
SeiVis: An Interactive Visual Subsurface Modeling Application

Thomas Höllt, Student Member, IEEE, Wolfgang Freiler, Fritz M. Gschwantner,
Helmut Doleisch, Member, IEEE, Gabor Heinemann, and Markus Hadwiger, Member, IEEE

Fig. 1: A screenshot of our application illustrating our novel joint time/depth domain visualization for a seismic reflection dataset
with two interactively interpreted seismic horizons. The two 3D views on the left show volume renderings of the seismic in time
and depth domain, respectively, cut open at the horizons. The two 2D views on the top right show our interpretation views in time
and depth as well. The 2D slice view on the bottom right shows the reflection data from the top in combination with well positions.

Abstract— The most important resources to fulfill today’s energy demands are fossil fuels, such as oil and natural gas. When
exploiting hydrocarbon reservoirs, a detailed and credible model of the subsurface structures is crucial in order to minimize economic
and ecological risks. Creating such a model is an inverse problem: reconstructing structures from measured reflection seismics. The
major challenge here is twofold: First, the structures in highly ambiguous seismic data are interpreted in the time domain. Second,
a velocity model has to be built from this interpretation to match the model to depth measurements from wells. If it is not possible to
obtain a match at all positions, the interpretation has to be updated, going back to the first step. This results in a lengthy back and
forth between the different steps, or in an unphysical velocity model in many cases. This paper presents a novel, integrated approach
to interactively creating subsurface models from reflection seismics. It integrates the interpretation of the seismic data using an
interactive horizon extraction technique based on piecewise global optimization with velocity modeling. Computing and visualizing the
effects of changes to the interpretation and velocity model on the depth-converted model on the fly enables an integrated feedback
loop that enables a completely new connection of the seismic data in time domain and well data in depth domain. Using a novel
joint time/depth visualization, depicting side-by-side views of the original and the resulting depth-converted data, domain experts can
directly fit their interpretation in time domain to spatial ground truth data. We have conducted a domain expert evaluation, which
illustrates that the presented workflow enables the creation of exact subsurface models much more rapidly than previous approaches.

Index Terms—Seismic visualization, volume deformation, exploded views, seismic interpretation.

1 INTRODUCTION

Even with the recent trend towards alternative and renewable energy
sources, more than half of today’s energy demand is still fulfilled by
fossil fuels and will continue to be so in the next couple of years.
According to the International Energy Outlook 2010 [22] by the U.S.
Energy Information Administration, worldwide marketed energy will
rise by 50% until the year 2035.

• Thomas Höllt and Markus Hadwiger are with King Abdullah University of
Science and Technology, Saudi Arabia,
E-mail: {thomas.hollt|markus.hadwiger}@kaust.edu.sa.

• Wolfgang Freiler and Helmut Doleisch are with the SimVis GmbH, Austria,
E-mail: {freiler|doleisch}@simvis.at.

• Fritz-M. Gschwantner is with the VRVis Research Center, Austria,
E-mail: gschwantner@vrvis.at.

• Gabor Heinemann is with the Heinemann Oil GmbH, Austria,
E-mail: gheinemann@heinemannoil.com.

Manuscript received 31 March 2012; accepted 1 August 2012; posted online
14 October 2012; mailed on 5 October 2012.
For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

The oil in place, however, is limited, and thus the efficient valoriza-
tion of existing reservoirs is an important goal. For the planning of
production wells to drill into oil and gas reservoirs, one has to have an
exact model of the subsurface structures. These include the different
geological layers, the boundaries between these layers—called seismic
horizons—, but also faults, as well as other structures. The basis for
creating such a subsurface model is usually a seismic survey. Today,
a typical survey contains 3D seismic reflection data—called seismic
cubes—, as well as additional data such as well logs and well tops.

The Seismic Cube is a regular grid of scalar values. It is acquired
by sending seismic waves into the ground. At a seismic horizon, part
of the waves will be reflected, while others will proceed. The reflected
waves are then measured on the ground using a 2D grid of geophones.
The result is a set of 1D traces along the z-axis, one for each geophone,
with z corresponding to the two-way travel time of the seismic wave,
and f (z) being the measured amplitude. The seismic traces are then
usually time- or depth-migrated. In this process, the actual lateral po-
sitions of the reflection events in the x,y-plane have to be computed, as
in the original data one does not know from which direction the event
actually arrived at the geophone. For a 3D survey, the migrated 1D
traces are combined to form a 3D seismic cube. The dimensions of the

resulting volume are lateral distances for the geophone grid, and time
or depth on the z-axis, depending on the migration technique. Even
though the depth migration delivers depth on the z-axis, this value
does not directly correspond to actual spatial depth in the real world,
because the so-called provelocities used in the depth-migration do not
account for the horizontal energy in the seismic waves [7].

Well Data. Two kinds of data are aquired from exploration wells:
Well logs are 1D datasets that log several properties of the subsurface
along the drill hole. Well tops contain information on the position of
subsurface layer boundaries. Both can function as ground truth data
when interpreting the seismic cube. Well log and well top data come
in three different types: (1) measured in spatial depth at the drill holes,
(2) measured in spatial depth, and converted to the time- or depth-
migration domain, or (3) measured directly in the time domain. Unlike
well data available in the time domain, the much more common and
also more accurate data only available in the spatial depth domain can-
not be used directly for interpreting a time-migrated seismic measure-
ment. In the conventional workflow for seismic interpretation, after
finishing the interpretation, the extracted features are converted into
the spatial depth domain. Only then can the interpretation be matched
to the ground truth data available only in the spatial depth domain.

Depth conversion is the process of computing actual spatial depths
for seismic structures using the extracted horizons and a velocity
model. Each subsurface layer is assumed to consist of a single mate-
rial only, or an equal distribution of a mixture of materials. This makes
it possible to assign an average velocity value to each layer. In the
same way subsurface layers do not intersect, neither do their bound-
aries. Here, we assume that boundaries do not fold over, and thus can
be defined as a function over the lateral domain, i.e., a heightfield.
According to our domain expert collaborators, this is a reasonable as-
sumption that subsumes the largest part of seismic interpretation work.
These two constraints make it possible to interpret the depth conver-
sion process as a piecewise linear scaling of layers along the z-axis.

