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Abstract—Sparse volume data structures enable the efficient representation of large but sparse volumes in GPU memory for com-
putation and visualization. However, the choice of a specific data structure for a given data set depends on several factors, such as
the memory budget, the sparsity of the data, and data access patterns. In general, there is no single optimal sparse data structure,
but a set of several candidates with individual strengths and drawbacks. One solution to this problem are hybrid data structures which
locally adapt themselves to the sparsity. However, they typically suffer from increased traversal overhead which limits their utility in
many applications. This paper presents JiTTree, a novel sparse hybrid volume data structure that uses just-in-time compilation to
overcome these problems. By combining multiple sparse data structures and reducing traversal overhead we leverage their individual
advantages. We demonstrate that hybrid data structures adapt well to a large range of data sets. They are especially superior to
other sparse data structures for data sets that locally vary in sparsity. Possible optimization criteria are memory, performance and
a combination thereof. Through just-in-time (JIT) compilation, JiTTree reduces the traversal overhead of the resulting optimal data
structure. As a result, our hybrid volume data structure enables efficient computations on the GPU, while being superior in terms of

memory usage when compared to non-hybrid data structures.

Index Terms—Data Transformation and Representation, GPUs and Multi-core Architectures, Volume Rendering

1 INTRODUCTION

The display and processing of large volume data poses a challenge due
to high computational complexity and memory demands. Memory
limitations have become the predominant bottleneck for volumetric
data processing and visualization on recent GPU hardware. In prac-
tice, however, many types of volume data sets are sparse. Consider-
ing their data characteristics such as the regularity and distribution of
values within the volume, they can be represented in a more efficient
manner than by common regular grids.

Many different approaches have been proposed for handling sparse
volumetric data. For example, brickin§ techniques and tree represen-
tations, such as the octree, kd-tree or N tree, provide a hierarchical so-
lution for data sets of relatively low sparsity. For data sets of medium
sparsity, spatial hashing makes more efficient access and storage possi-
ble. Extremely sparse data can be efficiently represented and accessed
via binary search in sorted voxel lists.

In general, sparse volume data structures result in a tradeoff between
memory efficiency and access performance as more complex mem-
ory layouts typically require more costly look-up code, resulting in
reduced runtime performance.

In this paper we present JiTTree, a new type of sparse volume
data representation that enables memory-efficient storage and high-
performance data access. In contrast to other data structures, JiTTree
enables the generation of just-in-time compiled GPU code. It auto-
matically adapts to local data properties and it avoids the performance
drawbacks of conventional hybrid data structures. Our approach op-
timizes the memory layout and the corresponding GPU code using a
novel on-the-fly optimization scheme. We flexibly support the combi-
nation of several existing sparse data structures to minimize memory
consumption while enabling high runtime performance. To the best
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of our knowledge, this is the first volumetric data structure that simul-
taneously adapts memory layout and traversal code in a just-in-time
manner. We demonstrate that our approach is superior to other data
structures in terms of memory consumption for most practical data sets
while enabling high-performance look-ups for many common volume
processing tasks.

2 RELATED WORK

An overview of spatial data structures is given in the book by
Samet [23]. The survey by Gaede and Giinther [7] includes the con-
cept of spatial hashing, which is a one or two level indirection in the
most basic case. Both of these surveys only consider CPU based data
structures.

Hierarchical trees were introduced for representing two dimensional
and three dimensional data. Quad-trees [5] lead to octrees and multi-
dimensional binary search trees (kd-trees) [3]. The latter were used as
a compact volume representation for ray tracing, first on the CPU and
later on the GPU.

Variants of octrees are discussed in the survey by Knoll [14]. Linear
octrees (as introduced for quad-trees by Gargantini [8]) store all values
in a specific order. No internal nodes are kept. Therefore these octrees
require a fixed size per entry, independently of the sparsity of the data.
Pointer octrees allow sparse data to be represented in a more compact
way: a list of pointers and a list of values are stored in two separate
arrays. First GPU implementations of sparse pointer octrees are found
in the work of Beosnon and Davis [2], which uses octrees for surface
texture encoding. More recently Crassin et al. [4] uses a pointer octree
for volume rendering. These approaches provide an adaptive repre-
sentation for a whole volume. Nevertheless, for a densely populated
volume (or region), a pointer octree introduces an overhead due to its
internal nodes. Additionally, the look-up into an octree causes a per-
formance overhead for the indirections when traversing the octree to
the leaves.

Recently, algorithms were formulated to generate octrees on the GPU.
For instance, Lauterbach et al. [15] presented an efficient bottom-up
generation scheme. Starting from a list of entries they sort the nodes
depending on their Morton code. An algorithm for parallel octree con-
struction that uses a full volume to construct a sparse octree was de-
scribed by Ziegler [29]. The basis of the octree construction algorithm
are histogram pyramids [30] also used in the voxel list generation. We
have based our voxel list and octree generation on this parallel algo-
rithm.



Voxel list access was improved by using spatial hashing or binary
search. Perfect spatial hashing [16] provides faster access for sparse
data than an octree. Nevertheless, the generation of a suitable hash
function and an offset table can be computationally demanding.

Binary search provides an alternative to spatial hashing for a small
number of elements. The only requirement for binary search is a sorted
list. To efficiently sort a list, voxel radix sort by Satish et al. [24] can
be used. Histogram pyramids [30] provide an alternative to sort the
non-zero points in a volume in Morton order.

