
ConnectomeExplorer: Query-Guided Visual Analysis
of Large Volumetric Neuroscience Data

Johanna Beyer, Ali Al-Awami, Narayanan Kasthuri, Jeff W. Lichtman, Hanspeter Pfister, and Markus Hadwiger

Fig. 1. ConnectomeExplorer enables the interactive visual analysis of large data volumes in connectomics research, integrating 3D
volume data of brain tissue and segmented objects, connectivity of cells and neurites, and additional meta data. A powerful query
algebra allows neuroscientists to pose domain-specific questions in an intuitive manner, and to interactively analyze the results. We
show a teravoxel volume via (left) a tree widget of segmented objects, a 3D volume view, a connectivity graph of neurites (axons
and dendrites), a visual query builder for dynamic query specification, and a statistics view at the bottom; (right) visualization of a
dynamically specified region of interest (top: all neuronal objects in a cylindrical region; bottom: only the spines of the red dendrite).

Abstract—This paper presents ConnectomeExplorer, an application for the interactive exploration and query-guided visual analysis
of large volumetric electron microscopy (EM) data sets in connectomics research. Our system incorporates a knowledge-based query
algebra that supports the interactive specification of dynamically evaluated queries, which enable neuroscientists to pose and answer
domain-specific questions in an intuitive manner. Queries are built step by step in a visual query builder, building more complex
queries from combinations of simpler queries. Our application is based on a scalable volume visualization framework that scales to
multiple volumes of several teravoxels each, enabling the concurrent visualization and querying of the original EM volume, additional
segmentation volumes, neuronal connectivity, and additional meta data comprising a variety of neuronal data attributes. We evaluate
our application on a data set of roughly one terabyte of EM data and 750 GB of segmentation data, containing over 4,000 segmented
structures and 1,000 synapses. We demonstrate typical use-case scenarios of our collaborators in neuroscience, where our system
has enabled them to answer specific scientific questions using interactive querying and analysis on the full-size data for the first time.

Index Terms—Connectomics, neuroscience, query algebra, visual knowledge discovery, petascale volume analysis.

1 INTRODUCTION

Reconstructing the anatomical and functional connectivity within the
brain has become one of the most active research areas in neuro-
science. By ultimately mapping and deciphering a human’s entire
connectome [39], i.e., the full “wiring diagram” of the brain compris-
ing billions of neurons and their interconnections, scientists hope to
gain an understanding of how the brain develops and functions, and
how pathologies develop or can be treated. To support this goal, high-
throughput methods for neural imaging have been developed that en-
able scientists to acquire imaging data at unprecedented speed and
resolution. However, the extreme size of the resulting electron mi-

• Johanna Beyer, Ali Al-Awami, and Markus Hadwiger are with King
Abdullah University of Science and Technology (KAUST),
E-mail: {johanna.beyer | ali.awami | markus.hadwiger}@kaust.edu.sa.

• Narayanan Kasthuri and Jeff W. Lichtman are with the Center for Brain
Science at Harvard University, E-mail: bobby.kasthuri@gmail.com,
jeff@mcb.harvard.edu

• Hanspeter Pfister is with the School of Engineering and Applied Sciences
at Harvard University, E-mail: pfister@seas.harvard.edu.

Manuscript received 31 March 2013; accepted 1 August 2013; posted online
13 October 2013; mailed on 4 October 2013.
For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

croscopy (EM) imaging volumes and the complexity of the structures
contained in these data present significant challenges.

Most previous research has focused on the actual image acquisition
and subsequent semi-automatic or fully automatic segmentation of EM
slice stacks. However, less research has focused on the next step: on
how to enable efficient neuroscientific analysis of volume and seg-
mentation data of this size and complexity. Neuroscientists now have
huge collections of high-resolution EM volumes and their segmenta-
tions, but no efficient means for analyzing them or directly answering
high-level domain-specific questions. Most current tools only provide
2D visualizations of subsets of the EM data or the corresponding seg-
mentations. The latter are either provided at the voxel level or—more
commonly—consist of extracted geometry. To the best of our knowl-
edge, no existing tool offers interactive 3D visualization of multiple
teravoxel volumes, e.g., EM and segmentation volumes, while at the
same time allowing scientists to dynamically explore and analyze the
entire data set by posing domain-specific questions in an intuitive way.

In this paper, we introduce ConnectomeExplorer, which is an inte-
grated application for the exploration and query-guided visual analysis
of large EM volumes in connectomics research. Our system is based
on a scalable volume visualization framework that scales to petascale
data from high-throughput microscopy data streams [5, 22], which,
however, did not support data analysis or querying. We introduce
a knowledge-based query algebra that enables analysis via interac-

Visualization
Archive

EM Data

Electron
Microscope

Registration

Segmentation

Data Acquisition

Segmentation Data Synapse Data

Alignment Matrix Data Attributes
col 1 ... col n

1
2
3
4
5

x
y
x
z
p

.

.

.

.

.

0.2
0.5
1.3

0.7

Server

...

Volume Data
Construction

Data Access

Visualization

Visual Queries

Linked Views

0

1

2

3

4

5

6

Local
Selection

Data

Visual
Query
Builder

Query
Algebra

Query
Manager

Volume Rendering

Architecture
Virtual Memory Ray-Casting

Fig. 2. System overview. Our system consists of two main parts: data-driven modules (left, light gray) are triggered by image acquisition, while
visualization/user-driven modules (right, yellow) are active at run time. All generated data are stored in the visualization archive. At run time, the
user initializes data requests either by specifying a dynamic query or by directly interacting with the visualization. A visual query builder allows users
to intuitively specify queries which are translated into a powerful query algebra and evaluated. Results are shown in different linked visualizations.

tively specified dynamic queries that allow neuroscientists to answer
domain-specific questions. The main contributions of this paper are:

• An integrated system for the interactive analysis and 3D visual-
ization of large-scale neuroscience data, based on demand-driven
processing and interactive, dynamically evaluated user queries.

• A query (set) algebra that provides scientists in connectomics re-
search with an intuitive way of specifying dynamic, high-level
queries that can be evaluated on the full data size. Complex
queries can be built by hierarchically combining simpler queries.

• An intuitive user interface that allows specifying combinations
of queries in different domains (spatial, connectivity/topological,
abstract/attribute-based), and to concurrently explore and ana-
lyze the results in multiple linked views. Both the queries and
the linked views also provide basic statistical analysis.

We illustrate the usefulness of ConnectomeExplorer in practice via
real use-case scenarios of our collaborators in neuroscience.

2 RELATED WORK

Neuroscience and connectomics. A very good introduction to con-
nectomics and recent developments is given by Seung [39], also high-
lighting advances in high-throughput, high-resolution electronic imag-
ing. Lichtman and Denk [31] describe the challenges in reaching the
ultimate goal of connectomics—understanding the relation between
function and structure in the brain. Bock et al. [8] present a power-
ful example of how EM circuit reconstruction allows determining the
relationship between structure and function of the visual cortex.

Segmentation and annotation tools for neuroscience. Segmen-
tation and tracing of neuronal structures ranges from manual [17]
or semi-automatic [24, 27, 37] to fully automatic segmentation algo-
rithms [25, 28]. However, only a handful of tools are actually publicly
available to the neuroscience community. In Eyewire [1], users trace
neurons in the retina in an online game setting. Mojo [29, 37] offers
fast proof-reading of segmented EM slices. NeuroTrace [26] supports
semi-automatic segmentation of neurites with concurrent 3D visual-
ization. CATMAID [38] and the Viking viewer [4] are collaborative
annotation environments for skeleton extraction in terabyte data sets.

Visualization of microscopy data. Volume visualization of mi-
croscopy data is an ongoing research topic due to their inherent visual
complexity. Different techniques for displaying features in dense EM
image stacks have been proposed, including multi-dimensional trans-
fer functions [45], local variance-based transfer functions [35], and
view-dependent on-demand filtering and edge enhancement [27].

Neuroscience ontologies. Several groups have worked on neu-
roanatomy ontologies [36] and how to leverage this knowledge for
visualization and data analysis [7, 20, 30]. Gerhard et al. [20] intro-
duce the Connectome Viewer Toolkit, a framework for multi-modal
data management as well as visualization and analysis of macroscopic
neuronal structures, pathways and brain region connectivity. Kuß et
al. [30] propose a system for high-level ontology-based queries on a
bee brain atlas that supports a set of pre-defined visualization queries.