Contributions. We present an integrated application that employs a
novel interactive, visual workflow for the creation of subsurface mod-
els. Our main contribution is the combination of three previously
separated modules, namely horizon extraction, velocity modeling, and
depth conversion (Figure 2 a), into a fully integrated update loop (Fig-
ure 2 b). This results in a completely new interpretation workflow
that shows the original data and the depth-converted data in a novel
joint time/depth domain visualization, with linked live updates in all
views. This for the first time enables depth-domain ground-truth data
to be integrated directly into a time domain-based workflow. For the
horizon extraction module, we build on the basic approach of previ-
ous work [9], but introduce a novel, more precise cost function. We
are able to integrate the depth conversion directly into the rendering
pipeline via a novel live volume deformation technique, allowing live
evaluation of the results from horizon extraction and velocity model-
ing. We show the benefits of our application via an evaluation with our
domain expert partners, who have started to use our system in practice.

In addition, we present a novel volume-shading approach tailored to
highlighting horizon structures, as well as a new approach to exploded
views using a single-pass ray casting algorithm. Both techniques en-
hance the visualization of dense seismic reflection data considerably.

2 RELATED WORK

We review related work clustered into three areas that are relevant for
our application.

Seismic Interpretation and Depth Conversion. Etris et al. [7]
explain the need for depth conversion of the seismic interpretation and
why depth migration, even though resulting in a seismic in the depth
domain, is not sufficient to get a good subsurface model.

Pepper and Bejarano [16] give a good overview of seismic inter-
pretation techniques in general. There exist a couple of fully auto-
matic horizon extraction approaches. Keskes et al. [10], and Lavest
and Chipot [12], present abstract outlines for this kind of approaches.
Faraklioti and Petrou [8], as well as Blinov and Petrou [2] later on,
employ connected component analysis for 3D surface reconstruction
of seismic horizons. These fully automatic approaches all require

Depth
Conversion

Depth
Conversion

Horizon
Extraction

Velocity
Modeling

user-steered comp.
optional reinterpretation live update loop

automatic comp.

well tops
in depth

a b
Horizon

Extraction
Velocity

Modeling

Fig. 2: The conventional workflow a with multiple user-steered com-
putations, compared to our novel joint time/depth modeling work-
flow b with a fully integrated, automatic live update loop.

parametrization. The parametrization, however, is not necessarily
equal for all features and might even vary throughout a feature. More-
over, having to adjust parameters is inconvenient due to lengthy com-
putations.

Patel et al. [15] present an interactive workflow for horizon extrac-
tion. In a pre-processing step, they compute a hierarchy of possible
surface patches, which the user can then interactively put together to
create the horizon surfaces.

In previous work [9], we have presented an interactive workflow
for the seismic horizon extraction module, which is based on well po-
sitions. Rather than tagging horizons on axis-aligned slices, the well
positions are triangulated, and interaction is performed on the sides of
the resulting prisms. This makes it possible to easily integrate addi-
tional data, such as logs and tops acquired at these wells, directly into
the interpretation workflow. This workflow restricts most of the user
interaction to the unfolded prism sides, allowing easy interaction on a
2D plane, while the actual surface computation exploits global energy
minimization to compute a minimal cost path around the prism, and a
real 3D minimal cost surface on the inside.

Volume Deformation and Exploded Views. Westermann and
Rezk-Salama [23] propose a method for free-form volume deforma-
tion on graphics hardware. A key element of their approach is to
not deform the volume itself, but rather the mapping into the volume.
Rezk-Salama et al. [17] describe an approach for volume deformation
that works by adaptively subdividing the volume into blocks which
can be linearly deformed. They reached interactive rendering speeds
for small datasets on then-available programmable graphics hardware.
Their approach, however, does not work when using advanced mem-
ory layouts like bricking. Schulze et al. [21] have presented an ap-
proach for non-physically-based direct volume deformation. They re-
sample the volume during deformation and render the deformed vol-
ume with standard volume rendering. Their technique allows defor-
mation of moderately-sized volumes at voxel resolution at interactive
framerates, but the affected area must be limited.

Bruckner et al. [3] present exploded views for volume data. In their
approach, the dataset is first split into multiple convex parts which
are then transformed using a force-directed layout. They render these
parts one by one. Therefore, the parts have to be sorted according to
their visibility and after rendering blended into a single buffer.

Volume Visualization for Seismic Data. Engel et al. [6] give a
comprehensive overview of the basics of volume graphics, including
slicing and ray casting-based approaches.

Meaningful visualization of 3D seismic data is a hard problem,
since seismic volume data are very dense and noisy. Gradients cannot
be used well in large parts of the volume, and generally have different
semantics than for example in typical medical datasets. Where a strong
gradient in a computed tomography (CT) scan usually corresponds to
a material boundary, in seismic reflection data the subsurface bound-
aries are represented as local extrema, where the gradients are usually
very small. This means that volume illumination with gradient-based
approaches like the Blinn-Phong model [1] in combination with clas-
sical volume rendering approaches does not work well for these data.

Castanie et al. [4, 5] were the first to use pre-integrated ray cast-
ing for seismic visualization. They give an overview of the special
demands for visualization of seismic data and demonstrate the advan-
tages of ray casting compared to slicing approaches for direct volume
rendering of seismic data.

Video requires Adobe Reader 9+, please see supplemental material.

Fig. 3: Fundamental visualization views for our joint time/depth domain workflow. The user can select prisms in the timeslice view (left).
The volume view (center) allows visualizing each prism in the context of the volume (in both domains). The main interaction for the horizon
extraction happens in the interpretation views (right), showing the unfolded prism sides alongside well data in the time and spatial depth domain.