Bricking on the CPU was used to improve cache coherency by Grimm
et al. [9]. Kihler et al. [13] use a CPU based kd-tree on top of a brick-
ing approach to render adaptive mesh refinement data. They render
the bricks sequentially in back-to-front order. Ruijters et al. [22] use
bricking on the GPU for volume rendering. To reduce the workload on
the GPU, they generate a CPU side octree for each brick. The octree
is traversed with a threshold for sampling the brick data which is used
in slice based rasterization. Virtual memory management [10] can be
used to complement our brick-based data structure as well, but it is an
orthogonal concept to compact sparse representations.

Glift [17] provides an abstraction layer to build data structures on top
of OpenGL. The library was used to formulate a dynamic, sparse,
adaptive structure for shadow maps and 3D painting. Glift uses an
adaptive bricking approach on the GPU. The introduction of OpenCL
and CUDA allows developers to build such data structures more eas-
ily. Just-in-time compilation makes it possible to dynamically allocate
the required memory on the GPU and to remove unnecessary code.

Our work is based on the partial evaluation of programs that is de-
scribed by Jones et al. [12]. We partially evaluate the GPU programs
for performance reasons but also to make our data structure more flex-
ible. More recently Rompf et al. [20, 21] and Sujeeth et al. [25] have
described a lightweight modular staging approach that enables the de-
ferral of parts of the program compilation to a later stage. The reason
is that at a late stage the compiler is aware of the data and can thereby
generate optimized programs. We show how such a data aware compi-
lation can be used to generate an efficient sparse volume data structure.

3 JITTREE OVERVIEW

A JiTTree is a high performance memory efficient volumetric repre-
sentation with access functions that are tailored to one specific data
set. The main concept of the JiTTree is the just-in-time compilation
stage that transforms data into efficient access functions. Thereby it
enables the use of multiple kinds of data structures to represent one
volume, without introducing a significant traversal overhead. For in-
stance a JiTTree can store some of the data using an octree, while
other parts of the data are represented as dense grids. We call these
data structures (octree, dense grid, etc.) the elemental data structures
to distinguish them from the hybrid data structure that combines them.
In general a hybrid data structure consists of elemental data structures,
to locally better represent a data set. The more elemental data struc-
tures are used the higher is the potential that the memory efficiency in-
creases. However, with conventional approaches more elemental data
structures mean a higher overhead during data traversal. Instead of
depending on the number of elemental data structures, the traversal
overhead of a JiTTree depends on the homogeneity of the data set. We
achieve this by just-in-time compiling traversal code that is tailored
to a specific data set and its optimal hybrid representation. Rompf et
al. [20] show that such a data aware compilation stage can be used to
optimize performance.

Fig. 1: Binary search tree example. Color encodes the data type.

To illustrate the key concept of our data structure we consider the ex-
ample of a binary search tree. Figure 1 shows the binary tree of a
sorted list. During look-up the tree is traversed from top to bottom.
When the key is found the index of the element in the compact array
is returned.

Similarly to our sparse volume approach, a binary search tree enables
efficient access to a sparse array. Let a be an array of 15 elements at
the positions 1, 4, 6, 8, 9, 13, 105, 106, 107, 220, 221, 222, 225, 226,
308. A dense representation of @ would allocate memory that is large
enough to fit 309 elements. A sparse representation of a stores the
15 elements in a compact array acomp thereby allocating just enough
memory for the 15 elements. Additionally, a search tree is recursively
built for indexing the elements of the compact array. At each iteration
of the search tree construction, the median element becomes the root
node of the two new sub-lists.

1// recursive find function with look-up key k
>// k is assumed to exist in the tree
suint find(key, node)
4+{ // compare key to node key
s if (key < node.key)
6 // traverse left subtree
7 return find(key, node.left);
s else if (key > node.key)
9 // traverse right subtree
10 return find(key, node.right);
1 else return node.index;
12 }
Listing 1: Recursive look-up function pseudo code

Listing 1 shows the pseudo code of the recursive tree traversal. The
search key is compared to the root node. If the search key is smaller
than the current node’s key, the traversal continues in the left sub-
tree. If it is greater the search continues in the right sub-tree. If the
key is equal the search is successful and returns the index [0..14] of
the compact array. The search tree enables the use of a sparse array
which makes it possible to remove the empty elements in the sorted
list. Thereby, it greatly saves storage space. Traversal is efficient but
nevertheless incurs an overhead in comparison to a dense array. The
node.key instructions in Listing 1 are the memory fetches that are intro-
duced for tree traversal, and the node.index instruction is the memory
fetch that is introduced to retrieve the index into the compact array.
The just-in-time transformation of such a tree directly incorporates the
data of the tree into the code. It thereby eliminates the need for mem-
ory fetches and greatly reduces traversal overhead. Listing 2 shows
the pseudo code of the just-in-time compiled search tree.

1// jit find function with
2»// k is assumed to exist in the tree
suint find (key)

+{ // compare key to root key

5 if(key < 106) // traverse left subtree

look-up key k

6 if(key < 8) // traverse left-left subtree
7 if(key < 4) return 0;

8 else if(key > 4) return 2;

9 else return 1;

10 if(key > 8) // traverse left-right subtree

11 if (key < 13) return 4;

12 else if(key > 13) return 6;

13 else return 5;

14 else return 3;

15 else if(key > 106) // traverse right subtree
16 // code omitted for brevity

18 else return 7;

Listing 2: JiTTree look-up function pseudo code



By explicitly compiling the data into the code the access becomes less
memory-bound during tree traversal. This is beneficial for many data
processing algorithms.