Visual analysis in neuroscience. Braingazer [9] is a system for
visually analyzing a Drosophila (fruit fly) brain database. It supports
3D visualization of confocal microscopy data together with annotated
anatomical structures. It allows users to interactively query the data
based on semantic and spatial relationships, but it does not provide
a general way for specifying new domain-specific questions. It also
does not support the fully dynamic computation of the required con-
structs. Neuron Navigator [32] provides an interface to a 3D neuron
image database to analyze the connectivity of the Drosophila brain. It
offers a textual query interface based on binary operators to select and
display objects and anatomical structures. De Leeuw et al. [13] intro-
duce the Argos system to analyze and visualize large 3D microscopy
image collections in a combination of offline and interactive processes.
Sherbondy et al. [40] use dynamic queries based on volumes of inter-
est and pre-computed pathways to explore the connectivity between
brain regions. Most systems for visually analyzing neuroscience data
sets are based on atlases, i.e., they use databases of pre-defined struc-
tures. Many systems also require the pre-computation of some query
attributes, such as proximity or distances. In contrast, our framework
supports the fully dynamic analysis of non-templated volumetric data
sets without requiring costly pre-computations that do not scale to the
petavoxel data sizes that we are targeting. We allow specifying any
number of new dynamic queries, which are evaluated only on demand.
We compare different tools that are currently used in connectomics re-
search with ConnectomeExplorer in Table 4 (Sec. 7).

Dynamic and visual queries. Prominent techniques are dynamic
queries [3], high-dimensional brushing and linking [34], and interac-
tive visual queries [14]. Shneiderman [41] gives a good introduction
to dynamic queries in the context of visual analysis and information
seeking. Catarci et al. [11] present a survey on visual query sys-
tems for databases. More recently, Gergen et al. [21] describe design
lessons for developing visual information-seeking systems, and Heer
and Shneiderman [23] introduce a taxonomy of interactive dynamics
for visual analysis. A visual interface for exploration and analysis
of large multi-dimensional databases is available in Polaris [44], while
DEX [43] focuses on query-driven scientific visualization of large data
sets. Nitelight [42] introduces a visual approach for semantic query
design, and ImMens [33] is a recent visual query system for real-time
analysis of very large data sets, supporting brushing & linking and
scalable visual summaries. A general introduction to the topics of re-
lational algebra and databases is given by Garcia-Molina et al. [19].

Volume rendering. Many large-scale volume renderers employ
octree bricking schemes, and often perform octree traversal on the
GPU [12, 16]. The volume rendering system of ConnectomeEx-
plorer is based on previous work on GPU ray-casting of petascale
EM data via a multi-level, multi-resolution virtual memory architec-
ture [22], which also supports streaming of microscopy image data and
visualization-driven construction of volume sub-blocks. This system
has been extended to segmentation volumes [5], but did not support
analyzing or querying the data. Cai and Sakas [10] present different
ways of rendering multi-modal data. Beyer et al. [6] used multi-modal
volume rendering in the context of neurosurgical applications.

3 APPLICATION OVERVIEW

ConnectomeExplorer was developed in collaboration with neuroscien-
tists working in the field of connectomics to support them in analyzing
the detailed interconnections of neuronal structures in the mammalian
brain at the individual nanometer scale. Each neuron processes and
transmits information by forming connections (i.e., synapses) to other
neurons. A typical neuron consists of a cell body (soma), an axon, and
multiple dendrites [39]. Roughly speaking, an axon corresponds to
the output of the neuron, and its dendrites correspond to all its inputs.
Axons are long and narrow tubular structures that conduct electrical
impulses away from the neuron’s cell body when the neuron spikes,
while a dendrite is a treelike extension of a neuron that receives elec-
trical impulses from many other neurons. Axons make connections
with dendrites at synapses, which comprise the synaptic cleft between
an axon terminal (or bouton) and a post-synaptic density of the main
part of a dendrite or a dendritic spine. Neuroscientists are interested
in trends and correlations as well as individual neuronal structures and
synapses and their detailed attributes. For example, the location of a
synapse on a dendrite (e.g., whether or not it is on a spine) may be an
indicator for whether the entire cell is excitatory or inhibitory, i.e., if
it increases or decreases the likelihood of connected neurons to spike.

In this section, we give an overview of the basic components of
our system, from data acquisition and management to the integration
of visual analysis and exploration tools. A high-level overview is de-
picted in Fig. 2. Table 1 gives a comprehensive list of object types and
pre-defined sets of objects that we support as basic inputs to queries.

3.1 Data Acquisition
Our collaborators cut blocks of brain tissue into ultra-thin slices of 25-
50 nm using an advanced microtome, and image them with a scanning
electron microscope (SEM) at a resolution of 3-5 nm. Each EM slice
comprises multiple microscope images tiles (e.g., 12,000× 12,000
pixels each), which are aligned and stitched into a much larger 3D vol-
ume [22]. The left part of Fig. 2 shows the data acquisition modules
of our pipeline. For segmentation, our collaborators have used several
different approaches, ranging from complete manual tracing of indi-
vidual structures to automatic tracing [28]. ConnectomeExplorer also
supports manual editing of segmentation masks at the voxel level. All
other features and meta data, such as labels and synapse locations, are
currently annotated completely manually and stored in tabular format.

3.2 Data Management
Our data managment approach comprises two main parts: a data-
driven part, which is triggered by actual data acquisition and gen-
eration, and a visualization-driven part, which is active at run time.
We generate tiled 2D mipmaps of the acquired raw image data, which
subsequently serve as the source for all data requests from the visual-
ization and analysis modules. For each mipmap tile, we additionally
compute min/max values to facilitate hierarchical culling. Segmenta-
tion data are processed in a similar way, but in order to avoid inter-
polating object IDs during down-sampling, we use nearest-neighbor
filtering for the computation of segmentation image mipmaps. More
elaborate downsampling algorithms (e.g., a rank filter) could also be

Table 1. Object types in ConnectomeExplorer. Every query can use an
arbitrary combination of these names of object types and pre-defined
sets of all known objects of each type. Note that we represent vesicles
as an attribute of a bouton/synapse instead of as its own object type.

object type / set name description
cell / cells cell bodies (somas) of neurons
axon / axons axons
dendrite / dendrites dendrites
spine / spines dendritic spines
bouton / boutons axon terminals (pre-synaptic); at synapse
synapse / synapses synaptic clefts between axon and dendrite
psd / psds post-synaptic densities; indicate synapses
glia / glias glial cells (these are non-neuronal cells)
– / all all known objects in a single set

Visual
Query Builder

3D Picking

Table Row
Selection

Topological
Selection

Visualization

UI Selection

col 1 ... col n
1
2
3
4
5

x
y
x
z
p

.

.

.

.

.

0.2
0.5
1.3

0.7

Data Access

Query Manager

Active Set

Query Algebra

connected

axons dendrites

ROI

all

union

Fig. 3. User interaction. A user can dynamically create queries by either
using the visual query builder or by direct interaction in the provided
views via picking or selection. User input is represented and evaluated
via a query algebra, and all result sets can be immediately visualized.

used. For each tile of the segmentation data, we additionally compute
a histogram of all contained object IDs, which facilitates hierarchical
culling during the dynamic evaluation of spatial queries.

The visualization-driven modules of ConnectomeExplorer are
based on a client/server architecture, where the client is responsible
for rendering and evaluation of dynamic queries, while the server is
responsible for serving data requests sent by the client. Whenever the
server receives a request for a new 3D sub-block that cannot be ful-
filled from cached data, it is responsible for constructing that block
from the 2D mipmap tiles stored in the visualization archive. The de-
tails for this on-the-fly block construction can be found in [22]. Data
that has been sent to the client is cached until a pre-defined cache size
has been reached. Then it is discarded using a standard LRU scheme.

3.3 Visual Analysis and Exploration
The main goal of ConnectomeExplorer is to facilitate the interactive
visual exploration and analysis of large volumetric connectomics data
sets. A high-level overview of the interaction for analysis is depicted
in Fig. 3. Our visualization system is based on a flexible rendering
framework that is scalable to petascale data and that supports multi-
ple volumes and linked views. However, the main feature of Con-
nectomeExplorer is that it enables the user to formulate and answer
domain-specific questions, either by interactively exploring the data or
by posing dynamic queries in an intuitive user interface that translates
queries into a query algebra. We support three main types of queries,
and their combination: spatial queries based on regions of interest or
distances, topological queries based on neuronal connectivity, and at-
tribute queries based on either automatically computed attributes (e.g.,
the volume of an object), or manually labeled attributes (e.g., the num-
ber of vesicles in a synapse). The results of queries are always repre-
sented as sets (see Sec. 4), which can be examined in all views, used
as input for more advanced queries, or stored to and loaded from disk.
Statistical parameters can be computed directly on the sets of query re-
sults, and can be inspected both visually in histogram and scatterplot
views, as well as textually/numerically in table views.

