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Figure 1: Our visual analysis workflow comprises several linked views: The set of patch descriptors (curvature distributions) is visualized
after (a) k-medoids clustering, and (b) t-SNE dimensionality reduction and visualization. (c) Interface surface of a selected patch color-coded
by Gaussian curvature. (d,e) Parallel coordinates views for (d) performance metrics, and (e) simulation parameters. The highlighted lines
represent the currently selected patch. (f) Histogram of a selected performance indicator after filtering in the parallel coordinates views.

Abstract
The structure of Bulk-Heterojunction (BHJ) materials, the main component of organic photovoltaic solar cells, is very complex,
and the relationship between structure and performance is still largely an open question. Overall, there is a wide spectrum of
fabrication configurations resulting in different BHJ morphologies and correspondingly different performances. Current state-
of-the-art methods for assessing the performance of BHJ morphologies are either based on global quantification of morpho-
logical features or simply on visual inspection of the morphology based on experimental imaging. This makes finding optimal
BHJ structures very challenging. Moreover, finding the optimal fabrication parameters to get an optimal structure is still an
open question. In this paper, we propose a visual analysis framework to help answer these questions through comparative vi-
sualization and parameter space exploration for local morphology features. With our approach, we enable scientists to explore
multivariate correlations between local features and performance indicators of BHJ morphologies. Our framework is built on
shape-based clustering of local cubical regions of the morphology that we call patches. This enables correlating the features of
clusters with intuition-based performance indicators computed from geometrical and topological features of charge paths.

1. Introduction

Organic photovoltaic solar cells (OPVs) are a promising flexible
low-cost alternative to traditional solar cells. An OPV is a device
composed of three main parts (Fig. 2): the two electrodes (anode
and cathode), and a layer sandwiched between the electrodes called
the Bulk-Heterojunction (BHJ) [WG12]. The BHJ is a blend of two
materials: the donor and the acceptor. Donor and acceptor are sep-
arated by a surface called the interface, whose morphology signifi-
cantly influences the overall performance of BHJ materials.

Fig. 2 illustrates the photovoltaic process that occurs in a se-

quence of stages: photon absorption, exciton generation, exciton
diffusion, charge separation, and charge transport. At each stage of
the photovoltaic process, its performance is critically affected by
the morphology of the BHJ. The objective of designing good BHJ
materials is to maximize the generated photoelectric current.

However, the analysis workflow currently employed in practice
for finding optimal BHJ structures still solely depends on the use of
global statistics. First, scientists create simulators for the BHJ gen-
eration process. These simulators usually produce synthetic BHJ
volumes in the form of regular scalar fields. From these volumes,
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Figure 2: Illustration of the four stages of the photoelectric current
generation process in a BHJ morphology: I. photon absorption, II.
exciton generation, III. exciton diffusion, IV. charge separation and
transport. Right: Structural features that influence the quality of
these stages, ultimately affecting the efficiency of OPV solar cells.

structure metrics such as domain size and acceptor-donor inter-
face area are computed. Finally, global statistics over the entire
morphology are computed to characterize it with respect to per-
formance. However, performing comparisons via global statistics
only has limitations:

• Global statistics ignore the dependency among the different
stages of the photoelectric current generation. For example, a
local region might have features with excellent exciton diffusion
probability. However, at the same time it might also have features
that result in low photon absorption probability. In this case, it is
very likely that no excitons will be generated at all. In global
statistics for exciton diffusion, however, these “dead zones” will
have the same contribution as active regions with many excitons.

• Designing efficient BHJ materials requires simulating and com-
paring hundreds of different possible morphologies with dozens
of simulated fabrication parameters each, while understanding
their local performance characteristics and their correlations
with local morphology and simulation parameters. Global com-
putations alone cannot uncover these correlations. A detailed
comparison requires additional local visual analysis.

We address these limitations with the following contributions:

• We facilitate local analysis based on the concept of patches.
Patches are small, local cubical regions in a BHJ morphology.
For each BHJ volume a set of patches is computed whose loca-
tions and sizes are adapted to the local morphology (Fig. 3).

• We cluster patches according to patch descriptors. We define a
local curvature distribution descriptor, the patch interface shape
distribution (PISD) of the acceptor-donor interface contained in
a patch. For each patch we also compute performance indicators,
for example from local charge path computations.

• We provide practitioners in BHJ design with a tool for interactive
visual exploration, analysis, and comparison of performance-
structure correlations and the impact of BHJ simulation param-
eters, using brushing and linking of different local and global
parameters. This enables scientists to relate local parameters to
global performance. We provide a set of 2D and 3D visualization
modules designed for local analysis of BHJ morphologies.

Using our visualization tool (see Fig. 1), scientists can interac-
tively explore local regions (patches) and their charge properties.
Instead of comparing global statistics only, they can compare sets of
patches across morphologies, based on both visual exploration and
interactive queries. The queries allow scientists to visualize ranges
of parameters, as well as the dependencies between them.