Patel et al. [15] present a volume rendering technique that employs
gradient-free shading. They argue that local ambient occlusion as pre-
sented by Ropinski et al. [18], a common gradient-free shading ap-
proach, is not a good fit for seismic data. The reasons are not only
the time- and memory-intensive precomputation, but also the high fre-
quency and noisy nature of seismic data. Instead, they propose a tech-
nique called forward scattering. However, since their particular ap-
proach is based on slicing, their technique cannot easily be adapted
to ray casting. Lampe et al. [11] present a technique to deform and
render volumes along curves. They illustrate two applications, one of
which is the visualization of seismic reflection data along well logs.

3 WORKFLOW

The conventional workflow (Section 3.1) for creating subsurface mod-
els and the novel workflow that we propose (Section 3.2) share the
same three conceptual modules: Horizon extraction, velocity model-
ing, and depth conversion. However, as indicated by the illustrations
in Figure 2, they differ vastly in how these modules are integrated, as
well as implemented. In the conventional workflow, the three mod-
ules are connected in a pipelined fashion, where a final result of one
module is the input for the next. In contrast, in our workflow the three
modules are tightly integrated, and all computations happen on the fly.

3.1 Current Practice
The following description of the current practice is based on the in-
dustry standard software Schlumberger Petrel [20]. While implemen-
tation details might vary for different software tools, to our knowledge
the workflow description reflects the common practice in the industry.

Horizon Extraction. The horizon extraction is usually carried out
as a combination of 2D segmentations on the axis-aligned slices of
the seismic reflection data. Depending on the variation in the data,
up to ten slices are skipped between 2D segmentations, and filled by
interpolation or automatic growing. On a single slice, the human in-
terpreter typically tags the desired horizons, starting with an automatic
trace, which is then manually refined. The auto tracer of Petrel uses a
local approach, which—unlike our global approach—cannot be forced
through constraint points and stops at ambiguous areas. The horizon
extraction process is very lengthy and accounts for the major part of
the time in the typical workflow. Tagging several horizons on tens to
hundreds of slices takes at least several hours but can easily keep an
interpreter busy for multiple days, if the structures are not clearly visi-
ble or ambiguous. The output of the horizon extraction module is a set
of surfaces describing the boundaries of the subsurface layers.

Velocity Modeling. After the horizon extraction is finished, the
resulting horizon surfaces are used as a basis for creating a velocity
model. The velocity model is defined in a table view, where for every
subsurface layer the corresponding top and bottom boundaries (hori-
zons or other surfaces), as well as velocities are set. Once all desired
layers are defined, a volume containing per-voxel velocities (the so-
called velocity cube) can be computed off-line.

Depth Conversion. Finally, based on the velocity cube, the depth
conversion can be computed. Using the per-voxel velocities, the orig-
inal volume and the extracted horizons can be resampled, again off-
line, from top to bottom into a new, depth-converted dataset.

Integration. Creating the velocity cube, as well as the final depth
conversion, requires the user to manually create a new derived dataset,

as well as lengthy computations. In addition, the derived datasets are
not coupled. An update in one of the modules does not automatically
trigger the re-evaluation of subsequent modules. Instead, a new de-
rived data set has to be set up manually. This results in the linear
workflow illustrated in Figure 2 a , where each module requires the
result of the previous module as input. Due to the lengthy compu-
tations in between, usually no intermediate results are pushed to the
next module in the pipeline. A major drawback of this approach is
that mistakes that occur during the horizon extraction often only be-
come visible after finishing the complete pipeline, when matching the
depth converted data to the ground truth data, which is available only
in depth. In an ideal workflow, the interpreter would go back to the
interpretation and fix mistakes (indicated by the green arrow in Fig-
ure 2 a). More commonly, however, a shortcut is taken to save time,
by locally “hot fixing” the velocity cube to match the features, accept-
ing a possibly unphysical velocity model.
3.2 Joint Time/Depth Domain Workflow
Horizon Extraction. Instead of extracting the horizons on axis-
aligned slices, we build on the basic approach presented in previous
work [9], triangulating the well positions and tagging horizons on the
sides of the resulting prisms. For interaction, the sides of each prism
are unfolded into a single 2D image. By using the well positions as the
prism corners, we can incorporate the information of three wells into
each 2D view. For extracting a horizon, the user just has to place a
single seed-point. Using a global minimal path algorithm, we find the
optimal path around the prism sides, which is then used to compute the
minimal surface for the prism body. If the path or surface do not fit, the
user can drag a node in the path to a desired position. A new optimal
path is then computed to pass through that position. The surface can
automatically be extended to neighboring prisms using the data on the
shared face. Using asynchronous computations of the optimization for
multiple prisms, changes by the user on one prism are automatically
propagated throughout the complete dataset in the background. Sec-
tion 4.2 introduces a new cost function that is specifically suited to
seismic data, enhancing the precision of the horizon extraction.

Velocity Modeling. For velocity modeling, we automatically sort
the horizons and allow the user to specify the velocities for the result-
ing layers. In contrast to the conventional workflow, we do not need to
compute a velocity cube explicitly, but store only this description.

Depth Conversion. Instead of resampling the original dataset into
the depth domain off-line, we compute the depth conversion live dur-
ing rendering (Section 6.2). The volume, as well as the unfolded prism
sides, are deformed live, using the compact conceptual velocity model
described above to determine indirect texture look-ups accordingly.

Joint Time/Depth Domain Interaction. By removing the penal-
ties for computing a velocity cube and resampling into the depth do-
main, we can now compute the depth conversion in real time. All three
modules are connected, and updates can be triggered automatically
whenever the user modifies the state of any module. This allows for
a completely new workflow, in which for the first time, ground truth
data that are only available in the depth domain, can be integrated di-
rectly into the horizon extraction process in the time domain. We call
this technique Joint Time/Depth Domain Interaction (Section 6).