4 DYNAMIC KNOWLEDGE-BASED QUERIES

The main design goal for our dynamic queries was finding the right
level of abstraction for our target application, while still providing
enough expressive power that enables neuroscientists to answer a
wide variety of specific scientific questions. Although at least all
attribute-based questions could also be answered via SQL and stan-
dard databases [19], we employ a more integrated approach that has
similar expressivity, but that is simpler and customized for our require-
ments by unifying spatial, topological, and attribute queries in an intu-
itive, knowledge-based manner. Our basic representation for queries is
a simple query algebra that is a set algebra. That is, all questions can
be answered by building on sets of objects, sets of tuples of objects,
sets of such sets, and a few simple predicates and operators on sets,
which also include computing statistics. See Fig. 4 for a first example.

Fig. 4. Example query tree. Each user-defined query corresponds to a
tree, where the leaves are objects or sets, and the internal nodes are
predicates or operators. Each node also corresponds to its result set.
Here, the left sub-tree returns all axons connected to dendrite 1 (see
connectivity graph in left inset); the right sub-tree evaluates a region of
interest. The final result set (tree root) is the set intersection of both.

4.1 Set Algebra for Knowledge-Based Queries
A crucial design criterion of our query algebra was achieving sim-
plicity from a user perspective by allowing the connectivity of objects
to be used implicitly, without requiring the user to know what and
how the connectivity of different kinds of objects is actually repre-
sented and stored internally. In this way, our query algebra enables ex-
pressing specific neuroscience questions in a much simpler way than is
possible at the abstraction level of standard relational algebra or SQL
statements. In contrast to standard database queries, our query algebra
allows the connectivity between all kinds of neuronal objects listed in
Table 1 to be exploited without having to perform an explicit natu-
ral join or a Cartesian product in query languages such as SQL [19].
Explicitly exploiting connectivity information usually requires joining
two or more tables on their common attributes, which implies that the
user must know what information is stored in which table, if the com-
mon attributes specify the desired kind of connectivity, and thus what
the result of a natural join will be and what it means. Instead, we allow
the direct creation of sets of tuples of objects such that each tuple is
only created when the corresponding objects are actually connected.

4.1.1 Basic Concepts
The result of every query is an (unordered) set S. Each set can contain
an arbitrary mixture of (1) individual objects Oi, (2) ordered tuples Ti
of objects, and also (3) individual sets Si, i.e., we allow sets of sets.

Objects. Each object Oi has a unique ID, an object type (e.g., axon),
and named attributes such as synaptic strength. All types and attributes
are pre-defined (see Table 1). All objects of the same type have the
same attributes. The object type itself is also an attribute, which makes
querying according to type identical to querying any other attribute.

Sets. A set S results either from evaluation of a set operator or
predicate (Sec. 4.2), or from manual picking/selection in any view of
our application (Sec. 5.1.1), in order to create a set that contains the
desired objects. A set can contain an arbitrary mixture of objects of
different types, and in fact everything could be computed from the
pre-defined set all of all known objects. For convenience, we provide
pre-defined sets of all objects of each type, such as the set axons (all
axons), or the set dendrites (all dendrites). See Table 1. A set can
also be the empty set, i.e., S= /0, when a query produces no result.

Tuples. Relationships between objects can be expressed by creat-
ing ordered tuples Ti =< O1, ..,On >. A set of tuples, i.e., S = {Ti},
can be created by simply specifying input sets instead of input objects.
For example, we denote the creation of a new set of tuples with the
(arbitrary) name ad by ad:=<axons,dendrites>. This set will
contain all axon/dendrite pairs that are connected, which is the default
behavior. The user also does not need to know or specify how objects
are connected, because this knowledge is intrinsic to our system. Our
internal representation of the connectivity of neuronal objects knows
that axons and dendrites connect by making synapses, and which of
them do. Likewise, for other types of objects, different notions of con-
nectivity are employed automatically. If a different kind of connectiv-
ity is desired, it can be specified along with the tuple specification. In

addition to topological connectivity (Sec. 4.2.2), we allow spatial re-
lationships such as spatial proximity to be used similarly (Sec. 4.2.3).

Our set algebra on purpose does not allow multi-sets, i.e., the exam-
ple set ad from above contains only one tuple for each pair of a spe-
cific axon and a specific dendrite that are connected, even when they
are connected via multiple synapses. However, the user can instead
create a set as <axons,dendrites,synapses>, which then con-
tains a tuple for each known axon/dendrite/synapse triplet.

Sets of sets. In order to group the objects in a set according to some
criteria, it can be converted into a set that contains sets, i.e., S= {Si},
with one Si for each group. This is achieved via the group operator
(Sec. 4.2.1) that is often used before computing statistics (Sec. 4.2.5).

4.2 Using Set Predicates and Operators for Queries
In addition to standard set operators (such as set union), projection,
and grouping (Sec. 4.2.1), our set algebra unifies three different kinds
of queries: (1) topological relationships of objects (Sec. 4.2.2), i.e.,
their connectivity, which is represented internally; (2) spatial relation-
ships of objects (Sec. 4.2.3), such as distance or proximity; and (3)
queries on attributes of objects (Sec. 4.2.4), which can be physical
properties, e.g., size/volume, or abstract properties, e.g., function.

Queries are constructed in an intuitive way by creating new sets
via either a (boolean) predicate or an operator, given one or several
existing sets as input. We use the notation [predicate]<set>,
or [operator]<set1,set2>, etc. for applying a predicate or
an operator to a set or to multiple sets, respectively. For exam-
ple, [vesicleCount>50]<synapses> creates the set of all
synapses with more than 50 vesicles, according to the attribute
vesicleCount of each synapse object in the set synapses.

Whenever a predicate is specified, the result set comprises all el-
ements for which the predicate evaluates to true. For operators, the
result set depends on the type of operator. Predicates can be restricted
to any subset of tuple dimensions for their evaluation.

Each set that is the output of a specific query can be used right away
as the input to follow-up queries. In this way, very complex queries can
be built up incrementally from simple queries in a hierarchical manner.
Fig. 4 illustrates a simple example. Queries can be visualized as trees,
where the input sets are the leaves of the tree, and the predicates or
operators are the internal nodes of the tree. Sec. 4.3 describes how
users can specify queries in a visual way, and how they can visually
inspect each result set of the evaluation of a predicate or an operator.

4.2.1 Set operators, projection, and grouping
Set operators. We support the most common operators that operate
directly on sets. For convenience, we allow their use in a unary, bi-
nary, or n-ary fashion where possible. We support the set operators
union (all elements in at least one input set), intersect (all ele-
ments in all input sets), the relative complement relcomp of two sets
(all elements in one set, but not the other; i.e., the set difference of
two sets), the absolute complement abscomp (all elements in none
of the input sets), and the symmetric difference diff (all elements in
exactly one set but not in several). The absolute complement depends
on implicit determination of what the enclosing set (universe) is, e.g.,
the complement of a set of axons with respect to the set of all axons.

The projection operator (project) allows keeping only speci-
fied dimensions from tuples, e.g., reducing each tuple with n dimen-
sions to m dimensions (m < n), by specifying which m dimensions
should be kept. For example, project(2) projects to the second
tuple dimension, project(2:4) to dimensions 2 to 4.

The grouping operator (group) converts an input set into a set of
sets (one for each group) according to either a common tuple dimen-
sion, or a common value—or value range—on a specified attribute.

4.2.2 Topological predicates
We currently support two basic—but very similar—types of topo-
logical queries. Both are specified with an identical syntax via the
connected predicate. This predicate determines if objects are ei-
ther connected or “a part of”. For example, a connected axon and
dendrite, or a spine of a dendrite, respectively. Our system encodes
and implicitly uses all topological knowledge according to object type.

Fig. 5. Dynamic queries and linked views. All views allow direct user interactions (e.g., picking, selection) that can be used as input for new queries
or for exploration of the data set. New queries are specified in the visual query builder and automatically update all views after query evaluation.

4.2.3 Spatial predicates and operators
We support two spatial predicates and one spatial operator:

• The region of interest (ROI) predicate is true for objects that
are in (either fully within, or partially intersecting) a speci-
fied ROI, which can be a box (with arbitrary orientation), a
sphere, or a cylinder (with arbitrary orientation). For exam-
ple, [ROI(parameters)]<axons> results in a set of axons for
which the specified ROI predicate is true.