For our case of multiple elemental data structures the compact array
acomp needs to store types and pointers. The types are encoded as
colors in the example of Figure 1. If we want to execute a function
foo on the elements we first have to look-up their type and then route
the function call to the specialized function of that type. In case of the
recursive look-up the execution of a function is shown in Listing 3.

1// function foo uses recursive traversal
2// type specialization via switch statement
svalue foo (key, root)

4+{ // tree traversal to get index

5 uint index = find(key, root);

6 // compact array lookup

7 element e = acompl[index];

8 // specialize function call by element type
9 switch(e.type) {

10 case green: return foOgpen (e.address) ;

11 case orange: return fooOgmnge (€.address) ;
12 case blue: return foopye (e.address);

Listing 3: foo member function evaluation pseudo code

Through JIT compilation we inline the traversal code, the type special-
ization and the address look-up into the foo function. Listing 4 shows
the result of JIT compiling the member function foo of the elements in
the sparse array.

1// function foo inlined traversal

2// type specialization done at Jjit compilation
svalue foo(key, root)

+{ // compare key to root key

s if(key < 106) // traverse left subtree

6 if(key < 8) // traverse left-left subtree

7 // call specialized function

8 if (key < 4) return foOgmen (addrp) ;

9 else if (key > 4) return foogre, (addry) ;

10 else return foOgpre (addry) ;

11 if(key > 8) // traverse left-right subtree
12 if (key < 13) return foOgreen (addry) ;

13 else if (key > 13) return foogange (2ddrg) ;

14 else return fooOgue (addrs) ;

15 else return foOgpe (addrs) ;

16 else if(key > 106) // traverse right subtree
17 // code omitted for brevity

v else return foOgrge (2ddry) ;
20 }
Listing 4: foo JIT function evaluation pseudo code

The overhead to resolve types is eliminated and specialized functions
can directly be called. These same concepts apply to the JiTTree.
It eliminates memory fetches in the top level traversal code and in-
lines type specialization. This eliminates type resolving as well as the
switch statements that route execution between the different elemental
data structures. Therefore, the access time to one node is independent
of the number of different elemental node types. As a consequence the
JiTTree can have an arbitrary number of different kinds of sparse data
structures that improve the overall quality of the JiTTree without intro-
ducing new memory fetches. This is an important property of a hybrid
data structure that was to the best of our knowledge never achieved
before.

In essence the JiTTree decreases memory requirements by increasing
program length. GPU algorithms are known to be either memory-
bound (i.e., the performance is limited by the number of memory

fetches), compute-bound (i.e., the performance is limited by the num-
ber of arithmetic computations, also called high computational den-
sity), or instruction-throughput-bound (i.e., the performance is limited
by the non-arithmetic instructions) [28]. The just-in-time compila-
tion is an attempt to shift some of the burden from the GPU’s mem-
ory cache to the instruction cache making the overall algorithm less
memory-bound.

4 DATA STRUCTURE LAYOUT

The basic principle of our data structure is to adapt to the local sparsity
of a specific data set. Other volume representations often make the dis-
tinction between dense and empty (or homogenous) regions and treat
these regions differently. We aim to locally better adapt to a certain
level of sparsity of the data than these representations by introducing
more fine grained distinctions. A data set typically contains many sub-
regions with different sparsity characteristics. Each of the regions can
be optimally encoded by one data representation. Very sparse regions
are for instance better represented by a voxel list, medium sparse re-
gions lend themselves best to hash tables [16] and octrees, while dense
regions are most efficiently stored in a dense representation. For our
implementation of the JiTTree we chose a combination of four dif-
ferent representations: empty, voxel list, octree, dense. Each type per-
forms best for a different level of sparsity. We describe these elemental
node types from highest to lowest sparsity in Section 4.1.

Voxu| list| Octree | l | | ' | | l | , |'“
b ’ Dens‘e/ / ] ’ laﬁse l [ Dense ]
Octree | Voxel st ’ Voxel list u/</oxel listl
m
m Dtz Octree ’ Octree l [ Octree ]
nr =1 - -
(a) Volume (b) Pointer structure

Fig. 2: (a) shows a volume that is split into 33 bricks each of size m?.

Each brick holds one of the elemental data structures: dense, voxel
list, octree or is an empty region. In (b) the basic data layout is shown.
The volume consists of a list of bricks which point to elemental leaf
nodes.

To support local adaptation our data structure is designed as a pointer
based tree. Figure 2 shows an example for our data layout. Similar
to volume bricking approaches [26] we divide the data into bricks.
In contrast to other bricking schemes our data structure allows every
brick to be represented by a different data structure. The goal is to pick
the optimal representation for each brick while globally optimizing
brick size, as well as the layout of the data structure. In Section 6 we
describe the implementation of the root level in the bricking hierarchy.

4.1 Elemental node types

The memory optimal data structure for one brick of a volume depends
on the position and the number of non-zero entries. In this work we
consider three different data structures which form, together with the
empty brick type, the four elemental node types:

o Empty volume: Empty bricks are simply omitted when the data is
uploaded to the GPU.

e Voxel list: A voxel list is represented as a set of quadruples
(x,y,z,value). Each of the x,y,z coordinates theoretically requires
logy(m) bits where m is the side length of the volume. Voxel lists
are memory efficient for extremely sparse volumes. A major draw-
back of voxel lists is that access to the data requires O(n) steps,



Table 1: Theoretical comparison of the properties of different elemental node types. m is the side length of a data block. n is the number of
non-zero elements inside the data block. d is the size of one data entry in bits. p is the pointer size which needs to be sufficiently large.

