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Fig. 1: Sparse pdf volumes store probability density functions (pdfs) of voxel neighborhoods in multi-resolution volumes. This
enables consistent multi-resolution volume rendering, i.e., equivalent visualizations independent of resolution level. We compare
(a) the original 5123 Shepp-Logan volume against (b,c,d,e) a down-sampled 1283 volume using (b) standard low-pass filtering and
down-sampling (1 byte/voxel), (c) one Gaussian per voxel (3 bytes/voxel), (d) our sparse pdf volume (4 bytes/voxel), and (e) a full
histogram (256 bins) per voxel as “ground truth” (512 bytes/voxel). The PSNR between the pdfs encoded in (d) vs. (e) is 44 dB.

Abstract—This paper presents a new multi-resolution volume representation called sparse pdf volumes, which enables consistent
multi-resolution volume rendering based on probability density functions (pdfs) of voxel neighborhoods. These pdfs are defined in the
4D domain jointly comprising the 3D volume and its 1D intensity range. Crucially, the computation of sparse pdf volumes exploits
data coherence in 4D, resulting in a sparse representation with surprisingly low storage requirements. At run time, we dynamically
apply transfer functions to the pdfs using simple and fast convolutions. Whereas standard low-pass filtering and down-sampling incur
visible differences between resolution levels, the use of pdfs facilitates consistent results independent of the resolution level used. We
describe the efficient out-of-core computation of large-scale sparse pdf volumes, using a novel iterative simplification procedure of a
mixture of 4D Gaussians. Finally, our data structure is optimized to facilitate interactive multi-resolution volume rendering on GPUs.

Index Terms—Multi-resolution representations, sparse approximation, pursuit algorithms, large-scale volume rendering

1 INTRODUCTION

The resolution of volume data has increased significantly over the
last decade [1, 26], due to high-resolution data acquisition modali-
ties such as modern CT scanners [25] or electron microscopes [16],
and large-scale simulations [5]. However, although the resolution of
display hardware has also increased considerably, the gap between
the resolution of large-scale volume data and practically feasible out-
put resolutions for visualization is often significant. The most com-
mon approach to alleviating this problem is the use of multi-resolution
techniques, i.e., the representation of volume data with multiple low-
pass filtered and successively down-sampled resolution levels. Multi-
resolution volume rendering using data structures such as octrees or
3D mipmaps considerably helps with (1) avoiding aliasing artifacts
due to under-sampling, and (2) speeding up the visualization by de-
creasing the amount of data that needs to be accessed for rendering.

However, applying a low-pass filter and down-sampling the original
volume changes it by replacing the original data points by fewer data
points that represent weighted averages of the original data. Figs. 1 (a)
and (b) illustrate this problem by showing the visual differences and
the different histograms of data values between (a) the original vol-
ume, and (b) the volume down-sampled by a factor of four in each
dimension. These differences can be explained by understanding that,
in (b), the transfer function is applied to data with a different distribu-
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tion, i.e., the histogram shown on top. This problem has been observed
before [36, 40], but it is difficult to solve without either a significant
increase in memory footprint or only moderate gains in quality.

One often overlooked but important consequence of working with
low-pass filtered data is that the application of non-linear operators,
such as a transfer function, is incompatible and yields visualization
results that are inconsistent between resolution levels. From a user
perspective, this has the highly undesirable consequence that the vi-
sual result of an interactive transfer function specification depends on
which resolution level the user was looking at when designing the
transfer function. Together with the fact that a transfer function for
high-resolution volume data can often either only be designed for a
zoomed-out, significantly down-sampled view of the whole volume,
or a zoomed-in, but partial view, this issue is becoming more and more
problematic when working with large-scale volume data. In this pa-
per, we refer to this phenomenon as inconsistency artifacts in multi-
resolution volume rendering. In order to avoid erroneous data analysis
based on transfer functions that were specified for down-sampled data,
it is important to avoid or at least reduce these inconsistency artifacts.

To tackle these challenges, we present the following contributions
for consistent multi-resolution volume rendering based on probability
density functions (pdfs) of voxel neighborhoods (footprints):

(1) A compact, sparse representation of pdfs. The crucial insight is
that instead of storing individual 1D pdfs, we use 4D pdfs in the joint
space× range domain of the volume. This enables a quality similar to
storing full histograms, but requires considerably less storage.

(2) The sparse pdf volume data structure that is optimized for effi-
cient parallel volume classification and rendering on GPUs. Our ap-
proach uses only simple and fast convolutions at run time.

(3) A novel approach for computing a sparse 4D function (pdf) ap-
proximation in a multi-resolution hierarchy via a greedy pursuit algo-
rithm for the iterative simplification of 4D Gaussian mixtures.

(4) An out-of-core framework for efficient parallel computation of
sparse pdf volumes for large-scale volume data.
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Fig. 2: Method overview. Pre-computation (left side): We map the 3D input volume (brick by brick) to a pdf in the 4D joint space ×
range domain (Sec. 4.1). This pdf is represented as a mixture of 4D Gaussians, which is then iteratively simplified to compute a multi-resolution
hierarchy of sparse 4D pdfs (Sec. 4.2). Run time (right side): The sparse pdf volume data structure storing the sparse 4D pdfs allows dynamically
applying transfer functions through simple look-ups in pre-computed 1D tables, followed by 3D convolution (Sec. 4.3), for volume rendering.

2 RELATED WORK

Multi-resolution volume rendering. The most common approach for
handling large data in volume visualization is to use multi-resolution
techniques [38], usually utilizing hierarchical data structures such as
octrees [7, 14, 20, 31, 37] or 3D mipmaps [11, 16, 21]. These repre-
sentations store iteratively pre-filtered and down-sampled versions of
the original volume at discrete resolution levels. Furthermore, several
methods use multiple levels-of-detail for a single volume rendering,
i.e., they allow for mixed-resolution rendering [2, 20, 22, 37].

However, all of these approaches can suffer from inconsistency arti-
facts as described above. In mixed-resolution volume rendering, these
problems additionally manifest as artifacts in the transition regions be-
tween adjacent regions that are rendered with different resolutions. In
this paper, our main focus is achieving consistent results when switch-
ing between resolution levels. However, our approach would also fur-
ther reduce transition artifacts in mixed-resolution rendering.

Volume compression. Our goal of using a sparse representation is
not reducing the size of the volume itself as in compression techniques,
but to represent more information, i.e., probability density functions
in a 4D space, albeit in a compact way. Hence, we are not competing
with 3D volume compression techniques, e.g., based on sparse cod-
ing [13, 39], tensor approximations [34], or compressing floating point
values [23]. While compression has been applied to pdfs before [12],
we view our approach more as a sparse representation that is optimized
for rendering rather than as a general compression technique.

Distribution-based multi-resolution volume rendering. Younesy
et al. [40] were the first to show that inconsistency artifacts in multi-
resolution volume rendering can be reduced by applying the transfer
function to histograms of voxel neighborhoods. However, storing full
histograms, e.g., with 256 bins per voxel, incurs an impractical storage
overhead. Younesy et al. then only stored the mean and standard de-
viation per voxel, yielding only moderate quality improvements. His-
tograms can also be approximated via a Gaussian Mixture Model with
N components, storing N means, standard deviations, and weights per
voxel [24]. However, the associated storage overhead can be impracti-
cal, and reconstruction during rendering is computationally expensive.