To take full advantage of our live depth conversion, creating a hori-
zon segmentation and the velocity for the resulting layer go hand in

Thomas Höllt

hand. Horizon extraction and velocity modeling, as well as veloc-
ity modeling and depth conversion, are connected in a bidirectional
manner. This allows one to directly derive the velocity for a layer
by matching well tops, available in time and depth, or the other way
around, to automatically use well tops only available in spatial depth
as constraints during the interpretation in time by reverse-converting
them using the created velocity model. However, because the data is
not always exact, the main interaction is user-steered. If the user is
unsure about a segment of the horizon, the segmented boundary can
be dragged to a different position in the time domain, immediately vi-
sualizing how the model fits the ground truth data in the spatial depth
domain. Figure 3 illustrates this process. Since all computations hap-
pen in real time, enabling a live feedback loop at any stage during the
interpretation, the interpretation can always be matched perfectly to
the ground truth data in the first pass. This eliminates the need for
costly post-processing or “hot fixing” the velocity cube.

3.3 Discussion
Most seismic interpretation is done in the time domain. However, ad-
ditional ground truth data gathered from exploration wells are usually
available in spatial depth only. By placing the depth conversion at
the end of the interpretation pipeline, as in the conventional work-
flow, the interpretation is often a guessing game where errors only
become apparent once the completed interpretation is depth-converted
and matched to the ground truth data. “Hot fixing” these errors in
the velocity cube often results in an unphysical velocity model. Hav-
ing a live depth conversion of the intermediate interpretations, as in
our proposed workflow, makes a huge difference for the interpretation
workflow. For the first time, features in the time as well as the spatial
depth domain can be matched live during interpretation, eliminating
the need for a cumbersome back and forth between the different mod-
ules, and the need for taking shortcuts that result in incorrect models.

4 HORIZON EXTRACTION

Our horizon extraction module is based on a graph-based global opti-
mization with the following properties: A voxel in the volume maps
to a node in the graph. Directly neighboring voxels are connected by
an edge, and four neighboring voxels in a plane, connected by a cycle
of four edges, form a facet. Costs are assigned to edges and facets
based on their bounding voxels. The minimal path around each prism
is the set of connected edges with the least combined cost bounded by
a predefined start and end point. The minimal surface on the inside of
the prism is the set of facets with the least combined cost that forms a
closed surface that is bounded by the minimal path. While the same
basic idea was also used in previous work [9], the cost function used
there has several shortcomings, which we describe in Section 4.1 to
motivate the development of a new cost function. We propose a new
waveform-based cost function (Section 4.2), as well as a new render
mode based on this cost function (Section 5).

4.1 Motivation for the New Cost Function
The cost function presented in [9] consists of two components. The
first one defines the snappiness to ridge and valley lines/surfaces. The
second component defines the smoothness of the resulting interpre-
tation. Both components are based solely on the gray values of the
current sample, ignoring the neighborhood. The snappiness term at a
node is defined as the distance of the amplitude at the current node
f (x,y,z) to a predefined target amplitude t. The cost g1 for an edge
or a facet F is then defined as the sum over all nodes belonging to the
edge/facet as:

g1(F) = ∑
F
|t− f (x,y,z)| . (1)

The target value t is predefined globally as the minimum or maximum
amplitude in the dataset.

Even though it has proven to be quite effective, this basic cost func-
tion has a major problem: Horizons are indicated in the data by local
extrema of the 1D waves at each (x,y)-position. As can be seen in

−0.8

0.0

1.0 a

b

−0.8

0.0

1.0

c

−0.8

0.0

1.0

0 40 80 120

amplitude
cost

Fig. 4: Comparison of the cost obtained via different cost functions, to
the amplitude maxima in an example 1D seismic trace. a shows the
old snappiness term from [9] (Equation 1). The derivative-based term
is shown in b (Equation 3), and the non-linear term in c (Equation 4).

Figure 4 a , the resulting costs, however, are not necessarily an indica-
tor for extrema. Even though locally g1 will assign the lowest cost to
an extremum, the costs at different positions in the volume or for dif-
ferent horizons are not comparable, as each extremum might deviate
from the global target value by a different amount.

4.2 The New Waveform-Based Cost Function
To overcome the problems described in Section 4.1, we propose to re-
place the snappiness term of the cost function with a new term, based
on the local waveform of the 1D trace. The obvious approach to such
a term would be to compute the derivative, e.g., via central differ-
ences, to find extrema, and then use the result of the central difference
computation as the cost. In addition, one could modulate the result to
enhance the extrema; for example, using a smooth bump function such
as:

φ(v) =

{
exp−

1
1−v2 for |v|< 1

0 else,
(2)

where v is set to the derivative f ′ = d f (x,y,z)/dz scaled with a user-
defined scale factor α to define the threshold for mapping the result to
zero. Figure 4 b shows the plot of the cost defined as:

gφ (F) = ∑
F

1−φ(α · f ′(x,y,z)). (3)

For the plot, minima are canceled out using the second derivative.
While this is a much better result compared to the old cost function in
most places (compare for example the small local maximum marked
by the green box), especially the sharp features are desired, some prob-
lems become obvious in the plot. While minima can be canceled out
effectively using the second derivative, this is not true for saddles, re-
sulting in undesired low costs at the two saddle-points marked by the
blue boxes. In addition, the strong maximum marked with the ma-
genta box was assigned a relatively high cost due to the fact that it has
two samples on its peak which results in an asymmetry of the samples
around the peak.

These shortcomings can be removed by the use of the following
non-linear waveform-based term to replace g1:

gwave(F) = ∑
F

1−
n

∑
k=1

ϕs(x,y,z,k), (4)

where n is a predefined 1D neighborhood size, and

ϕs(x,y,z,k) =


ϕ(x,y,z,k) if (k ≥ s) or

(k < s and ϕ(x,y,z,k+1) 6= 0)
0 else,

(5)

with

ϕ(x,y,z,k) =


1
n if f (x,y,z− k)< f (x,y,z) and

f (x,y,z+ k)< f (x,y,z)
0 else,

(6)

for maxima, or

ϕ(x,y,z,k) =


1
n if f (x,y,z− k)> f (x,y,z) and

f (x,y,z+ k)> f (x,y,z)
0 else,

(7)

for minima, respectively. This cost function is a simple step function
which basically returns a smaller value the closer the current sample
point is to a local extremum in the predefined neighborhood, and 1 if
there is no extremum in the neighborhood. The additional constraint
in ϕs provides an implicit smoothing, using s to define the minimal
feature size.