Access time Eggg:ebr;l:r?g ! norllg’e‘:vrr;[r)tt})forgzel Shift sensitive | Allows empty space skipping
Dense volume o(1) ~dm’ no no
Pointer octree | O(log(m)) plog, (m) ~p/T yes yes
Voxel List O(log(n)) 3log,(m) 3log,(m) no no

where n is the number of elements in the list. It is possible to de-
crease the look-up time in a sorted voxel list with binary search to

O(log(n)).

e Octree: The octree itself is an adaptive data structure performing
best for medium sparse data sets. In addition to the leaf nodes a
full pointer octree has (m> —1)/7 internal nodes, where m must
be a power of two. The access performance depends on the side
length of the volume and not the number of elements with a worst
case access of O(log(m)) traversal steps. As a result, in very sparse
cases, voxel list access can outperform octree access. We have im-
plemented a pointer octree [27]. Each node of the tree stores exactly
8 pointers to its children. Pointers are indices into a one dimensional
array and can also point to an empty element. In our case the leaf
nodes store bricks with 23 values. In our implementation the maxi-
mum overhead of pointers for a full octree is approximately % of the
number of values in the dense volume. However, octrees are shift
sensitive [23] and the number of internal nodes in a sparse octree
depends on the exact location of the octree.

e Dense volume: A Cartesian grid has the lowest overhead per data
voxel and is therefore memory efficient for very dense data. How-
ever, the major advantage of a dense grid is fast access and in many
cases it makes sense to trade some memory for better performance.

Table 1 gives a theoretical comparison of the implemented elemental
node type data structures. The upper bound is reached if the volume is
practically empty, the lower bound is reached if the volume contains
no zero entries.

Among the many octree implementations the best one, with regard
to bit overhead per voxel, is the pointer-less octree (as used by
Balmelli [1]) with O bit overhead per entry. An octree containing one
leaf node has the theoretical minimal size of 31log,(m), which is the
number of bits required to store the Morton code [19] to reach the brick
containing the entry. The Morton code encodes each octree traversal
step with 3 bits to reach one of the 8 child nodes. In total there are
log, (m) levels in an octree of side-length m. The octree properties in
the table are representative for pointer octrees. If the octree contains
only one value, the upper bound is reached. In addition to the data
value, the octree requires log, (m) pointers (one for each octree level)
to address the single non-zero entry. The number of internal nodes of
a full octree is approximately 1/7 of the number of leaf nodes. There-
fore, a full octree requires ~ 1/7 pointer per data entry.

Table 1 also shows that the dense volume representation has the best
access performance. The optimal memory representation depends on
the data set. The dense representation is optimal for full volumes,
but has the highest overhead for a single value. The worst case of
the octree performs better than the worst case of the dense data repre-
sentation. The voxel list has a constant overhead per non-zero voxel
independent of the number of values inside a volume. The memory
requirement of a specific representation depends on the density inside
a volume block, the data type of the data entries and for the octree, the
exact location of the non-empty voxels inside the volume. It can be
seen that the three data structures complement each other since they
are optimal for cases where the others perform poorly.

Other data structures such as hash tables or multilevel bricking could
further complement the data structures. However, for the moment we
restrict ourselves to the analysis of our data structure using the de-
scribed elemental node types.

5 OPTIMIZATION OF ELEMENTAL NODE LEVEL

We optimize the hybrid data structure with respect to memory by lo-
cally adapting the elemental node types and globally adapting the brick
size. The performance is optimized through several low-level opti-
mizations that can be added on demand by a data aware compiler.

Memory optimization: To find a representation that requires a min-
imum of memory it is necessary to pick a combination of the most
suitable elemental node and an optimal block size m. To determine
the layout of a specific volume data set, we use different variations
of a parallel reduction. The size of a dense representation is known
beforehand, as dm> where m is the side-length of a brick and d is the
number of bytes of one data entry. To estimate the size of a voxel list
inside a sub-volume it is necessary to find the number of non-zero val-
ues. We efficiently achieve this by applying a parallel reduction. The
octree size estimation requires two adapted reductions: one to deter-
mine the number of leaves and one to determine the number of internal
nodes in the final sparse octree. Finding the number of leaf nodes re-
quires a reduction on a binary occupancy volume (i.e., voxels are one
for non-zero values and zero otherwise). Finding the number of in-
ternal nodes requires a reduction starting at a binary representation at
level = height — 1 of the octree. In our case, the octree is slightly mod-
ified to support leaves of 8 values instead of single scalar octree leaf
values, which basically shifts the reductions up by one level inside the
tree. This is done because, pointers to the leaf nodes only make sense
if the data values are much larger than the pointers. This is not the
case for most scalar data, therefore leaves with 8 values require less
memory than the full pointer octree and the access performance is also
higher.

To globally optimize the memory requirement we compute the mem-
ory requirements of each brick for a given brick size. It is sufficient to
choose the minimal elemental data structure for each brick. From the
results of all considered brick sizes the global minimum is picked as
the memory optimal solution.

