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ABSTRACT
This is the supplementary material for Screen-Space Normal Distri-

bution Function Caching for Consistent Multi-Resolution Rendering
of Large Particle Data.

1 PROJECTED SOLID ANGLE MEASURE

The solid angle measure 6(@,,) corresponding to a solid angle @,
around a normal m = (0, ¢) is given by (see Jakob [1] or Veach [2])

do(wy) == sin0dod¢, )

which is the differential solid angle measure corresponding to the
differential area d@,, = sinBdO d¢. The projected solid angle mea-
sure 6 (®,,) with respect to a fixed direction of projection n is
then

do(0,) = |0 -n|do (o). )

The (Lebesgue) integral of a function f(-) over a region 2 C Q on
the hemisphere Q with respect to the projected solid angle measure
is

/@ f(@)dot (o) = /@ f(®)|o-n|do(o). 3)

In our case, the direction of projection n is usually either orthogonal
to screen space, i.e., orthogonal to the output image plane, or it
is a given normal direction m. We observe that integration of the
identity function (f(®) := 1) over the whole hemisphere Q, with
respect to the projected solid angle measure, yields the area of the
unit disk Q1
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Figure 1: Projected solid angle measure. The projected solid angle
measure ¢ (w,,) for a solid angle w,, about a direction m on Q is the
orthogonal projection of the solid angle @,, onto Q*, orthogonal to n.
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Figure 2: Projected solid angle measure visualization. We visu-
alize the projected solid angle measure per bin for all of our three
binning techniques using a different number of bins. The projected
solid angle measures are color coded such that the brighter the color,
the bigger the measure.

2 FILTERING OF SURFACE NORMALS
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Figure 3: Filtering of surface normals. We observe a single pixel
footprint that maps to complex surface geometry (a “v-groove” surface).
These intricate details (i.e., surface normals) cannot be captured
by linear filtering of the normals. Left: A linear combination (e.g.,
averaging) of all normals results in a single normal that does not
represent the surface accurately. Right: For high-quality visualization,
it is necessary to capture the entire distribution of surface normals in
the pixel footprint, which leads to a screen-space normal distribution
function (S-NDF) for this pixel.



3 S-NDF EXAMPLES 4 S-NDF DISCRETIZATION
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Figure 4: One Particle per Pixel: a) a pixel that sees one sphere, b) a bins
visualization of the probabilities in the S-NDF bins of a pixel that sees
one particle.
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Figure 7: Visualization of different S-NDF discretizations with
and without pre-integration. We render a transfer function using
the Projected Normals binning technique using 64, 256, and 1024

bins (rows). For each bin, we show the rendering output with no
pre-integration and with pre-integration using 4, 16, 64 and 256 dis-

cretizations.
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Figure 5: Two Non-Overlapping Particles per Pixel: a) a pixel that sees
two non-overlapping spheres, b) a visualization of the probabilities in
the S-NDF bins of a pixel that sees two non-overlapping particles.
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Figure 6: Two Overlapping Particles per Pixel: a) a pixel that sees
two overlapping spheres, b) a visualization of the probabilities in the
S-NDF bins of a pixel that sees two particles that overlap.
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Figure 8: Capturing specular highlights. Pre-integration (with 4
dicretizations) helps with capturing small highlights as shown when
the specular exponent « is high (512 and 256), when the specular
exponent is low, the difference between the transfer functions with
and without pre-integration is not noticeable.



Figure 9: Different zoom levels of a large particle data set consisting of 48 million particles (laser ablation). On the left, individual sphere glyphs
are clearly visible when zoomed into the data set, and aliasing is not an issue. From left to right: Our approach produces anti-aliased visualizations
even when the particles become significantly smaller than a single pixel footprint, and the renderings are consistent across all zoom levels.
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Figure 10: Progressive refinement of a large particle data set consisting of 12.5 million particles at an output resolution of 1920x1080 using one
sample per pixel per progressive refinement iteration. » is the number of iterations (i.e., number of samples in each S-NDF), r the computation
time.
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Figure 11: Interactive exploration. Close-ups (a) and (b), and
overviews (c), (d), and (e), of the laser ablation data set. Images
in one row use the same S-NDF, but are lit by different light sources.
Because of orientation, some features are invisible under certain light
directions (left), but are visible when moving the light source. The
particle radius was increased in (a) and (b) to highlight mesoscopic
features, while it was decreased in (d) and (e) to highlight the interior
features that would otherwise be occluded. (e) uses a transfer function
hand-drawn by the user during progressive refinement with real-time
feedback from the visualization.