The resulting cost-plot is shown in Figure 4 c . As can be seen, the
problems for the derivative-based term are canceled out in this plot,
while the sharp features for the maxima are retained as desired.

5 COST FUNCTION-BASED VOLUME RENDERING

Inspired by the gradient magnitude-modulated shading presented by
Levoy [13], and the cost function presented in Section 4.2, we have
developed a shading approach that focuses on highlighting horizon
structures. While in horizon extraction local waveform inspection is
common, to our knowledge there are no attempts to exploit the local
waveform for enhancing the volume rendering of seismic data.

Prototyping the Cost Function. With the non-linear filter pre-
sented in the previous section, we can roughly estimate the distance of
the current sample to a local minimum or maximum in the trace. While
the cost function term shown in Equation 4 maps extrema to low cost
for the rendering, we would like to assign large opacity to the extrema
and low opacity to the remaining data. Therefore we can directly use
the term from Equation 5 to modulate the opacity during volume ren-
dering. The resulting opacity is a direct indicator of the local cost.
This makes it possible to prototype the cost function parameters, such
as the neighborhood size, while getting an on-the-fly visualization of
the resulting local costs. Areas of low cost, corresponding to the hori-
zon structures, are rendered opaque, while areas of high cost will be
rendered transparently. Even though this technique cannot replace the
additional global optimization for extracting the horizons, it can give
a good idea of how the global optimization will behave.

Horizon Enhancing Shading. In addition to using this technique
for prototyping the cost function, it also works well as a general ap-
proach to highlighting horizon structures in seismic reflection data.
Common illumination models use the gradient for shading. For vi-
sualizing horizons, this is not suitable as the gradient vanishes at the
local extrema indicating the horizons. Hence we compute the inverse
of the local cost on-the-fly during rendering, and use it to modulate
the opacity from the transfer function, in the same way as the gradient
magnitude is used for gradient magnitude-modulated shading [13].

Performance is mostly dependent on the neighborhood size. We
show performance for k = 1, k = 2, and k = 3 in Table 1, compared to
a shader using standard Phong shading without modulation. It can be
seen that, while there is a performance loss for neighborhoods larger
than three voxels, rates are still interactive. For the performance com-
parison we adjusted the transfer functions such that transparency was
similar for the standard and cost-modulated shading methods, as the

Table 1: Performance for cost function-based rendering compared to
Phong shading (base). See Section 6.4 for measurement setup.

Neighborhood Rendering Times
Size cf-based base (Phong) % of base

3 (k = 1) 28fps 28fps 100%
5 (k = 2) 25fps 28fps 89%
7 (k = 3) 21fps 28fps 75%

a b c d

Fig. 5: Different kernel sizes for the cost-modulated shading (a : k =
1, b : k = 2, c : k = 3), and comparison with Phong shading d .

modulation usually results in much more transparent images. Fig-
ures 5 a - c show a comparison of the quality with different neigh-
borhood sizes. Figure 5 d shows a rendering using the same transfer
function with standard Phong shading. The cost-based rendering was
set up to highlight local maxima only.

A big advantage of this approach is that horizons can efficiently be
highlighted without adjusting the transfer function. While similar re-
sults could be achieved with a carefully designed transfer function with
amplitude-based shading, using the proposed render mode requires no
user interaction at all.

6 JOINT TIME/DEPTH DOMAIN INTERACTION

Our joint time/depth domain workflow is only possible with live com-
putation of the depth conversion results. Therefore, an efficient ren-
dering pipeline (Section 6.1) and support for live volume deformation
(Section 6.2) are essential. In addition, we present a simple implemen-
tation of a single-pass exploded views algorithm (Section 6.3), based
on the same technique as the live deformation. This enables efficient
exploration of the dense seismic reflection data.

6.1 Rendering Pipeline
Figure 6 shows our integrated pipeline for rendering seismic volume
data and horizon surfaces with the application of deformation and ex-
ploded views. In the remainder of this chapter, circled numbers and
letters refer to this figure. While the figure illustrates the pipeline for
the volumetric case, we use the same pipeline for the unfolded prism
views to provide depth conversion of this view during interpretation.
The main difference is that the heightfield geometry c , as well as the
boundaries texture a , are of one dimension lower (compare Table 2).
The pipeline is divided into two major blocks: the interpretation block
on the left, and the rendering block on the right.

Interpretation comprises three modules. The horizon extraction
module 1 , and the velocity modeling module 2 , are described in Sec-
tion 3.2. The output of 1 is a 2D heightfield that covers the complete
volume domain, plus a 1D heightfield for the boundary of the current
prism. Both are constantly updated during the interpretation process.
Each heightfield corresponds to a single horizon, and is stored as a
layer in the first channel of the 3D or 2D boundaries texture a on the
rendering side, and is also available to the depth conversion module on
the interpretation side.

The velocity modeling module 2 outputs a velocity value for each
layer, which is stored into the 1D velocities texture b .

The surface deformation module 3 takes the updated heightfields
from 1 , and converts the values from the time to the depth domain us-
ing the velocity model from 2 . Compared to recomputing the defor-
mation for the complete volume, very little data needs to be processed,
allowing real time updates (compare Table 3).

The resulting depth-converted heightfields are stored in the second
channel of the 2D or 3D boundaries texture a . In addition, the depth
conversion module outputs the maximum scaling factor d needed to
cover the depth conversion at any x,y-position.