Our results demonstrate how this has enabled scientists to an-
alyze and understand local BHJ properties and their relation to
photoelectric current generation with higher confidence. Moreover,
they can interactively perform a top-down analysis of a set of hun-
dreds of global morphologies to the 3D information of a specific
region in a specific morphology. This helps them choose better fab-
rication parameters and design strategies for the BHJ fabrication.

2. Related Work

2.1. Analysis of Bulk-Heterojunction Materials
Previous approaches for the analysis of BHJ materials still largely
depend on trial and error, and on comparing global statistics only.
To make this process more efficient, Wodo et al. [WTCG12b] de-
veloped an approximation model that extracts a representative set
of charge paths that are physically intuitive. This approach has
proved successful in simplifying complex simulations. As a result,
it has started to be employed in the analysis of simulations [HD14].

Another example of computational methods is discussed by Ray
and Alam [RA12]. In this research, they generated tens of mor-
phologies and explored if randomness influences the performance.
They also compared the performance to regular shape structures.

These techniques have obvious limitations. Overall BHJ perfor-
mance results from the complex interplay between many features
related to structure and performance. However, current techniques
allow for comparing only a few at a time. Therefore, finding the
best-performing structures is an open question [RA12]. All these
techniques also depend on global statistics, which hampers explor-
ing important geometric features [ABW∗15]. Global techniques
also do not allow relating local dependencies to global results.

In this paper, we tackle these limitations by enabling the com-
parison of local features for hundreds of morphologies at the same
time. We use the concept of visual exploration to make this com-
parison effective and give fast feedback about the simulation pa-
rameters that lead to certain performance characteristics.

Employing skeletonization for generating the backbone of a BHJ
morphology has proved to be a useful tool that facilitates local
characterization of BHJs [ABW∗15]. We also compute backbones,
using a conventional thinning algorithm [Pud98], based on dis-
tance maps [JBS06] computed for each morphology. Other simpli-
fied representations include Reeb graphs [PSBM07], distance field-
based methods [GDN∗07], extremum graphs [LCMH09], and other
topological methods [HBP∗12]. We chose the backbone model be-
cause it facilitates visual connectivity exploration in 3D.

2.2. Shape and Curvature Analysis
Several methods have been proposed to represent shapes by ge-
ometric invariants. For example, Reuter et al. [RWP06] proposed
Shape-DNA, which is based on the computation of the eigenvalues
of the Laplace-Beltrami operator. They showed that this signature
is very well suited to identify equal shapes, but also to group similar
shapes. Sun et al. [SOG09] proposed a point signature based on the
properties of heat diffusion, which they call Heat Kernel Signature
(HKS). Bronstein and Kokkinos [BK10] extended this signature to
a scale-invariant version (SI-HKS). They showed that their method
is superior to both Shape-DNA and HKS in comparing shapes from
the Shape Google database [BBGO11].
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Figure 3: Patches are small, local cubical regions that are extracted from the whole BHJ morphology (a) for local analysis. Patches are
sampled along the backbone (b) of the BHJ morphology. This allows capturing more informative samples compared to sampling patches
on a regular grid, as well as adapting patch size to the local size of the morphology. In (b) three example patches are shown via volume
renderings embedded in the backbone of the morphology. Patches can be inspected via (c) a close-up view of a selected patch, showing the
center of the patch (red dot) on the backbone, and (d) a visualization of the interface between acceptor and donor contained in the patch.

Curvature as a major shape cue has proven useful in physical
applications that need to characterize microstructure. Our patch in-
terface shape distribution (PISD) as a descriptor for local patch
shape is inspired by the work of Chen et al. [CCY∗10], where they
introduced an interface shape distribution (ISD) to globally charac-
terize and compare different morphologies of nanoporous gold. We
extend the ISD concept from a global to a local characterization of
shape by computing one ISD for each patch. Curvatures are com-
puted from the local morphology’s acceptor-donor interface. We
favored this curvature-based approach since the interface curvature
can be directly influenced by morphology simulation parameters.
Furthermore, Shape-DNA as well as HKS-based approaches were
primarily developed to compare the global structure of shapes. In
contrast, curvature is a very local feature. It is also unclear how well
the other methods can deal with the patch boundaries we introduce.

To decrease the resulting complexity of thousands of PISD de-
scriptors to a manageable amount, such that they can be explored
interactively, we perform dimensionality reduction and k-medoids
clustering (using the medoid instead of the mean as cluster cen-
ter). t-SNE [vdMH08], which is an improved version of stochastic
neighbor embedding [HR02], is used to map many PISDs in two-
dimensional space such that local distances are preserved. A hier-
archical variant of t-SNE was recently also developed [PHL∗16].