The hixel representation [36] represents the uncertainty in large-
scale data sets via quantized histograms of voxel neighborhoods.

Hadwiger et al. [17] sparsely encoded pixel neighborhood distribu-
tions in their sparse pdf maps data structure to accurately apply non-
linear image operations to multi-resolution gigapixel images. Instead
of approximating distributions individually, they fitted 3D Gaussians
in the combined space× range domain of the image in order to exploit
coherence in this 3D domain. However, their approach required long
pre-computation times of around two minutes per megapixel, using
iterative Matching Pursuit [28] to fit Gaussians to sampled 3D distri-
butions. In the present paper, we completely avoid a sampled interme-

diate representation and work completely in continuous 4D space.
Our approach builds on the work by Younesy et al. [40] and

Hadwiger et al. [17]. We use voxel neighborhood distributions for
consistent multi-resolution volume rendering and work in a higher-
dimensional domain. Our sparse pdf volume representation is able to
capture even multi-modal distributions without incurring impractical
memory requirements, and enables fast reconstruction and classifica-
tion via simple and fast convolutions at run time. Pre-processing is
made scalable via iterative simplification of 4D Gaussian mixtures.

3 BASICS

We first describe the challenge of consistent multi-resolution volume
rendering in more detail, and define the basic model that we are using.

3.1 Consistent multi-resolution volume rendering
Multi-resolution volumes comprise a hierarchy of successively coarser
resolutions computed from the original volume. This results in a dis-
crete set of resolution levels, where we will denote the original vol-
ume as level `0. Resolution reduction is performed by first applying a
low-pass filter (also called pre-filter [19]) to level `m, and then down-
sampling to obtain level `m+1. It is common to reduce the resolution
by a factor of two in each dimension from `m to `m+1, but other fac-
tors [30] or anisotropic reductions are also possible [16]. In this work,
we will use a down-sampling factor of two. However, this is not an in-
herent restriction of our method, and other factors could also be used.

Applying a low-pass filter before down-sampling is crucial for
avoiding aliasing artifacts. However, this filtering process substitutes
each voxel by a weighted average of its neighborhood, where the
weights depend on the filter kernel used. When one computes the
histogram of a given resolution level `m (e.g., Fig. 1 (b)), it is easy
to see that this process changes the distribution of values in the vol-
ume. More specifically, each voxel in level `m corresponds to the foot-
print [15] of this voxel in level `0, with the size of these footprints
growing from level to level. An accurate representation of a given
voxel would be the distribution of values in the voxel’s footprint in the
original volume. Nevertheless, standard multi-resolution approaches
substitute this distribution by a single value, for example the mean of
the distribution when a box filter is used for low-pass filtering.

An accurate representation of voxel footprint distributions would
therefore provide the conceptual basis for consistent multi-resolution
volume rendering. However, the first major obstacle to using this idea
in practice is the storage overhead associated with each distribution.
For quantized 8-bit volume data, each histogram can be stored as a
256-bin histogram, which is already impractical. Naturally, this prob-
lem becomes more acute with 12- or 16-bit data. A second major
hurdle in practice is applying a transfer function to the distribution,
which for an n-bin histogram also requires O(n) operations.



3.2 Basic model
We formalize the above ideas by treating each voxel at position p in
a multi-resolution volume as the realization of a random variable Xp,
with an associated probability density function fp(r). The argument r
corresponds to the range of the volume, and for intensity (single-
channel) volumes, fp(r) is a 1D function of r. Likewise, a 1D transfer
function t(r) is defined over the same r, i.e., the domain of the transfer
function is the range of the volume. The function t(r) is then applied
to the voxel Xp by computing the expectation of t applied to Xp:

E
[
t(Xp)

]
=
∫

t(r) fp(r)dr. (1)

We observe that from this viewpoint, standard multi-resolution volume
rendering could be “emulated” by simply first computing the expecta-
tion (mean) of Xp as E

[
Xp
]
, and then applying t(r) to the obtained

mean. That is, instead of computing E
[
t(Xp)

]
, we would first com-

pute E
[
Xp
]
, and then compute t(E

[
Xp
]
). This is in essence what is

done in standard multi-resolution volume rendering, where the E
[
Xp
]

are pre-computed and stored. In contrast, however, our goal is to store
the fp(r) instead. Then Eq. 1 allows applying the transfer function t(r)
directly to the complete distribution fp(r) instead of to just its mean.

The big practical challenges now are (1) how all fp(r) can be stored
compactly, and (2) how Eq. 1 can be evaluated efficiently.

4 METHOD OVERVIEW

Fig. 2 depicts an overview of our method. The most crucial property of
our approach is that it works in the 4D joint space × range domain of
the 3D spatial volume domain together with its 1D intensity range. We
define this 4D domain in Sec. 4.1. We then exploit the fact that even
though volume data are usually not sparse in 3D, they are sparse with
respect to a certain basis in 4D, even in a multi-resolution hierarchy.

A sparse pdf volume then comprises a hierarchy of resolution lev-
els `m of progressively smoother functions in 4D, where each `m is
represented by a mixture of 4D Gaussians. Crucially, the number of
Gaussians in each level `m is proportional to its spatial resolution. We
give an overview of this hierarchy in Sec. 4.2, and the details in Sec. 5.
Sec. 6 describes the corresponding data structure for efficient storage,
while at the same time facilitating fast parallel access on GPUs. Sec. 7
describes classification (via transfer functions) and volume rendering.

4.1 Joint 4D space × range domain
Usually, volume data comprise a three-dimensional scalar function
V(x,y,z), whose domain is a subset of 3D space, U ⊂ R3, and whose
range (or co-domain) is the 1D intensity axis R:

V(x,y,z) : U ⊂ R3 7→ R. (2)

We now join the domain and co-domain of V via the Cartesian product
to obtain the 4D joint space × range domain of a new function V̂:

V̂(x,y,z,r) : Û ⊂ R3×R 7→ R. (3)

We define V̂(x,y,z,r) as the “joint probability” of spatial locations
(x,y,z) occurring together with a specific intensity value r, via:

V̂(x,y,z,r) :=
{

δ if ∃ V(x,y,z) with V(x,y,z) = r,
0 otherwise, (4)

where δ is the Dirac delta1. Instead of assuming exactly occurring
values, we now take the viewpoint of kernel density estimation [33]
and substitute each delta peak by a 4D Gaussian kernel G(σσσ s,σr):

V̂(x,y,z,r) :=
k−1

∑
i=0

G(σσσ s,σr) ((x,y,z,r)−µµµ i) , (5)

1The Dirac delta integrates to 1. Note that in order to obtain a properly
normalized 4D pdf, V̂ in Eq. 4 would have to be multiplied by 1/k, where k is
the number of voxels. However, to avoid computing with unnecessarily small
numbers, we neglect normalization for now and normalize later where needed.

where each voxel i from the original volume with k voxels is mapped to
a Gaussian G(σσσ s,σr)(·) in 4D, centered at µµµ i := (pi,ri), corresponding
to the voxel’s original 3D position pi := (xi,yi,zi), and its 1D intensity
value ri. G(σσσ s,σr)(·) is a separable 4D kernel in space × range:

G(σσσ s,σr)(x) := (Gσs ⊗Gσs ⊗Gσs ⊗Gσr )(x), (6)

via the tensor product ⊗ of 1D Gaussians with spatial standard devia-
tion σs (assuming isotropic voxels), and range standard deviation σr.