Rendering. The data is shared between all views and steps in the
visualization pipeline. Table 2 gives an overview of the shared textures
and buffers. Basically all of our views make use of vertex and frag-
ment shaders to exploit the possibilities of the programmable OpenGL

Table 2: Textures and buffers needed in our pipeline in addition to basic volume rendering. a , b , and c correspond to Figure 6. #B and #L
represent the number of boundaries and the number of layers, respectively. Sizes are given in number of 32-bit floating point entries.

Texture/Buffer Dim. 3D/2D Type Function Size 3D Size 2D

boundaries a 3D/2D luminance-α texture layer boundaries in original (.r) and
deformed (.a) space

x · y ·#B ·2 x ·#B ·2

velocities b 1D luminance texture layer velocities #L #L
heightfield geometry c 2D/1D vertex buffer generic vertex buffer for horizons x · y ·3 x ·2

pipeline. We used this, for example, to streamline the horizon sur-
face rendering part 4 of the pipeline. Instead of creating geometry
for each horizon, we use a single generic vertex buffer c , covering
the complete x,y-domain, but without the depth (z) information at the
vertices. We render the surfaces one by one and use the boundaries
texture a in the vertex stage to assign the appropriate z-values to each
vertex.

Invalid fragments, i.e., the fragments belonging to triangles in the
mesh that are not yet covered by the interpretation, are discarded. Ad-
ditionally, we use the fragment shader to compute several properties of
the surfaces on the fly. Using the data which is already available for the
other rendering stages on the GPU, several properties can be plotted
directly onto the surface without precomputing a separate texture. The
amplitude can be looked up directly from the volume texture. Cost or
deviation from the target amplitude can be computed on the fly based
on data from the same texture. The distance to other surfaces can be
evaluated using the boundaries texture.

6.2 Volume Deformation
The volume deformation required for the depth conversion is highly
constrained. Deformation only needs to be applied to the depth axis
of the volume, in order to convert its unit from time to spatial depth
in the subsurface. We represent horizons as heightfields, and we can
safely assume that no horizons intersect. Thus, every two adjacent
horizons enclose one subsurface layer. Furthermore, the velocity for
each layer in the volume can be assumed to be constant, using an av-
erage value. Thus, the deformation can be simplified to a piecewise
linear stretching or compression of the volume between each two ad-
jacent horizons. Taking these constraints into account, it is possible
to implement the deformation in a simple and efficient manner. This
enables depth conversion at real-time frame rates during volume and
slice rendering, without precomputing a deformed volume.

Concept. Our approach is inspired by the work of Westermann
and Rezk-Salama [23]. Conceptually, we never deform the original
volume, but render a virtually deformed volume, converting the look-
ups in this volume into the original volume space on the fly in the
fragment shader. We do that by converting only the layer boundaries
(which are the result of the interpretation in progress) from time to
depth. The n-th deformed boundary bdn can be computed as

bdn(x,y) =
n

∑
k=1

(bk(x,y)−bk−1(x,y)) · vk (8)

from the time domain boundaries bn and velocities vn. Figure 7 illus-
trates the deformation with this simple iterative computation of the de-
formed boundaries. The boundaries have to be recomputed only when
a velocity value is changed or a horizon is modified. Computational
complexity is O(n), with n the number of vertices that need to be up-
dated. Since the computation is independent for each x,y-position, we
have parallelized it using OpenMP. Even for the surfaces of the large
dataset shown in Figure 10, consisting of roughly a million quads, the
update time for a couple of horizons is interactive (see Table 3).

For volume rendering, we use a single-pass ray caster. The ray
caster is set up to cast into a virtual volume, resized with the scaling
factor d , which is set to the maximum value of the bottom boundary
to fit the deformed volume. During ray casting, the depth-converted
boundaries are used to compute the actual look-up in the original vol-
ume. Rendering the unfolded prism sides can be done in a similar
manner. For each side, we set up a quad that fits the size of the de-
formed side, and the same indirect texture look-up as described for
volume rendering is used for the slice rendering.

Rendering Setup. In the setup step of the ray caster 5 , the extents
of the bounding geometry have to be adapted to fit the deformed vol-
ume. This is done by scaling the z-axis of the bounding geometry with
the deformation factor d .

Fragment Shader. In the ray casting stage 6 the coordinates for
the volume texture look-up have to be modified in the fragment shader.
The pseudo code in Figure 8 illustrates the conversion of the virtual
(deformed) coordinates to the actual sampling position in undeformed
volume coordinates in the fragment shader. The sample position in
the deformed space is used to look up the id of the current layer. Us-
ing the layer id, the layer’s upper boundary is fetched for each (x,y)-
position in original and deformed space. Using the layer’s velocity,
the z-position in the layer is then transformed back into undeformed
volume space, resulting in the sample position in volume space.

The same principle is used for the main interpretation view con-
taining the unfolded prism sides. To apply the depth conversion to the
slice views, we simply scale the side of the quads corresponding to
the volume’s z-axis, and use the same fragment shader code shown in
Figure 8 to compute the position for the texture look-ups.

6.3 Exploded Views

The general approach to exploded views [3, 14, 19] for volume render-
ing is setting up the bounding geometry around each part of the vol-

surface
extraction

time
domain
horizon

extraction

surface
extractionvelocity
modeling

time to
depth

surface
deformation

velo
deling
ocity

velocitieshorizons

Interpretation Shared GPU data Rendering

horizons
in time

horizons
in depth

layer
velocities

surface
rendering

volume
rendering

volume
setup

displacement
vertex shader

Rendering

vo
rend

coloring
fragment shader

volume rendering
fragment shader
with deformation
& explosion

g
ment

sesese
vo
se

su
rend

ment
ader

shader

d
v

v
ff
w
&

f

write readrite readad

vvvee

3D boundary texture

a1

3

6

5

4

2

1D velocity texture
b

fixed vertex buffer

c

deformation factor
d

Fig. 6: Rendering pipeline for joint time/depth interaction. Horizon extraction 1 ,velocity
modeling 2 and deformation 3 modules constantly update the texture data a , b .The data is
shared over all views and the different steps 4 , 5 and 6 in the rendering pipeline.

time to depth surface deformationt3
layer0 / v0

b0: top boundary
b1: horizon0

b2: horizon1

b3: horizon2

b4: bottom boundary

layer1 / v1

layer2 / v2

layer3 / v3

b
b

b
b
b

bd0 = b0

def.fac. = max(bd4)deformed vol
bounding box

bd1 = bd0+(b1 - b0)・v0

bd2 = bd1+(b2 - b1)・v1

bd3 = bd2+(b3 - b2)・v2

bd4 = bd3+(b4 - b3)・v3

bb
b

b
b
b
dd d

Fig. 7: Illustration of the surface
deformation (Fig. 6 3) with com-
putation of deformed boundaries.