Kindlmann et al. [KWTM03] described curvature-based trans-
fer functions. We also visualize curvature of the acceptor-donor in-
terface. However, our PISD descriptor characterizes an entire local
neighborhood (a patch) instead of only a point on the surface. Xia et
al. [XFC∗14] proposed curvature-based analysis of protein electro-
static surfaces to explore correlations between metrics derived from
the principal curvature and protein functions. Soldea et al. [SER06]
used a curvature-based segmentation approach to identify planar
or cylindrical iso-surfaces, and volumetric regions with saddle-like
iso-surfaces. Explicit shape identification of local regions has also
been applied, for example ellipsoidal Gaussian models for identify-
ing fibre shapes in laser scanning confocal microscopy [HNR∗06].

2.3. Ensemble Visualization
Ensemble visualization techniques are important when multiple
runs of a simulation are computed. Similarly, we cluster and com-
pare patches from morphologies that result from simulation runs

with different parameters. An important issue in ensemble visual-
ization is characterizing the statistical distribution of the ensem-
ble members around the most central, or “deepest,” member, for
which techniques such as contour boxplots [WMK13] and curve
boxplots [MWK14] have been developed. Demir et al. [DJW16]
proposed to use a locally most-representative shape together with
a region-wise centrality quantification, inspired by previous work
on contour variability plots [FKRW16]. Computation of this most-
representative shape, however, requires shapes to be superimposed
as well as having similar geometries. It is not clear how this can be
achieved for our patches. Instead, in our framework each cluster is
represented by the medoid of the PISD descriptors in the cluster.

2.4. High-Dimensional Parameter Space Exploration
Finding relationships between simulation parameters and the cor-
responding simulation results is a very challenging problem, es-
pecially due to the high dimensionality of the involved parame-
ter spaces. Visualization can help reduce the parameter space into
smaller selections, and hence reduce extensive trial and error.

Bruckner and Möller [BM10] proposed a framework for
physically-based simulation that enables graphics artists to decide
on a set of simulation parameters that give desirable effects for phe-
nomena such as fire, smoke, etc. They proposed density-based clus-
tering of animation sequences into fewer segments for a more con-
cise view. They represent the simulation parameters using star plots
that show representative frames for linked clusters.

Beham et al. [BHGK14] proposed the Cupid system for geom-
etry generators used in video games and computer vision applica-
tions. Cupid helps select geometric generator parameters that avoid
generating redundant or invalid geometric shapes. The system starts
with a hierarchical DBSCAN clustering to group the 3D shapes
based on mesh similarity. The cluster hierarchies are visualized us-
ing radial trees, circular dendrograms, and treemaps. Parameter se-
lection is enabled through composite parallel coordinates.

Torsney-Weir et al. [TWSM∗11] proposed the Tuner system for
parameter finding for image segmentation. Tuner proposes a Gaus-
sian model for generating sample points. The samples and param-
eters are visualized using a combination of visual views: Pareto
panel, response view, controls, and histograms.
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3. Overview
Our visual analysis workflow is based on extracting a large num-
ber of small local regions from each BHJ volume. We call those
regions patches. Two main factors influence the local contribution
of a patch to the overall performance of the morphology: acceptor-
donor interface shape, and topology. Many of these properties in-
tuitively map to the efficiency of photoelectric current generation.
Based on these observations, we characterize the interface shape
using each patch’s curvature distribution (PISD), leverage topolog-
ical information from the backbone of the morphology, and com-
pute a variety of performance indicators estimating BHJ efficiency.

Patch sampling. For simplicity, we use cubical patches (e.g., 93

voxels), although other patch shapes could be considered as well.
Each patch size is adapted to the local morphology. Instead of ex-
tracting patches from the volume by sampling a regular grid, we
sample along the backbone of the BHJ morphology. From each
patch we then compute representative local properties (see Fig. 3).

Patch descriptors. For each patch, we compute a patch descrip-
tor that is used for local characterization. In collaboration with BHJ
scientists, we have defined the patch interface shape distribution
(PISD), which is based on acceptor-donor interface curvature com-
putations, as an efficient tool for characterizing local shape.

Performance indicators. Table 1 summarizes the performance
indicators that we are using. These indicators have complex inter-
dependencies, and in many cases they correspond to conflicting de-
sign properties. Therefore, in order to design a BHJ morphology,
scientists need to explore combinations of these indicators based
on the optimal choice of interdependent parameters. The interde-
pendency of all performance indicators, as well as the influence
of local shape, represents the biggest challenge for OPV design-
ers. We tackle this challenge by providing concise visualizations
of thousands of patches and allowing scientists to specify visual
queries about structure-performance relationships.

Dimensionality reduction and clustering. In order to be able to
handle a large number of patches from many different morpholo-
gies, we first perform dimensionality reduction of the PISD de-
scriptors using principal component analysis (PCA), and then per-
form k-medoids clustering to group similar patches together.

t-SNE visualization. In order to be able to visualize the high-
dimensional space corresponding to the PISD descriptors, we em-
ploy t-SNE [vdMH08] to visualize all PISD descriptors as “icons”
in a two-dimensional space that scientists can easily interact with.
This is illustrated in Fig. 1 (b) and Fig. 4.