• The distance operator computes the pair-wise Euclidean dis-
tance between objects. The distance between two segmented ob-
jects is the distance between the two closest voxels of the two ob-
jects. The result set contains a tuple <obj1,obj2, distance >
for each tuple (pair) in the input. We allow the optional specifica-
tion of an accuracy parameter, which enables optimized compu-
tation, going from voxel-accurate distance (slowest to compute)
to an arbitrary block granularity in voxels (see Sec. 6.2).

• The distance (proximity) predicate is true depending on a
comparison operator on the pair-wise distance between objects,
e.g., when objects are closer than a certain threshold. These
proximity queries are often much more efficient to evaluate than
full distance computations, because they allow exploiting a hier-
archical culling scheme to exit early from traversal (see Sec. 6.2).

Like all other queries, spatial queries are evaluated fully dynamically.
However, intermediate data required by the implementation (such as
blocks of object ID histograms) are cached, which enables potentially
re-using them without re-computation when evaluating future queries.

4.2.4 Attribute predicates
We support simple predicates via comparison operators on attributes
of objects (=, 6=, >, <, etc.). See the example at the beginning of
Sec. 4.2 for querying synapses on vesicle count. Attribute queries re-
quire the name of the attribute (or object type) that should be used. We
enable flexible, knowledge-based queries in the sense that we allow
every attribute to be queried on any object type where this is seman-
tically well defined. For example, the attribute excitatory internally is
an attribute of axon objects and stored only once for each axon. How-
ever, it can also be queried on the cell of the axon, each of its synapses,
etc.1 For example, [excitatory]<synapses> creates a set of all
synapses whose corresponding axon (and cell) is excitatory.

4.2.5 Statistical operators
Statistics can be computed directly by invoking a statistical operator
on a set, e.g., counting the number of elements in a set via operator
count, computing mean, standard deviation, or other basic statistics.
All operators except count require specifying both the kind of statis-
tic that should be computed, e.g., the mean (avg), the standard de-
viation (dev), as well as the object attribute over which it should be
computed. For example, [avg(vesicleCount)]<synapses>
computes the average number of vesicles of all synapses.

1The reason why we currently store this with each axon and not with each
cell is that the actual cell bodies can be outside of the imaged tissue block.

Statistics over objects in a set. The corresponding statistic is com-
puted over all objects in the set that have an attribute of the specified
name. The result is a tuple like <’vesicleCount’, statistic >. All
objects of the input set that were used to compute this statistic are re-
moved from the set and are altogether replaced by the result tuple. The
string ’vesicleCount’ in the first tuple dimension can be used exactly
like an object attribute name in follow-up queries.

Statistics over sets of sets. For each set in a set, the operator applies
itself recursively to that set and replaces it afterward with the result
stored in a tuple <’vesicleCount’,statistic, subsetID >. The last
dimension is assigned automatically to be unique, and simply serves
the purpose of keeping the result tuples of several subsets separate in
the enclosing set because we do not allow multi-sets.

Statistics over sets of tuples. Multivariate statistics can be com-
puted automatically over all tuple dimensions, e.g., the covariance ma-
trix or the product-moment correlation coefficients. These computa-
tions can be restricted to any subset of dimensions of a set of tuples.

4.3 Visual Query Builder
To support the dynamic creation of queries in a visual way, we have
implemented a visual query builder (see Fig. 5 and the video). It al-
lows the user to specify an arbitrary number of input objects and sets
on which any specified predicate or operator should be evaluated. In
addition to using already defined sets as input, the user can also di-
rectly select or pick input objects and sets from any of the linked views
(see Fig. 5). When the user has finished the specification of inputs and
predicates/operators, the create set button evaluates the query and cre-
ates the corresponding result set. The result set is automatically stored
internally, and can be used right away as an input set in subsequent
queries. All sets (i.e., default sets and user-created sets) are listed in
a set list widget, and can be inspected in detail with the set inspector
widget. The set inspector lists all elements of a single set and allows
inspecting the actual value of each individual object’s attributes.

5 VISUALIZATION

The visualization capabilities of ConnectomeExplorer comprise sev-
eral linked views, from a 3D volume view to a topological 2D graph
view for neuronal connectivity, a slice view that allows manual seg-
mentation, data and table views for attribute and meta data, and analy-
sis views for visualizing the results of statistics queries. All views are
linked and depict the result of queries via the corresponding result set.

5.1 Volume Rendering
Our volume renderer is an extension of previous work [22] that targets
scalability to very large electron microscopy volumes. In addition to
concurrently rendering segmentation volumes [5], we have extended
the 3D volume view to support picking and highlighting objects in 3D,
linking to other views, and the automatic visualization of all objects
that are in the result set of a query. We employ a data construction
back-end that constructs small 3D sub-blocks for a requested position
and resolution from 2D image data on demand (see Sec. 3.2). The
construction of 3D sub-blocks of data is driven by the visibility of
small 3D blocks requested by the ray-caster. Only the blocks that are
currently visible are requested and downloaded to GPU memory.

Fig. 6. Example analysis session. a) The user starts with a manual inspection of the segmentation, before looking at a single dendrite (in red) and its
connected axons. b) Looking at all connections that the red dendrite makes, and querying the axon it makes most synapses with (blue axon). c)
Looking at all connections of the blue axon and their strengths, grouped by dendrite, viewed in a histogram. d) Comparing all synapses of the red
dendrite based on specific properties: the size of dendritic spines vs. the vesicle count of axons/boutons were analyzed using a scatter plot.

5.1.1 Segmented Data and Synapses

Segmentation data are stored as separate image data, where each voxel
stores an integer object ID. In order to accommodate a large number
of distinct objects, which is crucial for visualizing the result of auto-
matic EM segmentation algorithms, we currently support up to 24 bits
per object ID. This allows representing more than 16 million distinct
objects, but could be extended further. Segmentation data are rendered
concurrently with the EM data via a multi-volume rendering approach.
In addition to the volume data, we can concurrently render synapses at
their exact location in volume space, as explained below.

Multi-volume rendering. The modularity of our volume handling
and rendering system supports a rather straightforward extension for
multi-volume rendering. Our application employs multiple instances
of the same virtual memory architecture, and allocates separate cache
textures for the EM and segmentation volumes, respectively. Actual
mixing of these volumes is performed in the ray-caster. This can be
done by using the object ID of the current sample mapped to either
a procedurally assigned color, or via a user-defined color table that
assigns a specific color to each object ID. Furthermore, we support
different rendering modes and individual clipping of each volume. By
default, we blend the color of the current sample’s object ID with the
color of the original EM data after applying a 1D transfer function.

Rendering synapses in 3D. Synapses are rendered as small shaded
spheres at their 3D volume position, and combined with the volume
rendering using correct visibility compositing. For the latter, we adjust
the ray-casting setup step such that rays terminate accordingly when
they intersect a synapse. To render a shaded sphere without explicit ge-
ometry, we render a view-aligned quad for each synapse sphere, and
use a fragment shader to perform shading for those positions that in-
tersect a procedurally computed sphere, and discard the pixels outside.

Picking in 3D. We support picking segmented objects and synapses
directly in the 3D volume view. To enable picking objects, the ray-
caster makes use of an additional output buffer for object IDs. The
ray-casting pass writes out the object ID of the first object that was hit
encoded in a 24-bit RGB value. To determine the object at the current
mouse position, we then simply do a look-up at the corresponding lo-
cation in the object ID buffer. Selected objects are automatically high-
lighted in all linked views, and can be subsequently inspected in more
detail, or used as input for a dynamic query. For picking of synapses,
we render the synapse IDs into a selection buffer, which we then use to
determine the closest, non-occluded synapse at the current mouse po-
sition. In order to limit picking to synapses that are currently at least
partially visible, we have to restrict which synapses we render into the
selection buffer. During ray-casting we therefore write the final depth
of each pixel (where a ray leaves the volume or is terminated by early

ray termination) into a depth texture. Next, when rendering synapses
into the selection buffer, we perform depth testing against this depth
texture. This results in restricting the synapses that can be picked to
those that are not completely occluded in the volume rendering.

5.1.2 Empty Space Skipping and Culling
We perform empty space skipping depending on both the EM volume
and the segmentation volume to speed up rendering and to reduce the
amount of GPU memory the ray-caster needs. For EM data, we cull
all visible blocks against the current transfer function to determine if
a block is fully transparent or not. For segmentation data, we cull
against the object IDs that are currently enabled or contained in the
current result set. If all objects in a block are disabled or not in the
result set, the block is classified as invisible. If a block is classified as
invisible, its page table entry is set to empty, no data is downloaded to
the GPU, and the block is skipped during ray-casting.