Table 3: Performance comparison of the live depth conversion and exploded views. We used standard ray casting without illumination for the
comparison. Dataset 1 is shown in Figure 11 and measures 240×240×1509 voxels, dataset 2 consists of 1422×667×1024 voxels (Figure 10).

Dataset Number of Compute Rendering Times
layers layer update base depth conversion % of base dc + exploded views % of dc % of base

1 2 9ms 117fps 99fps 85% 68fps 69% 58%
1 4 12ms 117fps 87fps 66% 46fps 53% 39%
2 2 144ms 101fps 81fps 80% 50fps 62% 50%
2 4 174ms 101fps 77fps 76% 27fps 35% 27%

ume, rendering each of the parts separately, and then compositing the
results. These techniques make very flexible exploded views possible,
allowing translation and rotation of arbitrary cut planes along/around
arbitrary axes. However, the same constraints of our application sce-
nario which allow us to set up the simple volume deformation ap-
proach described above also make much of this flexibility unneces-
sary. We use the seismic horizons as the cut geometry, and then for the
explosion itself compute layers of piecewise translations along the z-
axis. This is sufficient to enable unobstructed views onto the surfaces.

Integration into the Rendering Pipeline. The data already avail-
able for the deformed rendering makes it possible to deploy exploded
views, using the z-axis for translation, and the horizons as cut surfaces.
We use a single-pass ray casting approach without any additional setup
besides a modified scale factor. Again, we set up a virtual volume with
a modified size for the z-axis. To comply with the spacing between the
different layers, here the summed up spacing for all horizons is added
to the scale factor for the volume’s z-axis. Adding the spacing to the
scale factor for the depth conversion allows us to combine the exploded
views with the depth conversion.

Fragment Shader. The fragment shader for rendering the exploded
view is only a slight modification of the shader described in Sec-
tion 6.2. We interpret the spacing as empty space preceding each hori-
zon. Thus, the offset to get to the deformed layer is not a direct look-up
in the deformed boundaries texture, but the spacing corresponding to
all preceding horizons has to be added. Assuming a uniform spacing,
this is simply layerId times spacing. To check whether the sample po-
sition is inside the spacing or in the volume, the deformed boundary
value of the bottom boundary of the current layer has to be fetched. If
the current sample position is larger than the deformed boundary value
minus the size of the spacing, the sample is inside the spacing. If that
is the case, we can set the current sample’s alpha value to zero and
proceed with the next sample.

6.4 Performance
We have measured the rendering performance for the live deforma-
tion and exploded views with two different datasets: The first dataset,

uniform sampler1D velocities;
uniform sampler3D boundaries;
uniform float scaleFactor;

function CONVERTSAMPLEPOSTOVOLUMESPACE(x, y, z)
// scale from [0..1] to deformed volume coordinates
z *= scaleFactor;
// get the id of the current layer
float layerId = GETLAYERID(x, y, z);
// lookup layer offset in undeformed and deformed volume coordinates
vec2 layerOffset = texture3D(boundaries, vec3(x, y, layerId)).xw;
// distance to layer boundary in deformed volume coordinates
float posInLayer = z - layerOffset.y;
// distance to layer boundary in deformed volume coordinates
float velocity = texture1D(velocities, layerId);
posInLayer /= velocity;
// update z coordinate to sample in volume coordinates
z = layerOffset.x + posInLayer;
return vec3(x, y, z);

end function

Fig. 8: Pseudo code for live volume deformation. Virtual (deformed)
coordinates are converted to undeformed coordinates on the fly during
rendering in the fragment shader. The syntax is similar to GLSL.

shown in Figure 11, is moderately sized with 240× 240× 1509 vox-
els, and at 330MB fits completely into GPU memory. The second
dataset (Figure 10) comprises 1422× 667× 1024 voxels, and on our
system does not fit into GPU memory at roughly 4GB. For rendering
the large dataset, we use an octree representation. While the visualiza-
tion can fall back on lower resolution levels of the octree, the surface
extraction always uses the highest resolution. The surfaces cover the
complete x,y extents of both datasets with a resolution of one vertex
per voxel resulting in 57.600 and 948.474 quads, respectively. Com-
putation of the deformed surfaces was done on the CPU using a dual
six-core Xeon X5680 at 3.33Ghz. Rendering was done on a NVIDIA
Geforce GTX 580 with 1.5GB of memory, with the volume rendered
screen-filling into a 1024×1024 viewport with two samples per voxel.

Performance for the ray casting algorithm with live depth conver-
sion, as presented in Section 6.2, is shown in Table 3. In comparison to
the standard ray casting algorithm used for rendering the undeformed
volume, this technique requires three additional texture look-ups and
four floating point operations per sample to compute the sample posi-
tion in the original volume. In addition, to get the layer id of the current
sample, a number of additional texture look-ups have to be performed.
The actual number depends on the search algorithm used. Right now
we step through all layers from top to bottom until reaching the current
sample point. This results in the performance loss shown in Table 3,
when adding more layers. Performance for the single-pass ray casting
with exploded views, described in Section 6.3, can be seen in Table 3.
Compared to the depth-conversion shader, there is virtually no differ-
ence in computational complexity (the texture fetch, described above,
to decide whether the sample is inside the spacing area can be cached
when computing the current layer). However, we currently do not em-
ploy empty space skipping in the explosion spacing, which results in
a performance loss.