Visual analysis framework. Our framework allows scientists to
interact with patches by clicking on PISD icons in either the cluster
view (Fig. 1 (a)) or the t-SNE view (Fig. 1 (b)). The correspond-
ing 3D morphology is then visualized on demand, and individual
patches can be inspected. Performance indicators and simulation
parameters are visualized in parallel coordinates views (Figs. 1 (d)
and (e)). More details can be inspected in histograms (Fig. 1 (f)).
All of these views allow linking and brushing.

4. Patch Descriptors and Performance Indicators

The patch descriptors (PISD) as well as the performance indicators,
and k-medoid clustering, are computed in a pre-processing stage in
order to prepare for the subsequent interactive visual analysis.

4.1. Morphology Backbone (Topology)
We start by generating the backbone, i.e., the skeleton of the
BHJ morphology, using the algorithm proposed by Aboulhassan
et al. [ABW∗15]. We chose this representation because it provides
an abstraction of the connectivity between local regions of the mor-
phology as well as of the distances to the acceptor-donor interface.

In order to estimate properties of charge paths, we compute
shortest paths in the morphology, following a previously proposed
model [WG12]. Two types of paths are computed: paths from the
interface to the anode via the donor: hole paths; and paths from the
interface to the cathode via the acceptor: electron paths.

4.2. Patch Sampling

In order to successfully capture local features, the selection of the
patches needs to satisfy the following conditions: (1) The size of
each patch should not be too big, to be local, and not be too small,
to capture enough interface fragments (see the discussion below).
(2) Patches should be sampled at locations that are neither too close
to each other, to avoid redundancy, nor too far from each other, to
avoid missing important features.

Patch centers. Since the backbone lies, by definition, in the mid-
dle of neighboring interface fragments, we can use it to guide the
determination of patch centers. We select all patch centers to lie
on the backbone. Currently, we consider only the donor, because it
includes all the charge transport stages needed in the current analy-
sis. The patch centers are distributed iteratively along the backbone
such that the patches cover the whole backbone without creating
too much overlap. That is, we use the minimal number of patches
that guarantees coverage of the backbone.

descriptor /
indicator

description influence on physical
properties

PISD patch interface shape
distribution (curvature
distribution) of the in-
terface

bottlenecks and amount
of excitons harvested
by the interface

Abs distance from a point in
the donor to the anode

photon absorption
probability

Diff distance from a point in
the donor to the nearest
point on the interface

life time of the exci-
ton, and exciton diffu-
sion probability

Orient angle between the
backbone and the z-
axis (anode to cathode)

bottlenecks and tortu-
osity

Tort (hole) path tortuosity life time of (hole)
charges

BN (hole) path bottleneck (hole) charge trans-
portation speed

Comp regions that are con-
nected to both elec-
trodes at the same time
(complementary paths)

charge accumulation

Table 1: Patch descriptors/performance indicators help map
structure and topological features to photoelectric current quality.
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Patch sizes. To determine the size of each patch, we compute a
distance field from the backbone to the interface. The value of the
distance field at each patch center on the backbone then determines
the patch size via the following equation:

D = s ·d(x)+∆D. (1)

Here, d(x) is the value of the distance field at the patch center, s is
a constant scaling factor, and ∆D is a fixed padding of extra voxels
that ensures that enough interface fraction is included. The local
patch size is then set to D3 voxels. The parameters s and ∆D are
chosen by the user. In the current study, s = 1 and ∆D = 5 were
adequate for our exploration and our collaborators.

4.3. Patch Interface Shape Distribution (PISD)

Inspired by previous work in physics/materials science on the char-
acterization of nanoporous gold [CCY∗10], we define a patch de-
scriptor that characterizes local shape via its curvature distribution.

Our patch interface shape distribution (PISD) descriptor is com-
puted as the probability distribution of principal curvature values κ1
and κ2 (maximum and minimum principal curvature, respectively)
of the acceptor-donor interface surface. More precisely, the PISD
gives the probability of finding a small patch of interface surface
with a given pair of principal curvatures (κ1,κ2).

Curvature normalization. In order to be able to meaningfully
compare different patches and different morphologies, it is cru-
cial that the curvature values are normalized in a suitable way. We
achieve this by normalizing with the physically meaningful mea-
sure of surface area per volume [CCY∗10], denoted by Sv below.

In order to obtain a probability density, the surface area for each
combination of (κ1,κ2) must also be normalized with respect to the
total interface area in the given patch, denoted by Apatch below.