The min/max values and object ID histograms required for culling
are initially computed for each 2D image tile in the data-driven part of
our pipeline (Sec. 3.2). During the block construction stage, this in-
formation is combined according to the requested 3D block, and trans-
mitted to the client. This speeds up empty space skipping and allows
culling for spatial queries to be performed hierarchically (Sec. 6).

5.2 Linked Views
Our system offers a variety of views to support users in data analysis
and exploration (see Figs. 5 and 6). All views are linked and update to
display query results, but also allow for independent data exploration.

5.2.1 2D Connectivity Graph View
We have implemented a graph view to visualize the connectivity be-
tween different structures (see Fig. 6b,c). We extract the connectiv-
ity information from meta data provided by our collaborators, which
is based on tables of annotated structures. In the graph view, nodes
correspond to axons or dendrites, and the synapses between them are
displayed as links between nodes. The graph layout is computed via a
force-directed graph drawing algorithm [18] based on the connectivity
of the data. This automatically places nodes with a large number of
connections toward the center of the graph, and less-connected nodes
toward the edges. The connectivity graph view is fully linked to all
other views. It also supports picking, selection, and mouse hovering,
to provide user input for queries or to examine individual elements.

5.2.2 2D Segmentation/Slice View
In addition to the 3D volume view, we support 2D slice views. Our
slice views employ the same virtual memory architecture as the vol-
ume view and support arbitrary slicing planes. Nevertheless, the scien-

tists most often view the xy-plane, because of the high in-plane resolu-
tion of our EM data. We also provide a manual segmentation tool that
allows painting directly in the current slice view. The brush strokes are
rendered into an off-screen buffer that is read back, and also transmit-
ted from the client to the server for centralized storage. Our current
segmentation tool is completely manual, but in the future we would
like to incorporate semi-automatic corrections for proof-reading [37].

5.2.3 Information and Statistics Views
The following views can be used to inspect all object attributes and
segmentation information of the data set in more detail.

Segmentation tree view. This view allows flexible hierarchical
structuring of the list of segmented objects according to arbitrary user-
determined semantics, including which user performed the segmenta-
tion. Our collaborating scientists specifically want to be able to subdi-
vide their data into custom categories for visualization in the GUI (see
Fig. 6a), which can be independent of the anatomical parent/child re-
lationship of segmented structures. Furthermore, this view also allows
quickly enabling/disabling entire sub-trees of objects, assigning dif-
ferent colors to individual elements as well as to entire sub-trees. The
latter colors are used when a sub-tree is collapsed to a single node.

Table views. Our system supports displaying meta data of all ex-
isting objects. Fig. 6b shows an example of a list of synapses and
their properties. Each table supports filtering and sorting based on at-
tributes, is fully linked to all other views, and can either show the result
of the current query, or can be used for free manual exploration.

Analysis views. For statistical analysis and comparison tasks, we
provide standard views such as histograms and scatterplots, which
support dynamic query-based visual analysis (see Fig. 6c,d).

6 DEMAND-DRIVEN SPATIAL QUERY EVALUATION

To support the on-the-fly evaluation of spatial queries, such as evaluat-
ing a region of interest (ROI) or the proximity of one object to another,
we employ an octree-based culling structure that allows quickly find-
ing all volume sub-blocks corresponding to a specified ROI or object.

6.1 Region of Interest (ROI) Evaluation
We currently support the evaluation of cylindrical, spherical, and box-
shaped regions of interest. Multiple ROIs can be combined in a query
to create more complex ROIs. Once the user has specified a ROI, we
compute the set of contained objects in that region, which can either
be displayed directly or used as input for subsequent queries.

To enable the demand-driven determination of which segmented
objects are inside a ROI, we use a dynamically created octree data
structure that stores the list of contained object IDs for each octree
node. The octree is only grown and updated on demand. We then
traverse the octree to find the biggest nodes that are still completely
inside the region of interest, and return the corresponding object IDs.
To optionally speed up the computation, two different accuracy lev-
els can be specified. The optimized computation only evaluates nodes
that are completely inside a ROI, whereas the accurate computation
also evaluates all nodes that intersect the ROI. Only the worst case of
intersecting leaf nodes requires iterating over voxels to determine the
object IDs inside the ROI. Whenever a volume block is constructed
on the server and sent to the client, the histogram of that block is also
sent to the client and added to the octree. If during ROI evaluation the
histogram of a block is not available yet, it can be requested from the
server without having to request the volume data of the entire block.

Finally, to display a ROI in the renderer, we restrict ray-casting to
voxels inside the region by simply adjusting the start and stop positions
of rays according to the geometry of the specified ROI (see Fig. 5).

6.2 Distance Evaluation
The computation of pair-wise Euclidean distances between objects is
based on the octree data structure described above. We base our al-
gorithm on the work of Dyllong and Grimm [15], who compute the
distance between two octree-encoded objects at interactive rates, even
for octrees with a large number of hierarchy levels. The algorithm
is based on the idea to track the nodes that potentially minimize the
distance between both objects. To compute the distance between two

data size
EM volume 21,494×25,790×1,850×8-bit (955 GB)
segmentation 10,747×12,895×1,850×24-bit (716 GB)
synapses file 1: 263, file 2: 704, merged file: 943

object type % of vol #objs avg. #voxels/obj avg. # syn
all 1.22 4108 0.7×106 -
axons 0.34 649 1.3×106 1.3 (max 14)
dendrites 0.71 104 17.5×106 8.9 (max 179)
dend w/spines 0.82 104 20×106 8.9 (max 179)
spines 0.11 3055 0.09×106 0.1 (max 4)
glia 0.06 23 6.83×106 0

cylinder % of vol # axons # dendrites # synapses
cyl 1 0.42 645 104 820
cyl 2 0.10 270 42 189
cyl 3 0.04 120 21 27

Table 2. Data set statistics for the data used in Sec. 7. We received
two different versions of (partly conflicting) manually labeled synapses,
which we then merged into a single consistent data set. Statistics of
the segmentation data are given in the middle part of the table. At the
bottom we list statistics of three regions of interest that were specified by
our collaborators and exhibit a higher density of segmented structures.

objects, we update this list iteratively until the set of nodes closest to
each other is found. For proximity queries, we can stop this process as
soon as two objects are closer/farther than the specified predicate. For
voxel-accurate distances, a final step iterates over individual voxels.

7 RESULTS AND DISCUSSION

Our collaborating neuroscientists are currently working on segment-
ing and analyzing an electron microscopy data set of a mouse cortex
with a resolution of 21,494× 25,790× 1,850 voxels, which we use
for the evaluation of our system. Table 2 lists the details of this data
set, as well as some of the statistics we have computed via queries.
Three different cylindrical regions of interest were specified by our
collaborators for queries in accordance with their analysis plans. They
have manually segmented several thousand structures over the course
of several months, at the voxel level of half the resolution of the EM
volume in the xy-plane, and are now in the process of automatically
generating dense segmentations for selected regions. The current seg-
mentation volume contains over 4,000 labeled objects, including 649
axons, 104 dendrites, several segmented glial cells, and around 3,000
dendritic spines (i.e., small extensions on an excitatory dendrite, where
the actual synapses are made). For one cylindrical ROI in the volume
(’cyl 1’) every structure has been traced. The rest of the volume is
only sparsely segmented. Additionally, 943 synapses have been iden-
tified and labeled in tables with detailed attributes, including manually
counted numbers of vesicles that the corresponding bouton contains.

7.1 Query-Based Analysis Scenarios
We report on several domain-specific questions and analysis tasks for
which our domain experts have used ConnectomeExplorer. Table 3
summarizes the following scenarios and results, and lists the amount
of time our collaborators spent on each individual sub-task.