Performance optimization: During the performance optimization
stage different low level data dependent optimizations can be applied.
Our data aware compilation stage makes use of high level informa-
tion and thereby applies better optimizations than the regular (non-
data aware) compiler. Code branches that are known not to be tra-
versed because of the specific configuration of the memory optimal
data structure are removed during the just-in-time compilation step.
For instance, for a configuration that does not contain any voxel lists,
all code that is specific to the voxel lists is removed from the program.
Note that a regular compiler (e.g., the OpenCL compiler) cannot apply
this dead code removal since it depends on the data representation.

A software stack cache for regular access patterns is another low level
optimization that is performed by our compiler. This leads to perfor-
mance benefits for ray traversal for very small work group sizes only.
For ray traversal patterns a simplified version of the kd-restart algo-
rithm [6] is used to perform empty space skipping. When hitting an
empty brick the algorithm directly advances to the most distant point
on the empty brick bounding box. This saves redundant look-ups in
empty bricks and results in speed up factors of up to 1.5. All these op-
timizations can be enabled on demand and are disabled (i.e., removed
from the code) without any side effects if they do not improve the per-
formance.



6 OPTIMIZATION OF ROOT LEVEL

The root node representation stores the type and the pointer to every
brick inside an array. This representation can either directly be up-
loaded to the GPU or it can be transformed to code through a just-in-
time compilation step.

6.1 Direct volume bricking approach

The direct bricking approach stores internal nodes as a tuple
(type, pointer). The size of the bricks is globally defined in our cur-
rent implementation. The ype can be one of the elemental node types.
The pointer is handled in a type specific way.

Figure 3 gives a conceptual overview of the data structure. At the root
level, each node needs to store a type and a pointer, which consists of
two 4 byte integers in our case. Elemental nodes depend on the size
of the data type in bytes d. Dense volumes store full bricks of data
values. Each list stores one 4 byte pointer to its last element in the
list offset array. Each list element stores a data value and three 2 byte
values as its coordinates. Internal octree nodes always store eight 4
byte pointers and leaf nodes store eight data values.

(Rootlcwl CLLLL LT TP T T L T T )
2x4 bytes ] ] 1
|
[Dense Volumel < \ | j
m x d 1
12 4 I )
2. | List offset
f (length) 4 byte'
-§ List Element | r/ |v I‘ | |\ | |
— 6 bytes + d l, <
£ g | h
g Octree pointerl | | d ‘l\ ¥ P |
e 8x4 bytes
m
Octree value | | < | | |
I\ 8 x d J

Fig. 3: Conceptual data layout: root level nodes point to the elemental
data structures. Traversal is specific to the type of a brick. Different
traversals are shown for the different elemental node types.

Every look-up starts by an address translation and then retrieves the
(type, pointer) tuple of the brick. Look-ups for empty nodes can be
discarded at this point. The specialized look-up procedures are:

e Dense volume bricks store a pointer into the dense volume array at
the root level. The size of the dense volume array is m> times the

number of dense volume bricks.

To access one of multiple voxel lists stored in a buffer it is neces-
sary to define the start and end voxel of each list in addition to its
entries. One look-up retrieves the start offset from an offset array.
Afterward, the list is traversed to search for a specific coordinate. If
the coordinate is not found the look-up returns zero.

For the octree the brick pointer directly points to the root of the tree
inside a global octree pointer array. The brick resolution determines
the maximal traversal depth of the octree. The octree is traversed
until it reaches a leaf node or an empty node. The actual values are
stored in a separate region of the memory.

6.2 Just-in-Time compilation approach

To reduce the traversal overhead that is introduced by the root level
we use just-in-time compilation that eliminates the data fetch by in-
corporating it into the code. As described in Section 3, a search tree
is used to efficiently index the data. We use a kd-tree to index the
elemental bricks of our data structure. The kd-tree splits the set of
bricks at brick boundaries into large homogeneous regions containing

1

only one elemental type. This makes it possible to discard empty re-
gions fast. Homogeneous sub regions implement a bricking approach
that uses only a single brick type, which locally reduces the number of
branches.

(63.63.63)

Octree

| Octree | [ Demse | [ Demse | [ Octree |

Fig. 4: Example of a kd-tree.

To group bricks with the same type, our splitting criterion maximizes
the information gain, as introduced by Mitchell [18] in the context of
optimizing decision trees. The entropy E of a region S with respect
to the brick types is given in Equation 1. b is the number of different
brick types, in our case four. p; is the portion of the bricks with type i.

b
E(S) ==} pilog, pi ()

i=1

Minimizing the average entropy is equivalent to maximizing informa-
tion gain. We calculate the average entropy for each possible split as
given in Equation 2. The volume is recursively split into two sub-
regions S, j = 2. Lets define v; as the volume of a sub-region (i.e., a
kd-tree child) S;, the information gain I(S) is then computed as

1(5) =Y 2 Es;)

=~V
J

@

where the entropy of each sub-region E(S;) is weighted by the volume
of this sub-region v; normalized by the total volume v.

Splitting is applied recursively until each kd-tree leaf contains bricks
of only one elemental node type. Figure 4 shows an example where a
volume consists of eight bricks, each of size 323. After the kd-tree is
constructed it is just-in-time compiled. Listing 5 shows the code for
the kd-tree in Figure 4.