4.2 A hierarchy of 4D Gaussian mixtures
Our goal is now to compute an entire multi-resolution hierarchy, with
each level `m defined similarly to Eq. 5, but as a more general mixture
of km individually weighted 4D Gaussians, with weights ci:

V̂m(x,y,z,r) :=
km−1

∑
i=0

ci G(σσσ s,σr) ((x,y,z,r)−µµµ i) . (7)

We want to emphasize that a major difference of our approach to a gen-
eral Gaussian Mixture Model is that all of the Gaussians comprising a
given V̂m are constrained to have the same standard deviation (σσσ s,σr).
This property is crucial to enabling the use of convolutions for effi-
ciency, and not having to store the σ ’s of all Gaussians.

Our hierarchy will therefore be a set of n resolution levels {V̂m}
with m ∈ {0, ..,n−1}. Each V̂m is the 4D pdf of level `m in the form
of Eq. 7, with km Gaussians ci G(σσσ s,σr) centered at µµµ i. With (σσσ s,σr)

known, each V̂m can be stored solely as a set of km tuples {(µµµ i,ci)}.

4.2.1 Initial Gaussian mixture
We start the hierarchy with V̂0 for resolution level `0. In V̂0, we set the
spatial standard deviation σs such that it corresponds to one voxel (we
use σs = 0.3), and set the range standard deviation σr to a fixed value
(we use σr = 4/256). We set all ci =

1
(
√

2π)4σ 3
s σr

, so each Gaussian

integrates to 1 (cf. Sec. 5.3). Note, however, that in all V̂m with m > 0,
the coefficients ci will be determined by minimizing an error function.

4.2.2 Hierarchy computation
We then compute the Gaussian mixture of each level V̂m with m > 0
from the preceding level V̂m−1. In order to avoid incurring aliasing ar-
tifacts later on, we first have to low-pass filter V̂m−1. This can be done
very efficiently by simply updating the spatial standard deviation σs
and the coefficients ci accordingly. See Sec. 5.3.2 and Appendix A.2.

Our goal is now to represent V̂m with fewer Gaussians than V̂m−1.
If V̂m−1 is represented by km−1 Gaussians, and we would like to keep
the typical down-sampling rate of 23 for 3D Cartesian volumes, we
target km = km−1/23 Gaussians for V̂m. We do this by computing a
sparse approximation to V̂m via a greedy pursuit algorithm built on
convolutions (Secs. 5.2 and 5.3) and mode finding (Sec. 5.4).

4.3 Volume classification from 4D representation
Given the representation of V̂m as in Eq. 7 (via the set {(µµµ i,ci)}), our
goal for volume rendering is to be able to evaluate Eq. 1 for any voxel
with a given position p via the corresponding voxel footprint pdf fp(r).

In principle, each fp(r) can be obtained from the 4D pdf given by
Eq. 7 by extracting the “conditional probability” of r, given voxel po-
sition p. This can be done by simply obtaining a function of r at p and
re-normalizing. However, in order to facilitate fast parallel classifica-
tion of entire voxel bricks, we employ a method that avoids the recon-
struction of individual fp(r) entirely, and apply the transfer function
in parallel to all voxels in a brick via 1D look-ups and 3D convolution.
This greatly facilitates efficient GPU implementation. See Sec. 7.

5 SPARSE PDF VOLUME COMPUTATION

Our goal is the computation of each V̂m for resolution level `m with
m > 0, such that it approximates the low-pass filtered mixture V̂m−1
well. Both functions are given in the form of Eq. 7. The crucial goal is
now to represent V̂m with fewer Gaussians than V̂m−1, i.e., km < km−1.



This is a reasonable assumption, because low-pass filtering makes
these functions successively smoother. Our basic idea for this approx-
imation is that each V̂m should be represented as a sparse signal, with
respect to a chosen dictionary of atoms (“basis functions”) [9]:

min
c
‖c‖0 subject to Hc = v, (8)

where H denotes the dictionary with the atoms viewed as column vec-
tors, and c is the coefficient vector that determines the linear combi-
nation that should best approximate a signal v, given H. Our dictio-
nary H consists of translates of Gaussians (see Sec. 5.3), and the target
signal v to approximate is a chosen V̂m after low-pass filtering. In or-
der to obtain a sparse representation, c should have as few non-zero
elements as possible, which is indicated by the L0 pseudo-norm ‖ · ‖0.

5.1 Pursuit algorithms
In principle, finding the solution to Eq. 8 is an NP-hard problem [9].
However, pursuit algorithms compute good approximations using
greedy iterative strategies to obtain a sparse c. In each iteration, the
atom from the dictionary H that approximates the current residual best
is picked by projecting the residual into the dictionary [9]. Our method
is based on the Matching Pursuit algorithm [28]. However, we employ
a novel variant that is specialized for a dictionary that consists of trans-
lates of a Gaussian kernel, which facilitates the use of fast convolutions
(Sec. 5.2). In contrast to earlier work for images [17], our strategy for
volumes does not make use of a sampled pdf (i.e., histogram) repre-
sentation, which is crucial to scaling from 2D image data to 3D volume
data. Instead, our approach for volumes works almost completely in
continuous 4D space, using continuous 4D Gaussian atoms.

5.2 Dictionary projection as convolution
For brevity, in the following explanations we describe the 1D case of
approximating a general 1D function g(x). However, one can always
think of g(x) below as corresponding to an actual 4D function V̂m.

We want to project the function g(x), which we want to approxi-
mate, onto dictionary atoms hµ (x), where the parameter µ selects the
atom. This projection is obtained via the inner product of the two func-
tions. The inner product of two (real) functions g and hµ is defined as:

(
g,hµ

)
:=

∞∫
−∞

g(x)hµ (x)dx. (9)

The (scalar) coefficient of g with respect to hµ is obtained from pro-
jection using Eq. 9 with a dictionary atom that has unit norm:

‖hµ‖2 = 1, (10)

where ‖ · ‖2 denotes the L2 norm induced by the inner product, i.e.,
‖h‖2 :=

√
(h,h) (see [4, 9, 27]).

All of our dictionary atoms are translates of the same kernel h(x),
where h is symmetric around zero, i.e., h(x) = h(−x). hµ then denotes
the dictionary atom centered at x = µ , defined as:

hµ (x) := h(x−µ). (11)

This will allow us to carry out most operations as simple convolutions.
The convolution (denoted by ?) of two functions g and h is defined as:

(g?h)(x) :=
∞∫
−∞

g(t)h(x− t)dt. (12)

In order to determine the dictionary atom that approximates the func-
tion g(x) best, we have to determine which atom results in the largest
inner product [9], i.e., we must determine the maximizer of Eq. 9:

max
hµ

(
g,hµ

)
. (13)

Because we define all dictionary atoms as translates of the same ker-
nel h(x), the maximum inner product of all hµ can be computed from
the convolution of g and h (compare Eqs. 9 and 12, using Eq. 11):

max
hµ

(
g,hµ

)
= max

x
(g?h)(x). (14)

The value of x that maximizes the right-hand side of Eq. 14 is the maxi-
mizer of Eq. 13 with the hµ where µ = x. Thus, the crucial observation
is that in order to find the dictionary element that approximates g(x)
best, we simply have to find the maximum of the function (g?h)(x).