7.1.1 Axon and Dendrite Analysis
The first questions asked by our domain experts were based directly on
attributes of axons, dendrites, and synapses. Pre-synaptic axon termi-
nals (boutons) contain neurotransmitters that are essential for transmit-
ting signals over synapses. These neurotransmitters are stored in small
membranes called vesicles. The number of vesicles has been labeled in
our data, because our collaborators are interested in examining the dis-
tribution and number of vesicles in different axons and whether there
is a correlation between the number of vesicles in a synapse and other
attributes of the axon, dendrite, or synapse in question. The specific
questions they asked, and the corresponding queries, were:

1. What is the average number of vesicles of a specific axon that
was picked by the user in the 3D view?

1a := [axonId=5]<axons> // sel axon5 from set of axons
1b := <1a, synapses> // tuples axon5 and its synapses
1c := [avg(vesicleCount)]<1b> // avg ves no for axon5

query user interaction query evaluation post-analysis results

1
exploration/picking: 1 min < 1 sec

15 sec
picked ’Segment124’

query builder: 1 min 30 sec < 2 sec avg vesicle count: 746

2
(2b) query builder: 2 min < 2 sec 30 sec Subfigure query 2
(2d) query builder: 2 min < 2 sec 15 sec avg over all its syn: 430.6; only

syn with labeled vesicles: 777.4
3 query builder: 45 sec < 1 sec 15 sec std deviation: 681.87
4 query builder: 2 min 15 sec < 3 sec 30 sec Subfigure query 4

5
exploration/picking: 2 min < 1 sec

15 sec not connected
query builder: 30 sec < 1 sec

6
ROI spec.: 15 sec – 2 min data in cache:

1 min Subfigure query 6
query builder: 1 min 30 sec < 2 sec; else: < 1 min

7 query builder: 1 min 30 sec ROI eval + < 2 sec 1 min see Fig. 4
8 45 sec < 2 sec 1 min Subfigure query 8
9 30 sec < 2 sec 30 sec Subfigure query 9

Table 3. Timings and results for analyzing our use cases. We state the typical time the user took to answer the questions defined in Sec. 7.1.
The numbers in the first column refer to the query numbers given there. We also state the time it takes our system to evaluate the query (query
evaluation), and the time the scientists took to evaluate and look at the results (post-analysis). Results of individual queries are shown on the right.

2. What is the average number of vesicles over all axons, and what
is the average number of vesicles of each axon?

// set of tuples for all axons and their synapses
2a := <axons,synapses>
2b := [avg(vesicleCount)]<2a> // avg over all axons
2c := [group(1)]<2a> // set of sets, grouped by axon
2d := [avg(vesicleCount)]<2c> // avg for each axon

3. Do all synapses of an axon have the same number of vesicles?

3a := [dev(vesicleCount)]<1b> // std dev of ves count

4. Or does the vesicle number depend on the specific dendrite an
axon connects to?

// tuples of connected axons, dendrites, synapses
4a := [axonId=5]<axons, dendrites, synapses>
4b := [group(2)]<4a> // set of sets grouped by dendrite
4c := [dev(vesicleCount)]<4b> // std dev per dendrite

Statistical results can be viewed in one of the statistics views (his-
togram, scatterplot). Our collaborators use this kind of simple analysis
to quickly find trends or patterns related to different neuronal object
types (e.g., dendrites, synapses) as well as different attributes (e.g.,
spine size, neurotransmitter type). For dendrites, their main questions
are: What does the size of a spine depend on exactly? Do all spines
of a specific dendrite have the same size? Or does the size of a spine
depend on the axon it connects to? These can be answered in the
same manner as the axon example above by calculating the average
and standard deviation of the spine size at a synapse on a dendrite.

7.1.2 Connectivity Analysis
Connectivity-related questions can be answered via topological predi-
cates, or for simple cases by inspecting the graph view. For example:

1. Are two structures that are picked in the 3D view connected?

5a := [dendriteId=7]<dendrites> // picked dendrite
5b := [connected]<1a,5a> // empty set if not connected

7.1.3 Region of Interest and Spatial Analysis
Our collaborators have completely traced and segmented one cylindri-
cal ROI (’cyl 1’). They are therefore particularly interested in queries
in this ROI, and the potential similarities and differences of the ROI
compared to the entire volume. They would also like to answer high-
level questions like Is the spatial relationship and proximity of a den-
drite and an axon related to its connectivity? Does a close proximity
through space guarantee a connection? Their detailed questions were:

1. What are all the dendrites in the ROI? What are the ones inside
the ROI that are smaller than a certain volume?

6a := [ROI(cylinder c)]<dendrites> // dendrites in ROI
6b := [size < 500k]<6a> // small dendrites in ROI

2. Which axons does a specific dendrite connect to in this cylinder?

7a := <5a, axons, synapses> // all connections of dend7
7b := [ROI(cylinder c)]<7a> // dend7 connections in ROI
7c := [project(2)]<7b> // only keep connected axons

3. Which axons in the ROI do not connect to the dendrite?

8a := [ROI(cylinder c)]<axons> // axons in ROI
8b := [relcomp]<8a,7c> // ROI axons\connected axons

4. But do they make connections outside the ROI?

9a := [connected]<5a,8b> // all connections

7.2 User Evaluation
We describe two specific use cases where our system has helped do-
main scientists and data analysts to gain new insights into their data.
The first user was a neuroscientist interested in analyzing “multiple-
hit” axons within a fully segmented region of interest in the volume
(Section 7.2.1). The task of the second user was to numerically ana-
lyze and clean up the data from segmentation errors (Section 7.2.2).

General feedback from our users was that they are very happy with
the key features of our system, such as simultaneous 3D visualization
of EM and segmentation data, and a linked graph view for neuronal
connectivity. After an initial training period, they were able to use the
visual query builder to quickly narrow down their current “working
set” to the subset of neuronal structures they were interested in for a
certain task. Especially the ability to switch effortlessly and quickly
between the different views, defining and extending powerful queries,
and interactively selecting structures in the linked views, was seen as
very helpful by the scientists. However, they are still at the beginning
of their analysis. Many synapses have not been identified and fully la-
beled yet, and the segmentation is still very sparse in some areas. In the
future, more complete data will help them formulate and query more
detailed hypotheses that they can analyze with ConnectomeExplorer.

7.2.1 Connectivity and Morphology of Multiple-Hit Axons
The goal of our first user was to analyze multiple-hit axons, i.e., axons
making multiple synapses with the same dendrite, and to jointly look
at their connectivity and morphology. The session started by querying
all axons inside ROI ’cyl 1’. Next, their connections were grouped
and counted, to see the dendrites each axon connects to and the num-
ber of shared synapses. In the next step, the user navigated to the
synapses of these axons in 3D (with a single mouse click) and exam-
ined their local morphology. The main goal was to gain intuition for
what the data look like and to discover new patterns that would trig-
ger and guide further analysis. In this case, he wanted to analyze the
location of the synapses of a multiple-hit axon that are connected to
the same dendrite and find out if they are arranged sequentially or if
the axon makes synapses to other dendrites in between. A sequen-
tial arrangement might indicate that synapses were made by chance,
whereas a non-sequential order might indicate an underlying reason
for why these two structures are connected. By using our tool the

scientists were able to discover that the location of the synapses was
non-sequential, which they now want to analyze in more detail.

After several sessions with ConnectomeExplorer, the user found our
system extremely helpful for exploring their data. Especially the abil-
ity to form and try out new hypotheses interactively was considered to
be very useful, because the scientists still know relatively little about
their data, simply because they did not previously have adequate tools
for analysis. They greatly appreciated and used the graph view for an-
alyzing the connectivity. However, an additional suggestion was that
they would like to have a graph view that also represents a simplified
spatial morphology of the data instead of only abstract connectivity.

7.2.2 Proof-Reading and Data Clean-Up
The goal of our second user was to proof-read and numerically ana-
lyze the segmentation data. ConnectomeExplorer can also help in data
clean-up tasks performed by data analysts and technical staff, via ba-
sic capabilities for adding, deleting, and modifying objects and their
properties. The data analyst in our evaluation session used our tool
primarily to look at data statistics, such as average voxel size, number
of connections, etc. This enabled finding several errors and inconsis-
tencies in the data that he was not aware of before. He found segmen-
tation errors (wrong splits/merges of objects that were visible in the
3D view), incorrectly labeled segmentations (objects labeled as spines
but with a huge volume), duplicate synapses (at almost the same loca-
tion but with different names), and other wrongly assigned attributes.
Additionally, our tool enabled identifying “orphans” in the densely
segmented ROI cyl 1, i.e., objects that only exist inside the cylinder.

User feedback focused on the interactive 3D visualization that was
seen as extremely helpful once detailed structures of interest are se-
lected via queries. It was the first time that he could look at a volume
rendering of the EM in combination with the segmentation, and to
quickly scan for errors and try out hypotheses using the query system.
He was also able to perform his numerical analysis. However, in the
future he would like our system to incorporate more proximity queries,
based on different distance metrics and skeletonized segmentations.