// jit get function with look-up position
voxel get (x,y,z)

(x,v,2)

3{ // compare to splitting positions

4

if(z < 32) // traverse left subtree
if(y < 32) return 0;
else
if(x < 32) return getyy (indexyeyl,
else return getgense (1ndeXgensel s
else // traverse right subtree
if(x < 32) return O;
else
if(y < 32) return getgepse (1ndeXgense2 s
else return getyy (indexger, X,Y,2);

X,Y,2);
X,Y,2) i

X, Yr2Z);

}
Listing 5: JiTTree get function pseudo code

In Listing 5, four optimizations were applied:

(i) traversal optimization: no memory fetches are required for the
kd-tree traversal. The splitting axis order is directly encoded in the
conditionals. Splitting plane positions are inserted as literals.



(ii) efficient discarding of empty regions: empty regions are quickly
discarded without any memory fetches.

(iii) implicit specialization: no routing between specializations of the
get functions of different elemental data structures is required. The
getgense and gety; functions are inserted at the leaf nodes. No type
checks are required, and no type dependent switch statement is needed.

(iv) index in-baking: the indices of the octrees (i.e., index,s; and
index,.») and dense bricks (i.e., indeX j,,,5.1 and indeX g,,02) are liter-
als that are directly baked into the code. This eliminates one memory
fetch per leaf node.

Leaves that are empty return zero. Leaves that contain a single non-
zero elemental node directly call the specific ger method. In the case
of multiple bricks in one leaf node the kd-tree generation guarantees
that they are of the same type. Therefore the same get method is called
for all of them. However, the index (which is a parameter of the get
method) is different for each brick. By generating local index arrays
we can further optimize the code, remove additional branching and
benefit from the above mentioned kd-tree generation that reduces the
number of leaf nodes.

Listing 6 shows code for the unoptimized case where three dense
bricks are next to each other and fall into the same kd-tree leaf node.

1// jit get function without leaf node branch removal
2voxel get (x,y,2z)

34

4 ... // traversal to a leaf node

5 if(z < 32) return getgense (1ndeXgenselr X,Y,Z);

6 else 1f (z < 64) return getgense (Indexgense2, X, Y,2);
7 else return getgense (IndeXgense3r X, Y, 2Z);

8}

Listing 6: Leaf node pseudo code without branch removal

Although the three branches call the same get method, the index pa-
rameter differs. The branches can only be removed by introducing a
local index array that holds the valid index for each brick.

Listing 7 shows code for the fifth optimization that we apply:

(v) leaf node branch removal: branches that are introduced by the
leaf nodes of the kd-tree are removed by introducing a local index
array.

1// Jjit get function with leaf node branch removal
»voxel get(x,y,z)
3 {
4 ... // traversal to a leaf node

index[] = { indexdensel ’ indexdenseZl indexdenseS bi
6 i = index[indexTransform(x,y,z)];

return getgese (1, x,v,2);
8}

Listing 7: Leaf node pseudo code with branch removal

The array index|] is initialized with the literals indeX jepse1 > iIndeX gepse2
and index .3, that are resolved at compile time. The indexTrans-
form function transforms the global coordinates to a local linear index
into the kd-tree cell. As a consequence the get method can be exe-
cuted in parallel by all threads reducing branch divergence. This op-
timization is only applicable in the case that bricks of the same type
cluster in a region and are grouped by the kd-tree into one cell. In List-
ings 6 and 7 only three bricks of the same type are grouped together.
In practice these groups often become larger and more branches are
removed.

7 IMPLEMENTATION

OpenCL and CUDA (version 7) support run-time compilation and
therefore lend themselves to just-in-time compilation approaches. Our

JiTTree implementation was done using OpenCL. A source-to-source
compiler takes an OpenCL program with specialized instructions for
memory access and translates it to pure OpenCL code during runtime.
The compiler can better specialize the generated code when the data
set is known. Computation on multiple independently generated JiT-
Trees is done by defining them as separate kernel arguments.

To speed up the memory optimization phase a fast calculation of the
memory requirements is essential. Regions containing only zero val-
ues are marked with the empty type and no further optimization is
needed. The computation of the memory requirements for a dense
node is trivial. For voxel list nodes a single parallel reduction oper-
ation is needed to compute the number of non-zero values. The size
of the octree nodes is calculated by first counting the number of oc-
tree leaf nodes and then counting the number of internal nodes. This
is efficiently achieved by computing two reduction operations. These
computations are all done efficiently in parallel. The memory require-
ments of the elemental node types are sufficient to compute the mem-
ory optimal JiTTree for a given brick size. We repeat this computation
for different brick sizes to get the overall most efficient hybrid data
structure.

After a specific representation of the data structure is defined we either
apply a bricking approach or generate a just-in-time compiled kd-tree.
Our source-to-source compiler first generates a kd-tree on the appli-
cation side based on the previously defined brick types. The kd-tree
is recursively unrolled into non-recursive OpenCL code. The source-
to-source compiler generates code for internal kd-tree nodes as well
as for leaf nodes. Internal nodes generate conditionals (i.e., if/else
statements). Leaf nodes are either empty (code returns zero), contain
a single brick (code calls a ger method) or contain multiple bricks of
the same type (code uses leaf node branch removal described in Sec-
tion 6.2).

The memory for the different elemental data structures is allocated
once the optimal data structure is known. The actual initialization of
the data structures is done per brick. The initialization of voxel lists
and octrees on the GPU is done using histogram pyramids [30]. We
make use of the fact that voxel lists initialized via histogram pyramids
are sorted in Morton order. Therefore binary search is used when the
data is accessed.