5.3 Gaussian dictionaries and Gaussian mixtures
We define a Gaussian centered at x = µ with standard deviation σ as:

Gσ (x; µ) := e−
(x−µ)2

2σ2 , or abbreviated (15)
Gσ (x) := Gσ (x;0) if µ = 0. (16)

Note that our definition of Gσ is not normalized. We do this because
we will need different normalization weights for different purposes. A
weighted Gaussian is then cGσ (x; µ), with a scalar coefficient c.2

5.3.1 Gaussian dictionaries
We use a dictionary hµ (x), with different µ , defined as Gaussians:

hµ (x) := ch Gσ (x; µ), (17)

with ch = π
− 1

4 /
√

σ , so that ‖hµ (x)‖2 = 1. We intentionally use dic-
tionaries with a fixed standard deviation σ for all hµ (x). This is crucial
in order to enable simple convolutions to be used both for dictionary
projection (Sec. 5.2), and for classification at run time (Sec. 7).

5.3.2 g(x) as Gaussian mixture
The function g(x) that we want to approximate is given as a mixture of
k Gaussians with identical σ , but different weights ci and positions µi:

g(x) :=
k−1

∑
i=0

ci Gσ (x; µi). (18)

Our approach needs to perform two main operations on g(x):

1. Low-pass filter g(x) before spatial down-sampling.

2. Compute the maximum of the convolution from Eq. 14 for dic-
tionary projection (Sec. 5.2), with hµ (x) as defined in Eq. 17.

Both of these operations can be computed directly on g(x) given as a
Gaussian mixture (Eq. 18). We operate directly on the mixture repre-
sented by the set {(µµµ i,ci)}. We simply modify the ci and the (global)
standard deviation σ that is associated with the mixture. All posi-
tions µµµ i stay the same. For details see Appendix A.1 (convolution),
Appendix A.2 (low-pass filtering), and Appendix A.3 (projection).

5.4 Pursuit via mode finding
We employ a greedy pursuit algorithm for the computation of the
sparse approximation of each V̂m given in the form of Eq. 7. The
Matching Pursuit algorithm [28] computes a greedy signal approxi-
mation in an iterative way, where in each iteration a residual function
is reduced until a pre-defined L2 error threshold is reached. In the be-
ginning, the residual is initialized to the original signal. Then, in every
iteration the dictionary atom that has the largest inner product with the
current residual is picked, because it approximates it best [28].

The corresponding coefficient is given by the same inner product,
since it corresponds to the projection of the residual onto the chosen
atom. In every iteration, the contribution of each atom is subtracted out
from the residual, and the whole procedure starts again until the error
is small enough, yielding the desired sparse signal representation [9].

2 For example, a Gaussian pdf f (x) requires
∫
R f (x)dx = 1, and therefore

f (x) = 1√
2πσ

Gσ (x; µ), where c = 1√
2πσ

. See also Appendix A.
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Fig. 3: Parallel pursuit via mode finding starts from (a) the input Gaussian mixture (centroids denoted by +), which is the kernel density esti-
mate of the original volume, or a previously simplified mixture. (b) The mixture is low-pass filtered in the spatial domain. (c) The intermediate
mixture for mode finding is obtained via convolution with the dictionary kernel. We then perform parallel pursuit iterations in this mixture. We
find all its modes (• and �) in parallel, but retain only the largest non-overlapping modes (•). A fixed-point mode search in the first iteration is
illustrated for each step (•) from one example centroid. (d) The output Gaussian mixture consists of one component per retained mode.

Algorithm 1 shows these steps in our framework. Each atom in our
dictionary is a Gaussian hµ (x) as defined in Eq. 17. In 4D, each pro-
jection into the dictionary is a tuple (µµµ,c), where µµµ selects the dictio-
nary atom, and c is the corresponding coefficient. All our 4D Gaussian
mixtures then correspond to sets G = {(µµµ i,ci)} of such tuples.

5.4.1 Projection in 4D using mode finding
A fundamental step in Algorithm 1 is finding the atom that results in
the largest inner product with the residual (see Eq. 14). Instead of
looking at each atom individually—as in standard Matching Pursuit—
we exploit the property that the atom we are looking for corresponds to
the maximum of the right-hand side of Eq. 14, which is attained at one
of its modes. The convolution in Eq. 14 is derived in Appendix A.3.

We can therefore perform the projection step via a mode finding pro-
cedure in a Gaussian mixture. For mode finding, we employ the fixed-
point iteration approach described by Carreira-Perpiñán [3]. Another
similar alternative would be to use a mean shift procedure [6].

Fig. 3 depicts the individual steps of our approach for a simpli-
fied example illustrated in 2D (1D space × 1D range). We start with
a given mixture V̂m, subject it to spatial low-pass filtering to pre-
vent aliasing (Eq. 35), further convolve it with the dictionary kernel h
(Eq. 37), and then find the modes of this intermediate mixture. We start
the mode finding procedure at the known modes of the mixture V̂m,
and iterate to stationary points of the intermediate mixture. At this
stage, it is quite common that nearby starting points converge to the
same mode. The intermediate mixture corresponds to the function g?h
in Eq. 14, and the coefficient that we are looking for (c in Algorithm 1)
is the function value at the 4D position of the maximum mode.

5.4.2 Parallel pursuit via mode finding
Standard Matching Pursuit [28] is a completely sequential algorithm,
where only one atom is selected in each iteration. In our context, this
means determining the maximum mode of the intermediate mixture, as
described above. However, in order to speed up the fitting process, we
want to perform multiple mode searches in parallel in each iteration.

Algorithm 1 Approximating g(x) with Matching Pursuit

Input: g(x) given as Gaussian mixture (Eq. 18) G = {(µµµ i,ci)}
Output: Simplified Gaussian mixture g̃(x) (Eq. 18) G̃ = {(µµµk,ck)}

1: Set output mixture g̃(x) = 0; [G̃← /0];
2: Set residual r(x) = g(x); [R← G];
3: Set L2 approximation error E2 = ‖r(x)‖2;
4: while E2 > ε do
5: Find maximizer maxhµ

(
r,hµ

)
as c = maxµ (r ?h)(µ)

(Eqs. 14 and 37 with r(x) instead of g(x); Sec. 5.4.1)
6: Grow mixture g̃(x)← g̃(x)+ chµ (x); [G̃← G̃∪{(µµµ,c)}];
7: Reduce residual r(x)← r(x)− chµ (x); [R← R∪{(µµµ,−c)}];
8: Re-compute approximation error E2 = ‖r(x)‖2;
9: end while

In each iteration, we would like to find several non-overlapping
modes in parallel, in order to select multiple atoms in parallel. We
define non-overlapping modes such that the centroids of the atoms are
not within distance ωσ of one another, where σ is the standard devi-
ation of the atoms, and ω is a configurable overlap parameter. Setting
ω appropriately ensures that the corresponding coefficients do not in-
terfere with each other, because adding multiple overlapping atoms to
the mixture at the same time incurs fitting errors due to incorrect coef-
ficients. For overlapping modes, we always retain the largest one and
discard the rest. The non-overlapping modes chosen in each iteration
are added to the target mixture, and the residual is updated by subtract-
ing the same atoms (Algorithm 1). The next iteration then continues
from the previously known modes plus the newly added modes.