Table 4. Comparison of visualization systems for connectomics. Main sys-
tem goal, targeted data type and size, features (segmentation, 3D view,
graph visualization, interactive queries). Abbreviations: segm.: ’sa.’ :
semi-automatic; ’m.’ : manual; ’S’ : segmentation; ’A’ : annotation. 3D
view : ’2DT’ : textured slice only; ’G’ : geometry; ’VR’ : volume rendering;
’MVR’ : multi-volume rendering. The coloring highlights desired features.

system data type max data size segm. 3D view graph queries

Eyewire [1]
segmentation: online game-like segmentation
EM sub-cube of 2563 sa. S 2DT + G no no

Neuro segmentation: concurrent 3D vis of volume and segmentation
Trace [26] EM several GB sa. S VR no no

Mojo [37]
segmentation: proof-reading of automatic segmentations
EM < GPU memory sa. S no no no

RhoANA / segmentation: automatic segmentation and proof-reading
Mojo 2.0 [29] EM GB-TB a. S no no no

Knossos [24]
annotation: rapid reconstruction of neural morphology (skeleton)
EM sub-cube < RAM m. A 2DT + G no no

Catmaid [38]
annotation: collaborative annotation of large image stacks
EM > hundreds GB m. A G no no

Viking annotation: multi-user annotation of large image stacks
Viewer [4] EM > dozens GB m. A G yes no
Hadwiger visualization: interactive volume rendering of petascale EM data
et al. [22] EM > TB no VR no no

Rambo3D [2]
visualization: visualization of remote annotations
EM sub-cube < GPU no 2DT no no

Connectome processing framework: python and plugin-based research platform
Viewer [20] MRI, DTI variable plugins plugins yes no
Brain query system: visual spatial and semantic queries for fly brains
Gazer [9] confocal < RAM no VR + G no yes
Neuron query system: textual queries for connectivity of fly brains
Navigator [32] confocal < GPU memory no G no yes
Sherbondy query system: dynamic ROI-based connectivity queries
et al. [40] MRI, DTI < 512 MB no 2DT + G no yes
Connectome query system: query-guided visual analysis of large connectome data
Explorer (ours) EM > TB m. S MVR yes yes

7.3 Performance
We have tested our system on quadcore dual-CPU 3.2 GHz machines
with 12 GB RAM, and NVIDIA GTX 680 GPU with 2 GB RAM.
Optionally, we can run the data server on a different machine that is
connected over the network. Detailed timings for 2D mipmap genera-
tion, block construction, and volume rendering the EM teravoxel data
set used here (12-75 fps in a 1024× 768 viewport, depending on the
transfer function used) have been reported previously [22].

Multi-volume rendering reduces the performance on average by 10-
30%, depending on the transfer function. Our renderer allows the
frame rate to be completely decoupled from the time it takes until
missing data have been constructed. Block construction for multiple
volumes naturally takes longer, because usually twice the amount of
data needs to be constructed. Empty space skipping, especially on the
sparse segmentation data, results in performance improvements of up
to 5×, and reduces the amount of cache texture space required.

All queries are evaluated dynamically at run time. Because of the
involved data sizes, we do not employ pre-computations. An excep-
tion is the computation of min/max values and object ID histograms
for each processed 2D mipmap tile, which is done during mipmap
generation. Typical query evaluation times are given in Table 3.

7.4 Comparison, Discussion, and Limitations
Our system aims to facilitate the intuitive visual analysis of large-scale
connectomics data based on a domain-specific query-based interface.
A comparison of our system to other systems is shown in Table 4. We
summarize key motivations for our main design decisions, mention
alternatives that we have abandoned, and discuss limitations.

3D visualization. The need for 3D visualization of dense, noisy,
and highly anisotropic EM data was not obvious to our neuroscientists
at the beginning. However, they now see the combination of 3D visu-
alization with powerful query and analysis capabilities as having very
large potential for data analysis, especially of the inherent spatial rela-
tionships, and for proof-reading segmentations. The design decisions
for our volume processing pipeline have been discussed before [22].

Knowledge-based queries. A knowledge-based query algebra
geared toward a specific domain has the inherent limitation that it is
not as general as a general-purpose query language such as SQL or
mathematical analysis tools like Matlab. We use this limitation as an
advantage that allows us to greatly simplify the user interaction. How-
ever, specifying complex dynamic queries still is not trivial and needs
an initial training period to get acquainted with the basic concept.

Visualization of connectivity. Our initial approach for visualizing
neuronal connectivity was integrating 2D graph interaction directly in
the 3D volume view. After initial evaluation with the domain scien-
tists, we decided for a separate graph view. Only after understanding
the abstract connectivity of the data would they now like to include
more details by again adding spatial information to the connectivity.

8 CONCLUSIONS AND FUTURE WORK

We have presented ConnectomeExplorer, a novel application for the
query-guided visual analysis and exploration of large volumetric neu-
roscience data sets. Our system is based on a powerful query algebra
that has already helped our collaborators in connectomics research to
answer some of their concrete questions. The variety of queries in con-
junction with linked visualization views has allowed them to discover
facts about their data set that they did not know before. The queries
we enable are made simpler—and at the same time more powerful—by
encoding and building on domain-specific knowledge about the intrin-
sic semantics of the connectivity of neuronal structures.

In the future, we would like to integrate more advanced segmen-
tation and proof-reading methods [29] into our system, and research
intuitive 3D navigation metaphors to navigate and explore petascale
volume data sets efficiently. Furthermore, we would like to extend our
system toward the comparative visualization of query results.

ACKNOWLEDGMENTS

We thank Thomas Theußl and Jose Conchello. This project was par-
tially supported by the Intel ISTC-VC, Google, and NVIDIA.

REFERENCES

[1] Eyewire. http://eyewire.org/, 2012. Accessed on 16/06/2013.
[2] Rambo3d. http://openconnectome.github.io/Rambo3D/,

2012. Accessed on 16/06/2013.
[3] C. Ahlberg, C. Williamson, and B. Shneiderman. Dynamic queries for

information exploration: an implementation and evaluation. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’92, pages 619–626, 1992.

[4] J. Anderson, S. Mohammed, B. Grimm, B. Jones, P. Koshevoy, T. Tas-
dizen, R. Whitaker, and R. Marc. The viking viewer for connectomics:
scalable multi-user annotation and summarization of large volume data
sets. Journal of Microscopy, 241(1):13–28, 2011.

[5] J. Beyer, M. Hadwiger, A. Al-Awami, W.-K. Jeong, N. Kasthuri, J. W.
Lichtman, and H. Pfister. Exploring the connectome: Petascale volume
visualization of microscopy data streams. IEEE Computer Graphics and
Applications, 33(4):50–61, 2013.

[6] J. Beyer, M. Hadwiger, S. Wolfsberger, and K. Bühler. High-quality mul-
timodal volume rendering for preoperative planning of neurosurgical in-
terventions. IEEE Transactions on Visualization and Computer Graphics
(Proceedings IEEE Visualization 2007), 13(6):1696–1703, 2007.

[7] G. Bezgin, A. T. Reid, D. Schubert, and R. Kötter. Matching spatial
with ontological brain regions using java tools for visualization, database
access, and integrated data analysis. Neuroinformatics, 7(1):7–22, 2009.

[8] D. Bock, W.-C. Lee, A. Kerlin, M. Andermann, G. Hood, A. Wetzel,
S. Yurgenson, E. Soucy, H. S. Kim, and R. C. Reid. Network anatomy and
in vivo physiology of visual cortical neurons. Nature, 471(7337):177–
182, 2011.

[9] S. Bruckner, V. Šoltészová, M. E. Gröller, J. Hladůvka, K. Bühler, J. Yu,
and B. Dickson. Braingazer - visual queries for neurobiology research.
IEEE Transactions on Visualization and Computer Graphics (Proceed-
ings IEEE Visualization 2009), 15(6):1497–1504, Nov. 2009.

[10] W. Cai and G. Sakas. Data intermixing and multi-volume rendering.
Computer Graphics Forum, 18(3):359–368, 1999.

[11] T. Catarci, M. F. Costabile, S. Levialdi, and C. Batini. Visual query sys-
tems for databases: A survey. Journal of Visual Languages and Comput-
ing, 8:215–260, 1997.

[12] C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemann. Gigavoxels: Ray-
guided streaming for efficient and detailed voxel rendering. In Proceed-
ings Symp. on Interactive 3D Graphics and Games, pages 15–22, 2009.

[13] W. de Leeuw, P. Verschure, and R. van Liere. Visualization and anal-
ysis of large data collections: a case study applied to confocal mi-
croscopy data. IEEE Transactions on Visualization and Computer Graph-
ics, 12(5):1251–1258, 2006.

[14] M. Derthick, J. Kolojejchick, and S. F. Roth. An interactive visual query
environment for exploring data. In Proceedings Symposium on User in-
terface software and technology (UIST), pages 189–198, 1997.

[15] E. Dyllong and C. Grimm. A modified reliable distance algorithm for
octree-encoded objects. Proceedings in Applied Mathematics and Me-
chanics (PAMM), 7(1):4010015–4010016, 2007.