PISD definition. We thus define the PISD descriptor as a proba-
bility density over the two-dimensional domain

(
κ1
Sv
, κ2

Sv

)
, given by

PISD(κ1/Sv,κ2/Sv) :=
d2 A(κ1/Sv,κ2/Sv)

d (κ1/Sv) d (κ2/Sv) Apatch
, (2)

where Apatch is the total surface area of the interface contained in-
side the patch. See Fig. 4 for a visualization of an example PISD.

We implement this function in discretized form as a simple 2D

(0, 0)

κ2/SV

κ1/SV

Figure 4: PISD descriptor. Each patch, set of patches, or whole
morphology, can be visualized via the corresponding patch inter-
face shape distribution (PISD) in the domain of normalized prin-
cipal curvatures. This helps with understanding shape characteris-
tics and similarities/differences between patches/morphologies.

array, where each bin contains the probability that a randomly cho-
sen point on the interface maps to the range

(
κ1
Sv
+∆

κ1
Sv
, κ2

Sv
+∆

κ2
Sv

)
,

where
(

∆
κ1
Sv
,∆ κ2

Sv

)
is the size (κ-range) of the bin.

The surface area per volume measure Sv is computed as

Sv :=
Apatch

Vdonor
, (3)

where Vdonor is the total volume of the donor part inside the patch.
We refer to previous work for details on Sv [CCY∗10].

Surface and curvature computation. In order to perform the
computations required above, we obtain the interface surface inside
a patch via Marching Cubes followed by mesh refinement. We esti-
mate the curvatures on the obtained high-resolution triangle mesh.

Dimensionality reduction and clustering. In order to handle
large numbers of patches, each PISD is treated as a point in a
high-dimensional space, by simply mapping the discretized 2D do-
main to a 1D vector, whose dimensionality is the number of PISD
bins. In this space we then perform dimensionality reduction using
principal component analysis (PCA). Afterward, similar patches
are identified via k-medoids clustering, which identifies meaning-
ful groups of patches that have similar curvature distribution, i.e.,
similar PISD descriptors, and hence have similar morphology with
respect to shape.

4.4. Performance Indicators

In this section, we explain the functions used to compute the per-
formance indicators discussed in Table 1. We characterize the per-
formance of a patch using the indicators proposed by Wodo et
al. [WTCG12a] restricted to each patch. We also include two in-
dicators of high interest to the scientists, which are (1) the bot-
tleneck indicator, which estimates the charge transport bottlenecks
and their correlation to local cross-sectional areas, and (2) the ex-
citon diffusion indicator, which estimates the correlation between
the distance at the backbone to the nearest interface fragment and
the corresponding probability of exciton diffusion to the interface.
Both indicators are discussed in detail in previous work [ABW∗15].

In addition to these performance indicators, we propose the fol-
lowing additional indicators to cover more stages of the photoelec-
tric current generation process.

Photon absorption. The first step of the photovoltaic process is
photon absorption, which usually happens in the donor:

Abs = e−h(x)/Hd , (4)

where x is the current voxel, h(x) is the physical distance from x to
the anode, and Hd is the absorption coefficient, which is a property
of the material. We use Hd = 100 in the current paper.

In the current study, the scientists chose to use the h(x) value at
the patch center to compute the corresponding Abs value as given
above as the representative value for a given patch to be used in the
correlation analysis.

Tortuosity. We use the indicator proposed by Wodo et
al. [WTCG12a]. To compute the tortuosity of a path, we first de-
termine the length L of the shortest path from a given point in the
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high probability0

Figure 5: Comparative visualization of patch interface shape distributions. We show the overall PISD of each of the 54 morphologies used
in this study, and selected examples of the corresponding volumes (bottom row). By studying the PISDs, scientists can decide to quickly filter
some volumes—for example, less dense volumes. The PISD icons here show the total distribution of all patches in each morphology.

donor to the corresponding electrode, i.e., the anode. In this way,
we estimate the deviation of the shortest path from the ideal short-
est path (a straight line of length Z)

Tort =
L
Z
. (5)

The Tort indicator for each patch is computed in the same way, but
only in a segment of the whole path clipped to the boundaries (the
bounding box) of the patch.

In the current study, the scientists chose to use the maximum
tortuosity value of all path segments passing through each patch as
the representative Tort value to use in the correlation analysis.

Complementary paths. We propose the following indicator for
estimating hole/electron balance at each patch. This indicator is
computed by first counting the number of voxels that belong to the
patch interface that are the origin of paths to both the anode and the
cathode, respectively. We then normalize this value by dividing it
by the total number of voxels that belong to the interface inside the
patch.

5. Visual Analysis

After the patch descriptors and performance indicators have been
computed, visual analysis can be performed interactively. We de-
scribe the main views that comprise our visualization system.

5.1. Patch Cluster View

The aim of this view is providing a concise visualization of all patch
clusters. As described above, all patches are clustered based on the
corresponding PISD descriptors, which is an important property of
interest for visualization and analysis. In this view, we represent
each patch cluster by the PISD icon of the cluster center.