We found that this approach produces good results. However, in
order to further speed up the pursuit process, we introduce two simple
heuristics. Our first heuristic is to set ω to a value that allows minimal
overlap among parallel coefficients. In our computations, we typically
set ω = 3 for the spatial dimensions, and ω = 2 for the range. This
allows us to put more parallel coefficients in each pursuit iteration with
the trade-off of incurring a small error in the coefficient values. Note
that setting ω large enough so that the overlap region covers the whole
domain is equivalent to standard serial Matching Pursuit.

The second heuristic that we use is to optionally reduce the number
of parallel searches that we do after the first pursuit iteration. The rea-
son for this is that as the number of Gaussians in the residual grows, the
parallel mode search also becomes slower, since (1) ideally to find all
the modes, we have to do more searches starting from each Gaussian
centroid in the residual, and (2) there are more Gaussian components
in the mixture that need to be evaluated during the search. Concep-
tually, reducing the number of starting positions for the parallel mode
search should have a minimal impact on the method since most of the
searches converge to the same mode. Currently we pick around 1/8
of the possible starting positions in each iteration and just change the
starting positions in the next iteration by making them spatially well
distributed, i.e., we rotate over even and odd combinations of the x,
y, and z positions of the starting points. We only apply this heuristic
after doing the first parallel mode search iteration where we use all the
possible starting points, i.e., all modes of the initial residual.

6 SPARSE PDF VOLUME DATA STRUCTURE

Fig. 4 illustrates the data structure that we use to compactly encode
the V̂m of a sparse pdf volume. We assume a bricked volume to fa-
cilitate large-scale out-of-core volume rendering. That is, the original
volume (resolution level `0) is subdivided into bricks of fixed size.
Our current implementation uses a brick size of 643 voxels, plus four
ghost voxels in each spatial dimension. Using smaller brick sizes in-
curs an impractical storage overhead for ghost voxels [11], while larger
brick sizes lead to slower pre-processing, since Matching Pursuit has
quadratic complexity. All bricks of level `0 are stored in the usual way,
with one scalar per voxel. The bricks of all levels `m with m > 0 are
stored in the following sparse pdf volume encoding: We first sort the
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Fig. 4: The sparse pdf volume data structure consists of the bricked
input volume (`0) and the coarser resolution levels `m with m > 0. For
each of the latter, we store (1) a coefficient count brick with one count
per voxel p, and (2) a coefficient info array. Together, these encode the
list of 4D Gaussian mixture components for each coarse level.

set of mixture components {(µµµ i,ci)} = {(pi,ri,ci)} comprising V̂m
according to spatial voxel position p. For each voxel p, we also count
how many (pi,ri,ci) with p = pi there are, and store this count in a co-
efficient count brick at position p. We now drop the pi coordinate from
each (pi,ri,ci), and store the tuples (ri,ci) in a coefficient info array.
We do not need to explicitly store the pi, because the tuples (ri,ci) of
each p can be indexed according to the count of tuples of p (see be-
low). This results in the following data structure per brick (see Fig. 4):

1. A coefficient count brick stores one 8-bit count per voxel p. This
is the number of coefficients that are associated with the same
spatial position p as the voxel, i.e., #(pi,ri,ci) with p = pi.

2. A coefficient info array stores all tuples (ri,ci) of the brick, with
a 16-bit half float each for ri and ci, respectively. All tuples from
the same voxel p are stored contiguously in memory.

Furthermore, for 8-bit data sets we can quantize the ri to 8 bits. The
complete encoding then requires: For level `0: 1 byte per voxel. For
all `m with m > 0: 1 byte per voxel, plus 3 bytes per coefficient. This
encoding results in sparse pdf volume sizes that are still similar to
standard representations (see Table 3), while encoding full pdfs.

In order to save memory, we do not store indexes to the tuples (ri,ci)
on disk. However, at run time, for each p we need to be able to ac-
cess all (ri,ci) that originally came from a tuple (pi,ri,ci) with p = pi.
Therefore, after loading the sparse pdf data structure for rendering, we
compute the prefix sum [18] of the coefficient count brick. This results
in an index brick, where the entry at each voxel p points to the corre-
sponding location of the first tuple (ri,ci) of p in the coefficient info
array. All other tuples of p are located in consecutive memory loca-
tions, and their count is given by the coefficient count brick entry p.

7 RUN TIME CLASSIFICATION

This section describes how Eq. 1 can be evaluated using our represen-
tation of 4D pdfs as 4D Gaussian mixtures (Eq. 7) instead of requiring
individual 1D pdfs fp(r). We first derive the basic method (Sec. 7.1),
and then describe its efficient implementation in practice (Sec. 7.2).

7.1 Basic method
Our goal at run time is to apply a transfer function t(r) to the data at
any given voxel position p. According to Eq. 1, we do this by apply-
ing t(r) to the 1D voxel footprint pdf fp(r). The latter is now contained
in the 4D Gaussian mixture given by Eq. 7. We therefore insert Eq. 7
into Eq. 1, and evaluate for a fixed 3D voxel position p := (x,y,z):

E
[
t(Xp)

]
=
∫

t(r) fp(r)dr, (19)

=
∫

t(r)
1

wp

k−1

∑
i=0

ci G(σσσ s,σr) ((p,r)−µµµ i)dr, (20)

where G(σσσ s,σr) =Gσσσ s⊗Gσr is a separable 4D Gaussian kernel, and our
expression for fp(r) is a 1D pdf due to the normalization factor wp:

wp :=
∫ k−1

∑
i=0

ci G(σσσ s,σr) ((p,r)−µµµ i)dr. (21)

If we now split up µµµ i =: (pi,ri) into spatial (pi) and range (ri) coordi-
nates, respectively, and exploit that G(σσσ s,σr) is separable, we get:

E
[
t(Xp)

]
=

1
wp

k−1

∑
i=0

ci Gσσσ s(p−pi)
∫

t(r)Gσr (r− ri)dr. (22)

Noting that all kernels Gσr are the same, we can write the integral in
Eq. 22 as a convolution, which significantly simplifies the equation to:

E
[
t(Xp)

]
=

1
wp

k−1

∑
i=0

ci Gσσσ s(p−pi) t̃(ri), (23)

where the new function t̃(r) is defined as follows (cf. Eq. 12):

t̃(r) := (t ?Gσr )(r) =
b∫

a

t(x)Gσr (x− r)dx, (24)

where we have now denoted the interval of integration as [a,b], cor-
responding to the domain of t(r), e.g., r ∈ [0,1] ⊂ R. (Note that
Gσr (x) = Gσr (−x), and therefore Gσr (x− r) = Gσr (r− x)).