The octree nodes are generated using a variant of OcPyramids [29],
that combine multiple histogram pyramids. In our implementation we
allow a block of size 23 in the leaf nodes resulting in a more compact
octree with an overhead of approximately % pointer per data entry for
a full octree.

8 RESULTS

The results are generated on a machine using an NVIDIA GeForce
GTX TITAN X, Intel Core i7-4770K @ 3.50 GHz and 16 GB RAM.
The screen resolution for rendering is 768 x 768 pixels.

8.1 Memory consumption

We compare the memory requirement for 15 data sets shown in Ta-
ble 2. Larger renderings can be seen in Figure 10. Noise was removed
from most of the shown data sets since we are interested in the inves-
tigation of sparse data sets. Wherever we applied a threshold to a data
set we denote this in Table 2 with the specific threshold indicated as
subscript. The data after thresholding are shown as icons. It is im-
portant to note that we also tested our data structure on all shown data
sets without applying a threshold. Although our data structure is not
designed for dense data, it outperforms other representations, such as
a dense bricking or a dense representation, for most cases. However,
for a better analysis of the data structure we used data sets with vary-
ing sparsity. We compared the final size in relation to the total size of
a dense representation. The percentage of non-zero values gives the



Table 2: Memory consumption results. The brick types are empty (gray), dense (green), octree (orange) and voxel list (blue)

Non-zero values Final size Type of bricks
Image Volume size Optimal brick size (%) (% of dense) (% of volume)
Bonsai ;,—0.08 3 512x512x189 16x16x16 8.17 14.85 | I——
Bunny ;;,—0.08 2 512x512x361 8x8x8 28.76 3428 |
Carp ;;,—0.08 = 256x256x512 16x16x16 16.27 19.82 |
Christmas tree ;;,—(.03 ab 512x499x512 16x16x16 1.47 4.02 | I
Engine ;;—¢.08 W 256x256x256 8x8x8 8.34 12.32 | —
Frog ;—0.08 L3 256x256x44 8x8x8 11.22 18.23 | n———
Hydrogen S 128x128x128 8x8x8 32.72 38.58 | I
Monkey-CT & 256x256x62 16x16x16 17.11 29.68 | I
Piggy Bank ;0 03 $ 512x512x134 8x8x8 23.72 30.53 | I
Porsche ;,—0.03 L) 559x1023x347 16x16x16 40.31 52.46 | I
Schaedel ;;,—0 03 @ 512x512x333 8x8x8 15.64 23.14 |
Stag beetle ol 832x832x494 16x16x16 4.06 475 | I
Kingsnake ;;,—¢.15 & 1024x1024x795 16x16x16 43.68 44.85 | I
Vessels ;,—0.15 L 1024x1024x1024 16x16x16 1.67 4.22 |
Connectomics L J 1024x1024x1024 16x16x16 29.68 34.04 | I
theoretical lower bound for the optimal data structure. The last col- - ‘ ‘ A I(ﬂ‘. E—
umn shows the distribution of elemental node types for the memory Sl 7 sl D ||
optimal JiTTree. Grey denotes the empty, green the dense, orange the e
octree and blue the voxel list representation. I ¢ - 18 |
The Vessels data set, for example, has a high number of voxel list FE | & “
bricks, which means that many bricks contain only a very small num- . T S
ber of non-zero values. The stag beetle data set results in a low over- Nee— ] T
head because it contains a large number of empty bricks and most : : e s e
bricks containing non-zero values are densely populated. In our exper- Koo ot bricke ' Nomberofbricks
iments our approach never exceeded three times the size of the lower )
(a) Hydrogen (b) Engine

bound solution.

In comparison to perfect spatial hashing, which achieves an overhead
of 3 —7 bit per data entry for very sparse data, we have shown that our
approach can be applied to a broader range of volumes (also with much
higher density). The overhead of our data structure for the tested data
sets lies between 1.8 and 27.7 bit per non-zero voxel. Volumes with
very dense and very sparse regions, can be represented very efficiently
with our approach. Still, the approach is extensible to other elemental
representations such as spatial hashing, to further improve the overall
performance for special data set characteristics.

Figure 5 shows the memory requirements for two data sets for different
brick sizes and different elemental data. In Figure 5a the hydrogen
data set is shown. It can be represented optimally with a brick size of
8. A combination of dense, octree and voxel list (Opt.) performs better
than any bricked solution using the octree, the dense, or the voxel list
representation only. Even though the voxel list does not provide good
results over the whole data set, there are still very sparse bricks that
are best represented by a voxel list as seen in Table 2.

In Figure 5b the results for the Engine data set are shown. The data is
represented effectively by an octree with a larger brick size. Neverthe-
less, the memory optimal (Opt.) solution still performs better. If for
a specific data set a single elemental data structure would be the best
solution, our approach would degenerate and fall back to this solution.
However, we have never observed this in practice.

8.2 Performance

The performance was tested for a mean filter with different kernel sizes
as well as for volume ray casting. Figure 6 shows the performance
for the mean filter. As expected the dense node type results in the

Fig. 5: Memory requirement of dense, octree, voxel list and memory
optimal bricking. The memory optimal bricking outperforms any other
bricking for most cases.

best performance for all brick sizes and kernel sizes. The memory
optimized data structure (i.e., a mixture of dense, octree and voxel
list) is still faster than an octree bricking solution for these data sets.
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Fig. 6: Performance of a mean filter with kernel sizes 73, 53 and 33 in
ms.