Due to the use of k-medoids clustering, the cluster center is a
patch that actually occurs in the cluster, and we can therefore sim-
ply use the descriptor of this patch. An example PISD icon is illus-
trated in Fig. 4. All path cluster PISD icons are then visualized in
a compact 2D layout. Each icon can have a label of interest. In this
paper, we use the cluster ID by default, and allow the user to add
arbitrary text labels. This view is illustrated in Fig. 1 (a).

5.2. t-SNE View

In addition to the patch cluster view described above, where the
layout of cluster centers is essentially arbitrary, we provide a sec-
ond view for the visualization of clusters and patches, using t-
SNE [vdMH08] to obtain a meaningful 2D layout that groups sim-
ilar patches/clusters together in the 2D visualization domain. See
Fig. 1 (b).

The t-SNE view can be used to very effectively inspect simi-
larities between clusters, similarities between individual patches,
as well as for visualizing the contents of a selected cluster. We
provide zooming functionality to allow one to view all clusters
but also to investigate specific regions in more detail. When all
patches/clusters are being viewed, the plots might not be readible
anymore. For this, we implemented a lense functionality when hov-
ering with the mouse over a specific patch plot.

5.3. Performance Metrics View

Performance metrics are displayed as parallel coordinates as illus-
trated in Fig. 1 (c). We chose a parallel coordinates visualization,
because they are efficient at visualizing dependencies between pa-
rameters, which is one of the main goals of this paper.

This view is not only important for visualization but also for
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Figure 6: Patch cluster representatives. The cluster centers (medoids) of the 60 patch clusters. 3D views of example patches are shown at
the bottom right (color-coded by Gaussian curvature). From these cluster centers, scientists can obtain a quick characterization of the major
shapes generated by the corresponding simulation parameters with respect to curvature (PISD) characteristics.

queries: Users can choose a range of performance metrics of inter-
est, and instantly see correlated values. Similarly, multiple queries
among dependent variables can be performed.

This view is linked to the patch cluster view. Users can brush (se-
lect) in the performance metrics view, and apply the corresponding
query in the patch cluster view, or click on one PISD icon and see
the corresponding line highlighted in the performance metrics view,
as shown in Fig. 1 (d).

5.4. Simulation Parameters View

Similar to the performance metrics view, the simulation parameters
view uses parallel coordinates for the exploration of simulation pa-
rameters. This view is linked to both the performance metrics view
and the patch cluster view. It is illustrated in Fig. 1 (e).

5.5. Performance Metric Histogram View

After performing queries via brushing, sometimes the correspond-
ing relationships are not obvious, since there are lines in the parallel
coordinates views that are passing through all values. This may give
an indication that there are no correlations after applying this query.
By exploring the histogram of the filtered data, this conclusion can

be corrected if there it is found that some bins have higher values
than other bins, as shown in Fig. 1 (f).

5.6. 3D Exploration

Acceptor-donor interface surface view. Our collaborating scien-
tists find it helpful to be able to look at what interface surfaces look
like in 3D, to be able to think about the corresponding curvature
distributions and how they are influencing the charge paths. To vi-
sualize this data, we allow users to select any patch in the patch
cluster view, and then display the triangle mesh of the correspond-
ing interface surface, as shown in Fig. 6 (bottom right).

Pathlines view. The scientists want to be able to visualize all
charge paths that are passing through any given patch, in order to
get more contextual information on why there are high or low bot-
tleneck values, and in order to understand specific tortuosity val-
ues. Our pathlines view can therefore both visualize all pathlines
selected by a query, as well as all pathlines that are passing through
a given patch of interest. In addition, we offer the possibility to
display only the segments of paths inside a given patch, in order
to explore information such as local tortuosity. All paths are vi-
sualized using ray-casting of surface-shaded tubes. We also allow
color-coding of each path by its tortuosity value, as shown in Fig. 7.
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Figure 7: Charge paths traversing a selected patch. The charge
paths passing through any given patch can be inspected individu-
ally. Important path properties, such as their (global or local) tor-
tuosity, can be color-coded on the visualization of the path line.

Backbone view. The scientists consider the backbone view to be
one of the most important basic views of our framework, since it
gives a good uncluttered summary of the topology of the morphol-
ogy (its connectivity), and its relationship to individual patches, as
shown in Fig. 3.

6. Evaluation

We have evaluated our system together with our collaborators who
are experts in BHJ design, analysis, and fabrication.

System setup. We have used the Ising model-based simulator
proposed by Heiber and Dhinojwala [HD14] to generate a total
number of 500 different morphologies. All simulations were run
on a compute cluster with 342 nodes of 8 core Intel Xeon X5570
(2.93GHz) and 24 GB memory, running Red Hat Linux. The simu-
lator we used [Hei] is implemented in C/C++.