Similarly, Eq. 21 simplifies to (cf. Eq. 23):

wp =
k−1

∑
i=0

ci Gσσσ s(p−pi)Ḡσr (ri), (25)

where the new function Ḡσr (r) is defined as (cf. Eq. 24):

Ḡσr (r) :=
b∫

a

Gσr (x− r) dx, (26)

which is the integral of Gσr (·) centered at r and clamped to r ∈ [a,b].
These derivations now yield the crucial observation that t̃(r) can be

pre-computed via a single 1D convolution (Eq. 24) for a given transfer
function t(r), and that Eq. 23 can be computed as a sum of simple
look-ups and 3D (not 4D) convolutions. Similarly for Ḡσr (r). This
makes run time classification very efficient and easy to implement.

7.2 Practical implementation
We now denote the spatial 3D neighborhood of voxel p as N (p), and
obtain Gaussian mixture coefficients (µµµ i,ci) = (pi,ri,ci) from the data
structure described in Sec. 6. We can then write Eq. 23 as:

E
[
t(Xp)

]
=

1
wp

∑
q∈N (p)

Gσσσ s (p−q)∑
(qi,ri,ci)

q=qi

ci t̃(ri). (27)

We note that the second sum in Eq. 27 can be computed once per
voxel p, and then used in all spatial convolutions involving this voxel.
This enables evaluating Eq. 27 as follows. We first use simple look-ups
and summations to compute two intermediate bricks T (p) and N(p):

T (p) := ∑
(pi,ri,ci)

p=pi

ci t̃(ri), and N(p) := ∑
(pi,ri,ci)

p=pi

ci Ḡσr (ri). (28)

Then, both bricks T (p) and N(p) are convolved in the 3D spatial do-
main with Gσσσ s(·), and the classified output brick is obtained by divid-
ing each voxel in T by the corresponding normalization factor in N:

E
[
t(Xp)

]
=

(
T ?Gσσσ s

)
(p)(

N ?Gσσσ s

)
(p)

. (29)

We pre-compute both t̃(r) (Eq. 24) and Ḡσr (r) (Eq. 26), storing each
in a 1D look-up table. Computationally, for each voxel we only have
to sum over all look-ups t̃(ri) and Ḡσr (ri) per ri, perform a single 3D
convolution for T and N each, followed by one division per voxel.

In summary, despite its simplicity, this method (using Eqs. 28
and 29) performs accurate classification with any transfer function t(r)
for all voxels in a brick, as defined by Eq. 1 and Eq. 20 for each voxel.
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Fig. 5: Out-of-core distributed pre-processing pipeline. From the
input volume bricks, the bricking server creates a fitting request with
the initial 4D Gaussian mixture which it sends to an available fitting
server. The fitting server then computes the sparse Gaussian mixture
that approximates the input mixture best and sends the result back.
The bricking server then compactly encodes the result into the output
data structure which is reloaded later on to compute the next level.

8 IMPLEMENTATION FOR LARGE-SCALE VOLUME DATA

This section describes our implementation of the sparse pdf volume
pre-computation step that scales to large volume data.

8.1 Scalable out-of-core pre-computation
We have implemented the pre-computation of sparse pdf volumes in a
scalable distributed framework illustrated in Fig. 5. This framework is
realized entirely out-of-core, so that data sets of arbitrary size can be
processed. The framework is split up into two main distributed com-
ponents: (1) a bricking server, and (2) one or several fitting servers.

8.1.1 Bricking server
The bricking server first reads the processing parameters and streams
through the input volume. During this process, it subdivides the vol-
ume into bricks of pre-defined size, which in our case are 643 voxels.
Each of these bricks is immediately written back to disk into level `0
of the output data structure. A parallel thread then goes through each
set of 2×2×2 bricks in `0, i.e., a neighborhood of 1283 voxels. This
neighborhood in turn corresponds to one 643 brick in level `1. The
server then creates a corresponding fitting request and pushes it into a
request queue. Each fitting request consists of the fitting parameters (σ
of Gaussian atoms, target size of output Gaussian mixture), together
with the list of 4D Gaussian components that are the kernel density es-
timate of the voxel data. Once a fitting server finishes processing a fit-
ting request from the request queue, it sends back the resulting output
4D Gaussian mixture to the bricking server. The bricking server then
writes it into the output sparse pdf volume on disk. Once level `1 is
complete, the bricking server goes through each 2×2×2 brick neigh-
borhood in `1, which likewise now represents the Gaussian mixture
of a 1283 voxel neighborhood in `1, and thus a 643 brick in level `2.
It then creates the corresponding new fitting request. This process is
repeated in an identical manner for all remaining resolution levels.

8.1.2 Fitting server
The second component of our framework are the fitting servers, which
fit a sparser Gaussian mixture to an input Gaussian mixture using the
parallel pursuit described in Sec. 5.4. Each fitting server connects to
the bricking server via a TCP/IP link. Once connected, the bricking
server assigns a thread to the new fitting server and sends a fitting re-
quest from the request queue. After the transmission, the correspond-
ing thread will pause and wait for the result to be returned. The fitting
servers take the fitting request, i.e., an input Gaussian mixture, and
process it in-core. The input Gaussian mixture is uploaded to the GPU
and processed via the CUDA part of our framework (Sec. 8.2). Once
the fitting is completed, the result is sent back to the bricking server
where the responsible worker thread wakes up and receives the sparse
Gaussian mixture data. This data is integrated into the output sparse
pdf volume. Should the fitting server not return the result within a
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Fig. 6: Pdf approximation error analysis for the Visible Human data
set. (Left) We plot the peak signal-to-noise ratio (PSNR) of the ap-
proximated pdf against the ground truth 256-bin histogram, averaged
over all bricks. Sparse pdf volumes preserve the pdf information best
(highest PSNR values), and across all resolution levels. (Right) We
plot pdf approximation error distributions (histograms of error values,
i.e., differences). Sparse pdf volumes have consistently smaller error
values in all resolution levels, compared to the standard down-sampled
and single Gaussian representation [40], respectively. The latter two
exhibit large errors because they can only represent a single value and
a single mode, respectively. Each error value is computed as the point-
wise difference between ground truth pdf and approximated pdf in 4D.

pre-defined timeout, or should the TCP/IP link be terminated, then the
worker thread also wakes up and pushes the corresponding fitting re-
quest back to the queue so that another fitting server can take over.

An almost arbitrary number of fitting servers can connect to one
bricking server. Due to the use of simple TCP/IP links, the fitting
servers can be located anywhere as long as they can reach the bricking
server via the network. These connections can be established dynam-
ically during the run time of the system, i.e., a new fitting server can
connect at any time, and existing servers can disconnect or fail without
terminating the overall computation.

8.2 Parallel pursuit on the GPU

In order to reduce pre-computation times, we use a CUDA implemen-
tation of the parallel Matching Pursuit that is executed in the fitting
servers. Other GPU and compute languages such as OpenCL could
also be used without much difference. During the whole pursuit pro-
cess, we maintain two Gaussian mixtures: (1) the residual, and (2)
the detected modes in each iteration. Since our Gaussian mixtures are
sparse in the whole 4D domain, and in order to facilitate fast neighbor-
hood searches, we use a linked list-based hash table [32] to store each
Gaussian mixture. This hash table, with a hashing function based on
the work of Teschner et al. [35], allows us to quickly insert multiple
Gaussian components using atomic operations on the GPU.

