force to
the side will result in the side moving, and as a result, the ground will
cause the legs of the seat to push the seat upwards, and so the seat
moves as well, instead our algorithm places fixed joints for both seats
and both sides to fold the model with using εf = 0.7. j) through l)
show selected iterations are shown that fold the model.

Figure 16: Folding of the bench model: a) the original bench model
with five segments, the user set forces indicated by red arrows,b)
through d) show selected iterations that our algorithm takes to fold
the model, e)the seats of the bench are segmented into two segments,
each with a different texture, resulting in a bench model with seven
segments, f) through h) show selected iterations that our algorithm
takes to fold the newly segmented model using εf = 0, i) the model
becomes unstable if a hinge is placed on the top side of the seat,
applying a force on the seat will result in a collapsing seat, instead
our algorithm places a joint on the side of one seat, and a joint on
the bottom of the other seat to fold the model with using εf = 0.5.
j) through l) show selected iterations are shown that fold the model.
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Figure 17: Folding of the sofa/bed model: a) the original bunk bed
model with five segments and the user specified forces indicated by
red arrows, b) through d) demonstrate the steps our algorithm takes
to fold the model in a), e) the result of the segmentation step applied
on a), the sides of the bed are split into two, each with a different
texture f) through h) demonstrate selected iterations that our algo-
rithm takes to fold the newly segmented model with εf = 0. i) at
εf = 0.5, the model becomes unstable as the sides and both beds be-
gin to move. j) through l) show selected iterations that our algorithm
goes through to fold the model with εf = 0.5.

Figure 18: Sliding Window: Our framework only handles fixed, and
rotational joints, and therefore, can not fold a model such as the
one in the photo because the windows are attached to the frame via
sliding constraints. Image obtained from [34].

tary material for a video of the folding process for some of
these models.

6. Conclusion and Discussion

We present a folding pipeline that solves three main885

problems to fold a given shape, namely Order, Folding
and Segmentation. It solves simultaneously for the folding
order and the folding parameters of each part to fold a
given shape while keeping its functional feasibility up to a
user-defined threshold. Our system is capable of folding a890

shape that is foldable by design using our solution for the
Order and the Folding problems. However, if the shape is
not foldable by design, we incorporate one more step, that
is the Segmentation step to make it fold into a plausible,
space conserving configuration.895

Limitations. Our decision choices induce several
limitations on our system. In what follows we discuss
limitations of our algorithm and how they might impact
the results.900

• Genetic Algorithm. Our algorithm relies on a genetic
algorithm approach to obtain an optimal folding order.
The speed of this approach relies on the initialization
of the initial population. That is, if the optimal order905

is present in the initial population, or an order that
is close to optimal, the algorithm will quickly find it.
However, if the optimal order is far from any element
in the population, the algorithm will still find it, but it
will take more time.910

• Segmentation. We limit the number of splits to two
splits per each segmentation iteration. This choice is
mainly to minimize the editing done to the original
model and to help keep the complexity of the folding915

order and the folding angle/axis combinations to a min-
imum. Of course this comes at the cost of overlooking
better segmentation strategies that could help make
the model more compact at its folded state.

920

• Joint Types. We chose to limit the joint types
used in our algorithm to two types, fixed joints and
rotational joints. This limits the types of models that
our algorithm can handle as shown in Figure 18. We
plan to explore other types of joints, like slider, and925

multi-axis rotational joints in future work.

Future Work. There are several areas that could be
explored further to build on this work.

• Functional Feasibility. We proposed a method that930

determines the locations and the types of the joints to
place on the different parts of the model to make the
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model foldable while keeping its functionality up to a
user-defined threshold. In some cases, both goals do not
compete, but in many cases they do. For future work,935

we plan to introduce a ’stiffness’ factor to the joints to
make it harder, requiring forces of higher magnitudes,
to move some joints compared to others. This factor
will decrease the competition between the folding and
the functional feasibility objectives as it will allow940

placing joints that are not fixed to allow folding, and
at the same time, will increase their stiffness so they
are not easily moved, and therefore the model will be
harder to collapse.

945

• Other Extensions. We would like to expand our
framework to fold more classes of objects, like cars and
construction vehicles. Furthermore, we would like to
incorporate a fabrication component with our method
to place the physical joints on the actual parts and950

produce them as real life pieces of furniture.
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