As our basic visualization system we are using Amira, for which
specialized plugins were implemented. The cluster view and par-
allel coordinates were implemented using D3.js. K-medoids clus-
tering and PCA computations were implemented using Matlab.
The shortest paths computations were implemented using the boost
C/C++ graph library. Shortest path computations, preprocessing
and visualization are all run on a machine with Intel Xeon CPU
E5-2698 v3 @ 2.30GHz (2 processors) with 128 GB RAM.

The simulation to compute all morphologies was run overnight.
The sizes of each of the 500 final morphologies range between 1M
to 6M voxels per morphology.

6.1. Case Studies

In order to evaluate the usefulness of our system, we asked scien-
tists with expertise in computational physics, microstructure anal-
ysis, and OPV solar cell design to perform visual exploration and
analysis using our system. In this paper, we will discuss only two
of the main findings due to the limited size of the paper.

Morphology generation. We started by sampling meaningful
ranges for all simulation parameters for morphology generation, in
accordance with the experience of our collaborators. Using these
parameter settings, we generated 500 different morphologies.

Using our system, we then first performed a selection of a target
subset for more detailed analysis together with the scientists, using
the PISD descriptors of entire morphologies, until we reached a set
of 54 target morphologies that they thought cover different shape-
and topological features of interest sufficiently well. The PISD his-
tograms of these 54 morphologies are depicted in Fig. 5.

Patch computation. From the 54 target morphologies, we com-
puted a total of 3,136 patches sampled along the backbones of the
morphologies. For each patch, the corresponding PISD descriptor
was computed. Using a resolution of 10× 10 bins per PISD, we
obtained 100-D vectors. On these vectors we computed PCA for
dimensionality reduction and retained the 6 largest PCA vectors af-
ter inspecting the corresponding eigenvalues, i.e., the variances in
decreasing order. We looked at the decrease of the eigenvalues, as
well as at the explained variance measure, which measures how
much of the total variance is explained by the n largest eigenvalues.

Patch clustering. We then computed the patch clustering, us-
ing k-medoids clustering with k = 60 clusters, where k was de-
termined empirically. The corresponding centers of these 60 clus-
ters are shown in Fig. 6. These centers represent the 60 groups of
patches used to classify the whole set of patches with respect to
their local shape characteristics (their PISD descriptors).

6.1.1. Case Study 1: Finding low bottlenecks close to anode

In this case study, we start with the physical intuition of domain ex-
perts and progressively move toward a more detailed local analysis.

Basic intuition. Local shapes in the form of an “hourglass” in-
crease the probability of bottlenecks compared to flatter shapes,
which is a disadvantage. However, they have the advantage of hav-
ing larger surface area than flat shapes, which is favorable for ex-
citon disassociation (see Table 1). As a second consideration, the
scientists had the intuitive belief that for patches that are closer to
the anode, the probability of forming a bottleneck is higher than for
patches farther away from the anode. At the same time, however,
locations closer to the anode are favored by photon absorption.

Domain questions. (1) In order to analyze the impact of
these conflicting considerations, the scientists posed the question
whether there are patches with hourglass-like shapes that are close
to the anode, but which at the same time have low (good) bottleneck
values. (2) The second question was what the corresponding simu-
lation parameters are that result in the generation of these proper-
ties. These questions cannot be answered using global statistics.

Visual analysis. Using our system, the scientists could answer
their questions by first performing filtering in the parallel coordi-
nates view to isolate patches with low bottleneck values and high
photon absorption. Also, they restricted their selection to high com-
plementary paths, to make sure that low bottlenecks are not due to
“islands” (isolated parts of the morphology, see Fig. 2). Using this
query, they filtered the selected PISD descriptors.

To determine correlations with clusters, they explored the per-
formance metric histogram shown in Fig. 8 (bottom right). They
noticed that a high number of patches comes from clusters 35 to
41. From the PISD descriptors of these patches (Fig. 6), they deter-
mined that these patches have high curvatures. Therefore, the sci-
entists applied an additional query to select PISD descriptors with
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Figure 8: Case study 1. 3D views of patches that belong to clusters 31 and 37 as examples for the output generated during the analysis
session for Case Study 1. This illustrates why these cases had low bottleneck values, although they are close to the anode. This is a new
counterexample for a common domain expert belief. Moreover, they have some distribution of an “hour glass shape.” For cluster 31, the
figure shows that this is caused by the local topology, since few paths are allowed to pass through the patch, especially after branching.

curvature probabilities corresponding to ridge shapes with strong
curvature. Two example patches are shown in Fig. 8.

For the patch in cluster 31, the reason is the local topology: the
backbone passing through the patch has some connectivity, but it
is not connected to the deeper-lying parts of the morphology. This
means fewer paths are passing through, which results in a lower
path density. At the same time, other branches send charges into
different directions, which again reduces the path density.