We first copy the input Gaussian mixture into the residual hash ta-
ble by simply assigning a single thread for each component and per-
forming parallel inserts into the residual hash table. Then, in each
iteration of the parallel pursuit, we deploy as many threads as there
are parallel mode searches to carry out. Each thread performs mode
finding using fixed-point iteration [3], starting from the 4D position of
the residual Gaussian component assigned to it. Once the modes have
been detected, each thread inserts its mode into the modes hash table.
We then perform a parallel search for overlaps using one thread per
entry in the modes hash table. The maximum non-overlapping modes
are then inserted into the residual hash table, and the process is re-
peated until the error threshold is met or the target number of output
Gaussian components is reached. Once the pursuit process is finished,
the fitting server copies the result from the GPU to the CPU, and sends
the obtained Gaussian mixture to the bricking server.

9 RESULTS AND COMPARISONS

This section provides qualitative comparisons and quantitative results.
We have used the Shepp-Logan phantom (5123), the Visible Human
(5122×1884), and a rat brain blood vessel (microvasculature) data set
(10243) acquired using knife-edge scanning microscopy [29]. In this
paper, all data sets use 8-bit voxels. However, processing 12- or 16-bit
data is straightforward, since we operate in a continuous 4D domain.
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Fig. 7: Visible Human. (a) Volume rendering level `0 (5122× 1884). Comparison of volume rendering coarser levels (b, e) `1 (2562× 942),
(c, f) `2 (1282×471), and (d, g) `3 (642×235). (Top row) Sparse pdf volumes. (Bottom row) Standard pre-filtering and down-sampling. The
logarithmic histograms of the standard data representations are shown on the top along with the transfer function. The standard representation
loses more and more of the bones and teeth toward the coarser levels due to low-pass filtering (observe the changing histograms). Sparse pdf
volumes are able to maintain much better consistency with the original rendering, keeping the important features of the bones and teeth intact.

9.1 Consistent multi-resolution volume rendering
The pdf approximation error analysis in Fig. 6 shows that sparse pdf
volumes preserve the voxel neighborhood pdfs in each resolution level
much better than standard low-pass filtering and down-sampling, as
well as the single Gaussian approximation [40], respectively. This is
the key to consistent volume rendering results even for coarse resolu-
tions. The ground truth for our error analysis is the full 256-bin his-
togram (smoothed using σr in Eq. 6), since this is the function that we
want to preserve. PSNR values are computed against this histogram.

Fig. 1 (b) shows that iteratively low-pass filtering and down-
sampling the Shepp-Logan phantom introduces new values in the data
which leads to inconsistency artifacts in multi-resolution volume ren-
dering. Fig. 1 (c) shows that using a single Gaussian to represent voxel
neighborhood pdfs is not sufficient to capture the multi-modal nature
of pdfs in lower resolutions, which also results in similar artifacts. In
contrast, sparse pdf volumes are able to accurately encode pdfs lead-
ing to (d) more consistent multi-resolution volume renderings that are
almost equivalent to (e) the ground truth using a full histogram with
256 bins. Similarly, Figs. 7 (e,f,g) show that the coarser resolutions of
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Fig. 8: Blood Vessels. (Left) Consistent multi-resolution volume ren-
dering using sparse pdf volumes preserves details in the data for levels
(a) `1, (d) `2, (e) `3 in contrast to (Right) standard pre-filtering and
down-sampling for the same levels (c) `1, (f) `2, (g) `3. The boxes in
(d) and (f) correspond to the zoom-in into level `0 (10243) in (b).

the visible human increasingly lose important values such as the bones
and teeth due to spatial pre-filtering and down-sampling, leading to in-
consistent results across levels. In comparison, sparse pdf volumes are
able to retain the information of the bones and teeth, leading to reduced
inconsistency artifacts, as shown in the smooth transitions from level
to level in Figs. 7 (b,c,d). Even small details as in the blood vessel data
set depicted in Fig. 8 are consistently retained in the multi-resolution
volume rendering using sparse pdf volumes (Figs. 8 a,d,e). This is
in contrast to standard pre-filtering and down-sampling, where details
dramatically disappear in the coarser resolution levels (Figs. 8 c,f,g).

9.2 Performance and scalability
Pre-computation scalability. Table 1 gives pre-computation times
for the data sets that we have used. We have used 16 fitting server
processes, each with a 3.07 GHz Intel Xeon CPU and NVIDIA Tesla
M2070Q (Fermi) GPU. On a single node, these times would roughly
be larger by a factor of 16. Very importantly, despite the quadratic
complexity of Matching Pursuit in general, our pre-computation times
scale linearly with the data size, since we are subdividing the data
into bricks and perform the pursuit on each brick independently. On
average, a fitting server takes 5 minutes to process each 643 brick.

Our pre-computation step also scales well in terms of memory re-
quirements with respect to the dimensionality of the domain (4D),
since we do not need to re-sample the pdf information for the fitting
process. This is in contrast to our earlier work [17]. Moreover, our
pre-computation method would also effortlessly scale to 12- or 16-bit
data, since mode finding always operates in a continuous 4D domain.

Classification performance. Using the optimized classification
scheme described in Sec. 7.2, we achieve high classification perfor-
mance at run time, as illustrated in Table 2 (timings measured on
NVIDIA Geforce Titan Black (Kepler) GPU). We execute the classifi-
cation step only when the transfer function changes, and also classify
only the currently visible bricks. In order to do this, we have inte-
grated volume classification and rendering with sparse pdf volumes
into an existing large-scale out-of-core ray-caster [16]. Apart from the
modified classification of bricks, the volume renderer did not need to
be modified at all. Based on the classification approach described in
Sec. 7.2, the volume renderer performs pre-classified volume render-



Table 1: Pre-computation times using parallel pursuit (with 16 par-
allel fitting server processes) and the average time for one 643 brick.
Note that # bricks is given for level `0, but fitting starts at level `1.

Data set Resolution # Bricks 1 Brick Total
D1: Shepp-Logan 5123 512 5 min 30 min
D2: Visible Human 5122×1884 1920 4.7 min 84 min
D3: Blood Vessels 10243 4096 5 min 188 min

Table 2: Classification times. We report average times per 643 brick
(total/brick), consisting of the time for computing Eq. 28 (ci’s/brick)
and Eq. 29 (?/brick). We also state the total time for classifying all
bricks of resolution level `1 (D1: 2563; D2: 2562×942; D3: 5123).

Data set total `1 total / brick ci’s / brick ? / brick
D1: Shepp-Logan 130 ms 2.03 ms 0.24 ms 1.79 ms
D2: Visible Human 526 ms 2.19 ms 0.37 ms 1.82 ms
D3: Blood Vessels 1,106 ms 2.16 ms 0.36 ms 1.80 ms

Table 3: Storage requirements comparison. The total storage re-
quirements of sparse pdf volumes (ours) are comparable to standard
representations. Column (µ,σ) is [40]; histogram stores 256 bins.