[16] K. Engel. CERA-TVR: A framework for interactive high-quality ter-
avoxel volume visualization on standard PCs. In Posters at Large-Data
Analysis and Visualization (LDAV) 2011, 2011.

[17] J. C. Fiala. Reconstruct: a free editor for serial section microscopy. Jour-
nal of Microscopy, 218(1):52–61, April 2005.

[18] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-
directed placement. Software: Practice and Experience, 21(11):1129–
1164, Nov. 1991.

[19] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database systems - the
complete book (2. ed.). Pearson Education, 2009.

[20] S. Gerhard, A. Daducci, A. Lemkaddem, R. Meuli, J. Thiran, and P. Hag-
mann. The connectome viewer toolkit: an open source framework to
manage, analyze, and visualize connectomes. Frontiers in Neuroinfor-
matics, 5, 2011.

[21] J. Gerken, M. Heilig, H.-C. Jetter, S. Rexhausen, M. Demarmels, W. A.
Knig, and H. Reiterer. Lessons learned from the design and evaluation
of visual information-seeking systems. International Journal on Digital
Libraries, 10(2-3):49–66, 2009.

[22] M. Hadwiger, J. Beyer, W.-K. Jeong, and H. Pfister. Interactive volume
exploration of petascale microscopy data streams using a visualization-
driven virtual memory approach. IEEE Transactions on Visualization and
Computer Graphics (Proceedings IEEE Scientific Visualization 2012),
18(12):2285–2294, 2012.

[23] J. Heer and B. Shneiderman. Interactive dynamics for visual analysis.
Queue, 10(2):30:30–30:55, Feb. 2012.

[24] M. Helmstädter, K. L. Briggman, and W. Denk. High-accuracy neurite
reconstruction for high-throughput neuroanatomy. Nature Neuroscience,
14(8):1081–1088, 2011.

[25] V. Jain, B. Bollmann, M. Richardson, D. Berger, M. Helmstädter, K. Brig-
gman, W. Denk, J. Bowden, J. Mendenhall, W. Abraham, K. Harris,
N. Kasthuri, K. Hayworth, R. Schalek, J. Tapia, J. Lichtman, and S. Se-
ung. Boundary learning by optimization with topological constraints. In
Proceedings of IEEE CVPR 2010, pages 2488–2495, 2010.

[26] W.-K. Jeong, J. Beyer, M. Hadwiger, R. Blue, C. Law, A. Vázquez-Reina,
C. Reid, J. W. Lichtman, and H. Pfister. Ssecrett and neurotrace: Interac-
tive visualization and analysis tools for large-scale neuroscience datasets.
IEEE Computer Graphics and Applications, 30(3):58–70, 2010.

[27] W.-K. Jeong, J. Beyer, M. Hadwiger, A. Vázquez-Reina, H. Pfister, and
R. Whitaker. Scalable and interactive segmentation and visualization of
neural processes in EM datasets. IEEE Trans. on Visualization and Com-
puter Graphics (Proc. IEEE Visualization 2009), 15(6):1505–1514, 2009.

[28] V. Kaynig, T. Fuchs, and J. Buhmann. Neuron geometry extraction by
perceptual grouping in sstem images. In Proceedings of IEEE CVPR
2010, pages 2902–2909, 2010.

[29] V. Kaynig, A. Vázquez-Reina, S. Knowles-Barley, M. Roberts, T. Jones,
N. Kasthuri, E. Miller, J. W. Lichtman, and H. Pfister. Large-scale au-
tomatic reconstruction of neuronal processes from electron microscopy
images. In arXiv: 1303.7186 [q-bio.NC], 2013.

[30] A. Kuß, S. Prohaska, B. Meyer, J. Rybak, and H.-C. Hege. Ontology-
Based Visualization of Hierarchical Neuroanatomical Structures. In Pro-
ceedings of Visual Computing for Biomedicine, pages 177–184, 2008.

[31] J. W. Lichtman and W. Denk. The big and the small: Challenges of
imaging the brain’s circuits. Science, 334(6056):618–623, 2011.

[32] C.-Y. Lin, K.-L. Tsai, S.-C. Wang, C.-H. Hsieh, H.-M. Chang, and A.-
S. Chiang. The neuron navigator: Exploring the information pathway
through the neural maze. In Proceedings of the 2011 IEEE Pacific Visu-
alization Symposium, pages 35–42, 2011.

[33] Z. Liu, B. Jiang, and J. Heer. immens: Real-time visual querying of big
data. Computer Graphics Forum (Proceedings Eurovis), 32, 2013.

[34] A. Martin and M. Ward. High dimensional brushing for interactive ex-
ploration of multivariate data. In Proceedings IEEE Conference on Visu-
alization 1995, pages 271–, 1995.

[35] D. Mayerich and J. C. Hart. Volume visualization of serial electron mi-
croscopy images using local variance. In 2nd IEEE Symposium on Bio-
logical Data Visualization, pages 9–16, 2012.

[36] D. Osumi-Sutherland, S. Reeve, C. Mungall, F. Neuhaus, A. Ruttenberg,
G. Jefferis, and J. Armstrong. A strategy for building neuroanatomy on-
tologies. Bioinformatics, 28(9):1262–1269, 2012.

[37] M. Roberts, W.-K. Jeong, A. Vázquez-Reina, M. Unger, H. Bischof, J. W.
Lichtman, and H. Pfister. Neural process reconstruction from sparse user
scribbles. In Proceedings of MICCAI 2011, pages 621–628, 2011.

[38] S. Saalfeld, A. Cardona, V. Hartenstein, and P. Tomančák. CATMAID:
collaborative annotation toolkit for massive amounts of image data.
Bioinformatics, 25(15):1984–1986, Aug. 2009.

[39] S. Seung. Connectome: How the Brain’s Wiring Makes Us Who We Are.
Houghton Mifflin Harcourt, Feb. 2012.

[40] A. Sherbondy, D. Akers, R. Mackenzie, R. Dougherty, and B. Wandell.
Exploring connectivity of the brain’s white matter with dynamic queries.
IEEE Trans. on Vis. and Computer Graphics, 11(4):419–430, 2005.

[41] B. Shneiderman. Dynamic queries for visual information seeking. IEEE
Software, 11(6):70–77, 1994.

[42] P. R. Smart, A. Russell, D. Braines, Y. Kalfoglou, J. Bao, and N. R. Shad-
bolt. A visual approach to semantic query design using a web-based
graphical query designer. In Proceedings of the 16th international con-
ference on Knowledge Engineering: Practice and Patterns, EKAW ’08,
pages 275–291, Berlin, Heidelberg, 2008. Springer-Verlag.

[43] K. Stockinger, J. Shalf, K. Wu, and E. Bethel. Query-driven visualization
of large data sets. In Proceedings IEEE Visualization 2005, pages 167–
174, 2005.

[44] C. Stolte and P. Hanrahan. Polaris: A system for query, analysis and vi-
sualization of multi-dimensional relational databases. IEEE Transactions
on Visualization and Computer Graphics, 8:52–65, 2002.

[45] Y. Wan, H. Otsuna, C.-B. Chien, and C. Hansen. An interactive visual-
ization tool for multi-channel confocal microscopy data in neurobiology
research. IEEE Transactions on Visualization and Computer Graphics,
15(6):1489–1496, 2009.

http://eyewire.org/
http://openconnectome.github.io/Rambo3D/

	Introduction
	Related Work
	Application Overview
	Data Acquisition
	Data Management
	Visual Analysis and Exploration

	Dynamic Knowledge-Based Queries
	Set Algebra for Knowledge-Based Queries
	Basic Concepts

	Using Set Predicates and Operators for Queries
	Set operators, projection, and grouping
	Topological predicates
	Spatial predicates and operators
	Attribute predicates
	Statistical operators

	Visual Query Builder

	Visualization
	Volume Rendering
	Segmented Data and Synapses
	Empty Space Skipping and Culling

	Linked Views
	2D Connectivity Graph View
	2D Segmentation/Slice View
	Information and Statistics Views

	Demand-Driven Spatial Query Evaluation
	Region of Interest (ROI) Evaluation
	Distance Evaluation

	Results and Discussion
	Query-Based Analysis Scenarios
	Axon and Dendrite Analysis
	Connectivity Analysis
	Region of Interest and Spatial Analysis

	User Evaluation
	Connectivity and Morphology of Multiple-Hit Axons
	Proof-Reading and Data Clean-Up

	Performance
	Comparison, Discussion, and Limitations

	Conclusions and Future Work