For the patch in cluster 37, the reason is that it is located close to
domain boundary, where charge paths are coming in from fewer di-
rections. This attracted the attention of the scientists to the fact that
the direction orthogonal to the electrodes (z axis) is not the only ma-
jor factor in morphology design, but that the horizontal directions
(x and y) are more important than they had previously believed.

The scientists further explored the simulation parameters to un-
derstand how to regenerate these cases. One observation is that the
patch from cluster 31 belongs to the morphology generated by sim-
ulation parameter donor percentage d = 0.39. The scientists had the
common belief that the closer the percentage of donor to acceptor is
to 0.5, the better BHJ performance should be. This finding therefore
drew their attention to the fact that sometimes lower donor percent-
age values can still be good or even better than higher values.

6.1.2. Case Study 2: Finding low (good) tortuosity combined
with high (bad) bottlenecks

Basic intuition. (1) Before our framework, our domain experts al-
ways considered a morphology with global average tortuosity less
than or equal to a value of 1.1 as good. However, using our system
they realized that they can create stronger characterizations by se-
lecting those parts that are close to ideal local tortuosity and high
bottleneck values at the same time, and create histograms of bot-
tlenecks for closer inspection after filtering patches accordingly.

(2) Another common belief among domain scientists was that bot-
tleneck values are low close to the cathode.

Domain questions. (1) Therefore, the first target scenario was
characterizing morphologies with respect to where good tortuos-
ity and bad bottleneck values occur in the same location. (2) The
second question was whether it is true that bottleneck values are in-
deed low close to the cathode (at low values of z). Answering these
questions was enabled by our framework for the first time.

Visual analysis. Fig. 9 illustrates the output of this case study.
Regarding domain question (1), the scientists are interested in un-
derstanding why there are bad bottlenecks combined with good tor-
tuosity. From the 3D view in Fig. 9 (a) we can see the influence of
the curvature distribution, as well as of the topology, by exploring
all (global) paths that are passing through the corresponding patch,
and only the (local) path segments that are inside the patch.

For domain question (2), Fig. 9 (b) shows a query on very high
bottlenecks. None of the selected patches are close to the cath-
ode (low z values), which agrees with the scientists’ assumptions.
However, by exploring intermediate to high bottleneck values in
Fig. 9 (c), they found that still relatively high bottlenecks do oc-
cur close to the cathode (low z). Further exploration in 3D as in
Fig. 9 (d) showed—considering the backbone—that the topology is
the reason for this counterexample to their previous assumptions.

6.2. Design Lessons Learned
The design choices in the current application have gone through
several iterations. In the beginning, we proposed visualizing
patches by a representative 2D slice through the 3D morphology.
The scientists did not find this helpful for getting a quick overview
of features corresponding to the 3D structure. They then proposed
that focusing on curvature information is more helpful, since it
has an intuitive meaning for engineers in general and characterizes
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Figure 9: Case study 2. (a): Before analysis using our system, the domain experts considered a tortuosity value of less than 1.1 as good. Using
the Case Study 2 analysis, however, they could strengthen this assumption by jointly exploring good tortuosity values and bad bottleneck
values for each patch, rather than for the whole volume; then generate histograms corresponding to this combination of properties instead.
(b,c,d): A second question concerned bottlenecks close to the cathode (low z values). (a) query on very high bottlenecks after filtering 3,136
patches. (b) query on intermediate–high bottleneck values; (c) one patch that resulted from the intermediate bottlenecks at low z values.

shape very well for their purposes. This led to our definition of the
PISD descriptor.

For exploration and filtering, we were mainly relying on parallel
coordinates. However, the scientists in some cases found that this
alone does not reveal enough correlations. Introducing additional
histogram views helped them to enhance their analysis.

As a general comment, the scientists found the backbone to be
very helpful. They also found that our entire system design has a
large potential to be used for the analysis of other microstructures
in different applications, such as porous materials.

7. Conclusions and Future Work

In this paper, we presented the first visual analysis framework for
identifying structure-performance correlations in large sets of sim-
ulated Bulk-heterojunction morphologies based on local analysis.

Based on clustering patches, we proposed a cluster view and a t-
SNE view to help with exploring groups of similar patches. Linked
to these views, we proposed a set of parallel coordinates to visualize
performance and simulation parameters, and dependencies between

them. Before the development of our framework, domain scientists
depended on global numerical statistics to compare morphologies.
Using our framework, domain scientists can now explore hundreds
of morphologies with their multivariate features in the same view
using a top-down exploration paradigm. They can also explore the
performance at the local level which helps them determine the best-
performing morphologies with more accuracy and more insight on
why they are performing better, or worse, than other structures.

The next steps in the development of our framework will include
the extension to the acceptor part of the morphologies, as suggested
by the domain scientists. Furthermore, we plan to extend the sys-
tem to include editing features to explore the correlation between
certain modifications and the overall resulting performance.
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