Data set octree (µ,σ) ours histogram
D1: Shepp-Logan 175 MB 219 MB 241 MB 11,361 MB
D2: Visible Human 659 MB 826 MB 909 MB 43,257 MB
D3: Blood Vessels 1,404 MB 1,755 MB 1,930 MB 91,044 MB

ing [10]. That is, the ray-caster fetches pre-classified RGBA values
from the volume bricks, which are stored in an RGBA cache texture.
An important consequence is that volume rendering frame rates are in-
dependent of the sparse pdf volume method. Rendering performance
is exactly the same as for standard pre-classified volume rendering.

Storage requirements. Table 3 summarizes the storage required
for each of our test data sets in comparison with standard volume rep-
resentations. For a fair comparison, we use a brick size of 643 and
four ghost (boundary) voxels in each spatial dimension throughout.
We compare with an octree with 8 bits per voxel, single Gaussian
(µ,σ) [40] with 24 bits per voxel (8-bit quantized µ , 16-bit float σ ),
and the full histogram representation with 256 bins and a 16-bit float
per bin. Note that these values include the fixed storage requirement
of level `0 (8 bits per voxel). The coarsest levels for D1, D2, and D3
that we have computed are levels `3 (D1), `4 (D2), and `4 (D3), re-
spectively. Coarser resolution levels would already be smaller than a
single brick for the entire volume. All sparse pdf volume representa-
tions used in this paper use 643 coefficients in each 643 voxel brick,
i.e., on average (over the brick) there is a single coefficient per each
voxel. This fact together with Table 3 shows that the sparse pdf vol-
ume representation is able to find a very good balance between storage
overhead and the quality of the encoded pdf information. In all results,
we have used σs = 0.6 and σr = 4/256 for the dictionary Gaussian hµ .

Volume compression. We have not performed a direct comparison
with volume compression methods, since we believe that our goals are
quite different. It would, however, be possible to use a general com-
pression method on top of the sparse pdf volume representation, i.e.,
performing an additional compression step after the sparse pdf volume
has been computed. This, however, would require de-compressing be-
fore volume classification. In contrast, an important property of sparse
pdf volumes is that classification is performed directly on the sparse
representation, i.e., without any explicit “de-compression” step.

10 LIMITATIONS AND FUTURE WORK

Pre-classification. Our fast classification method (Sec. 7.2) is lim-
ited to pre-classified volume rendering. While our general approach
(Sec. 7.1) in principle also supports post-classification, the required
spatial 3D convolution (Eq. 23) could pose a performance bottleneck.

Shading. While we have not described volume shading in this
work, gradients for shading can be estimated via one of two ways,
e.g., using central differences: (1) Estimating gradients on the alpha
channel of the classified RGBA voxels, i.e., estimating gradients af-

ter applying the transfer function [8]; or (2) Computing the expected
value of the volume intensity itself and estimating the gradient there.

Data properties. Our method may break down for data without
spatial coherence, e.g., random volumes. We are currently exploring
additional strategies to adapt to special cases in the data and allow a
hybrid mixture of pdf representations in the same data structure, which
could then better adapt to data properties and user requirements.

Other grid types and mixed-resolution rendering. While our
main goal were volume data on regular grids, our representation could
be extended to other grid types. The major requirements would be to
define the voxel footprint in the multi-resolution hierarchy, and to be
able to gather samples in the corresponding neighborhood. In addi-
tion to other regularly sampled grids, such as BCC grids, computing
a sparse pdf volume for irregular or adaptive grids, e.g., AMR data,
could be particularly interesting. We are also planning to explore the
reduction of transition artifacts in mixed-resolution volume rendering.

11 CONCLUSIONS

Our sparse pdf volume representation for large-scale volume data com-
pactly and accurately encodes the hierarchical pdf information of large
multi-resolution volumes, which facilitates consistent multi-resolution
volume rendering. In contrast to standard volume compression meth-
ods, our goal is not to reduce the memory size of the volume itself,
but to encode much more information without requiring an imprac-
tical amount of additional storage, as well as avoiding explicit de-
compression for volume rendering. Our representation supports fast
direct classification using the sparse encoding. We have shown that
the representation of pdfs as a mixture of 4D Gaussians, and the cor-
responding parallel simplification, make pre-processing fast enough to
achieve practical pre-computation times for large volume data.

Nevertheless, the pre-computation times are still the main bottle-
neck of our method and would be important to reduce in future work.
However, it is a crucial property of our method that once a sparse pdf
volume has been pre-computed, it does not require much more stor-
age than standard methods that encode much less information, and fa-
cilitates real-time volume rendering with interactive transfer function
changes with minimal changes to existing volume renderers.
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A DERIVATIONS INVOLVING WEIGHTED GAUSSIANS

This appendix summarizes the most important basic computations in-
volving weighted Gaussians that are used in the main part of the paper.

A.1 Convolution of weighted Gaussians
We define a weighted Gaussian as cGσ (x; µ), with Gσ (x; µ) as defined
by Eq. 16 (note that our Gσ are not normalized). The convolution of
two weighted Gaussians results again in a weighted Gaussian:

cn Gσn(x; µn) = (c0 Gσ0(x; µ0))? (c1 Gσ1(x; µ1)) , (30)

with weights cn, standard deviations σn, and positions µn, where:

µn = µ0 +µ1, (31)

σn =
√

σ2
0 +σ2

1 , (32)

cn =

√
2πσ0σ1

σn
c0c1. (33)

We note that for two Gaussian pdfs (c0 =
1√

2πσ0
, c1 =

1√
2πσ1

), Eq. 30

results again in a Gaussian pdf, because then Eq. 33 gives cn =
1√

2πσn
.

A.2 Low-pass filtering g(x)
We compute the low-pass filtered g(x) from our definition of g(x) as a
Gaussian mixture (Eq. 18) via convolution with a Gaussian low-pass
filter kernel w(x) := cwGσw(x) with cw = 1√

2πσw
so that

∫
R w(x)dx= 1:

(g?w)(x) = cs

k−1

∑
i=0

ci Gσfilt(x; µi), (34)

which again is a Gaussian mixture, with σfilt =
√

σ2 +σ2
w (cf. Eq. 32).

For a down-sampling factor of 2, we desire σfilt := 2σ . Therefore, we
use σw :=

√
3σ . Convolution with this filter therefore scales each ci

by a factor cs = 1/2 (cf. Eq. 33). We therefore get:

(g?w)(x) =
1
2

k−1

∑
i=0

ci G2σ (x; µi). (35)

A.3 All inner products of g(x) as a convolution
Similarly, the convolution in Eq. 14 can be computed from our defini-
tion of g(x) as a Gaussian mixture (Eq. 18) convolved with the dictio-
nary Gaussian h(x) := chGσh(x) with ch =

1√√
πσh

so that ‖h(x)‖2 = 1:

max
x

(g?h)(x) = max
x

cp

k−1

∑
i=0

ci Gσproj(x; µi), (36)

which again is a Gaussian mixture, with σproj =
√

σ2 +σ2
h , and each

ci scaled by the factor cp =
√

2π
1
4 σ
√

σh
σproj

(cf. Eq. 33). If we use σh := σ ,
i.e., we project into a dictionary of Gaussians of the same width as the
mixture Gaussians in Eq. 18, we get σproj =

√
2σ , and thus:

max
x

(g?h)(x) = max
x

√
σπ

1
4

k−1

∑
i=0

ci G√2σ
(x; µi). (37)
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