Figure 7 compares the performance of the direct volume bricking ap-
proach of the memory optimal solution (Section 6.1) with the JIT com-
pilation approach of the memory optimal solution (Section 6.2). The
JIT approach improves the performance in most cases with an average
speed up factor of 1.29 over all measured cases. The highest speed up
in Figure 7, a factor of 1.79, is given for the stag beetle dataset at a
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Fig. 7: Performance comparison for a mean filter with 3x3x3 kernel
size. JIT compilation (purple) compared to direct volume bricking
bricking (black) for three different data sets.

brick size of 323. Only for one case (kingsnake dataset with brick size
1283) we observe a decrease in performance by a factor of 0.96.
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Fig. 8: 3x3x3 mean filtering of the Connectomics data set. Different
brick sizes are tested for dense, octree and memory optimized bricking
approaches.

Figure 8 shows the performance of a 3x3x3 mean filter for different
data representations. The dense bricking approach (green) performs
better with a smaller brick size. The octree bricking (orange) does
not decrease its memory requirement significantly with a smaller brick
size. Nevertheless it is faster for a smaller brick size since the traver-
sal depth is reduced. The memory optimized solutions (black) per-
form best in terms of memory consumption over all different brick
sizes. The just-in-time compiled variations (purple) improve the per-
formance of the memory optimal solutions. A comparison with voxel
lists was omitted from Figure 8, since their performance is much worse
for an entire data set. Nevertheless, voxel lists perform optimal in
terms of memory for very sparse nodes, which makes them attractive
for a hybrid data structure.

Table 3: JIT generated code properties and build times for the Con-
nectomics data set.

max. branch kd-tree OpenCL
# bricks | # leaves depth gen. (ms) | comp. (ms)
8 1 0 0.05 151
64 12 6 0.62 275
512 95 14 6.42 3086
4096 363 17 67.44 5365
32768 2148 22 1085.25 78306

Table 3 shows the JIT generated code properties and build times for a
typical case. The number of leaf nodes increases with the number of
bricks. However, the dependency is not linear since the kd-tree groups
bricks of the same type together. Therefore, the number of leaves does
not grow as fast as the number of bricks. Table 3 also shows the source-
to-source kd-tree generation and the OpenCL compile times.

—e— Opt. approach
0.8 P aep

Performance in % of direct volume bricking approach

Stag beetle JIT
—e— Schaedel JIT
Bonsai JIT
061 o Carp JIT 4
—e— Engine JIT
1 L
256 128 64 32

Brick Size

Fig. 9: Performance of ray casting with the JIT approach compared to
the memory optimal bricking (black line).

In contrast to filtering, the JIT approach does not perform well for
ray casting as shown in Figure 9. In our experiments we found that
it only outperforms the direct bricking for small, homogeneous data
sets. Larger data sets with a high number of bricks are better handled
with a direct bricking approach. We suspect that the ray access pattern
leads to much higher branch divergence than the stencil access pattern
for the mean filter calculation.

9 DiscusSION AND FUTURE WORK

Our hybrid data structure performs very well in terms of adaptation re-
sulting in low memory consumption. By adding more elemental data
structures we hope to approach the theoretical optimum of memory
consumption with our hybrid data structure in the future. One of the
most important properties of a modern GPU data structure is to reduce
memory bandwidth (which is the bottleneck in memory-bound ker-
nels). With our just-in-time compilation approach we can offload some
of the burden reducing the memory bandwidth. However, just-in-
time compilation comes at the cost of longer programs and especially
nested conditionals. In some cases this transforms memory-bound pro-
grams into instruction-bound programs. Also with our approach we
are exhausting the capabilities of the current OpenCL compilers. This
limits the JiTTree to compile only up to 32768 leaf nodes. For higher
node counts we get inconsistent compile times. Our experiments show
that the just-in-time compilation of the root level is a viable option to
improve performance. In the future we want to investigate other spa-
tial subdivision schemes that can be just-in-time compiled to further
increase performance.

We want to improve the JIT compilation approach for other memory
access patterns like ray traversal. One potential cause of the lower
performance in this case is branch divergence which can be addressed
with optimization techniques like branch distribution and iteration de-
laying [11].

Another direction for research is to investigate how to add dynamic
write capabilities to our current implementation. For the moment we
have focused on read-only access since most other efficient sparse data
structures are also optimized for this situation. Finally, the addition of
spatial hashing would further increase the adaptivity of our hybrid data
structure. Also it could be a candidate for a just-in-time compiled root
level.



In addition, it could be beneficial to defer the JIT compilation even
further. For instance on compute clusters each node could just-
in-time compile the optimal data structure for a sub-domain of the
data. Further experiments (for instance integration of the JiTTree
with OpenMP) are necessary to understand the applicability of our
approach in such scenarios.

10 CONCLUSION

Sparse data structures are an important tool for efficient computations
on the GPU. Our hybrid data structure makes it possible to combine
multiple elemental data structures resulting in lower memory require-
ments. The individual elemental data structures can be exchanged and
improved separately. JiTTree reaches a noticeable benefit even with
a set of simple elemental data structures. We demonstrated that the
involved optimization leads to good results for a broad range of data
sets.

(b) Bunny

(f) Frog

(i) Piggy Bank (j) Porsche

(m) Kingsnake

(n) Vessels
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