Overall, performance stays well withing the limits needed for inter-
activity for both datasets. For the large dataset it can be seen that ren-
dering speeds scale very well, using the octree representation. Since
the surfaces are deformed at full resolution there is a bigger perfor-
mance penalty, however, update rates are still interactive and updates
are only needed when surfaces or the velocity model is updated.

7 EVALUATION

We have evaluated our system in a real-world scenario with our do-
main expert partners, in order to compare our workflow with the in-
dustry standard as described below.

7.1 Setup

For comparison, we asked our partners to provide us with a typical ap-
plication scenario. To avoid an interpretation session over several days
with our expert partner we asked for a rather small dataset. We were
provided with a moderately-sized dataset consisting of 325 inlines and
275 crosslines at 151 samples per trace (Figure 5 was produced with
the same dataset). The dataset covers an area of roughly 7.5×6.5km
in western Hungary. Time between samples was 4ms. In addition to
the seismic cube, we were provided with a total of 39 well positions,
with well tops for two horizons each, of which five were available in
depth and time, and the remaining 34 in depth only. A large part of the
dataset was covered by the resulting triangulation. We added 10 more
positions so that it is possible to create the interpretation up to the
volume’s boundaries without falling back to a slice-based approach.

Table 4: Timings for the interpretation process. Initial Interpretation corresponds to a first complete extraction of the horizon. Velocity- and DC
Computation correspond to the time needed to compute the velocity cube and the depth conversion, respectively. Refine describes the time used
by the expert to refine the automatic interpretation between the manually interpreted slices and inside prisms after the first complete run.

App Initial Interpretation Velocity Computation DC Computation Refine #Slices/Prisms Avg Time per Slice/Prism
Petrel > 60min∗ 21s 29s n/a+ 18∗ 3:20min
Our ≈ 45min on the fly on the fly < 10min 63 43s
∗With the Petrel software the expert was able to finish 18 slices (about 60% of the dataset) before the time limit of 60 minutes. +Not reached before the time limit of 60 minutes.

The task for the interpreter was then to interpret the horizon defin-
ing the top boundary of a clay layer throughout the volume. Well tops
indicating the top and bottom boundaries of this layer were provided.
Velocity modeling is usually done using well logs. Using our joint
time/depth workflow, the interpreter could simply adjust the velocity
values such that the well tops available in time and depth were match-
ing. For comparison, we gave the expert one hour with our workflow,
and one hour with the standard workflow using the Petrel [20] soft-
ware framework, and asked to create an interpretation, as complete as
possible, without sacrificing exactness. A comparison of the resulting
interpretations is shown in Figure 9. Table 4 shows timing compar-
isons of the different steps. For quality comparison, we were provided
with the actual interpretation of the same horizon used for production,
which was created manually over several working days.

Before starting the evaluation, we gave our partners an in-depth in-
troduction to our framework and provided guidance during a test drive
with a different dataset for several hours. Even though we also super-
vised the actual evaluation run, the expert was able to work on his own
and did not ask for any further assistance.

We conducted a second evaluation session to get an indication of
how well our approach scales to larger datasets. For this test, we had
two students with basic knowledge in seismic interpretation interpret
a horizon in the large dataset introduced above. The dataset measures
1422×667×1024 voxels and covers an area of roughly 17.8×8.3km.
The sampling rate in depth was 2ms. We were provided with 15 well
tops in spatial depth and six in time, covering the center of a salt dome.
The outer region was covered by triangulating arbitrary positions de-
fined by the students. The task was to interpret a horizon above the
salt dome. The resulting area of interest was a rectangle above the salt
dome, measuring roughly 800×600 pixels. For comparison, we were
provided with a production surface of the same area which was created
in roughly two working days by our domain experts.

7.2 Results

Joint Time/Depth Domain Workflow. After the test drive, the do-
main expert decided to approach the interpretation task in the follow-
ing way: First, he adjusted the velocity model to match the well tops
available in the time as well as depth domain. Then he started with
seeding a horizon at one prism and adjusted the 2D curve on the prism
side. Using the live depth conversion, he was able to directly match
the interpretation to the well tops regardless of the domain they were
available in. In the background, our system would use the intermediate
interpretation to recursively create interpretations on the neighboring
prisms as well as compute the optimal surface on the inside. After
being satisfied with the current prism, the expert would then proceed
to a neighboring prism and check the precomputed curve and adjust it
if necessary. The expert was able to go over all prisms in well under
one hour. After finishing the complete horizon, he quickly checked
the result by skimming inlines and crosslines and looking at the ex-
tracted horizon overlaid with the amplitude. The exploded views were
very helpful in this step, as he could get a clear look at the horizon in
context of the volume and also look at the volume data itself, which
was revealed by cutting at the horizon position. He then proceeded to
adjust a few imprecisions resulting from the 3D optimization. After
the last change, the expert had to wait only for a few seconds for the
final result, as the optimization runs continuously in the background.

Conventional Workflow. For the comparison run, the expert in-
terpreted the same horizon using Petrel, which is the industry standard
software for geological modeling. The software offers automated trac-
ing on 2D slices, as well as in 3D. From what we could gather from

testing these automated approaches are both local. Starting from a
seed in 2D, or an interpreted slice in 3D, the horizon is propagated
into as many neighboring pixels/slices as possible. When the data gets
ambiguous, the auto-tracer stops. It is also not possible to set con-
straints besides the initial seed. If the interpretation is wrong, it needs
to be fixed manually and 3D traces between two interpreted slices do
not necessarily connect these slices. When doing the interpretation,
the expert started out with a single slice and fully tagged the horizon
on this slice using a combination of piecewise auto-tracing and man-
ual intervention for corrections, as well as to connect the automatically
traced parts at areas where the automatic approach stopped. After that
he used the 3D auto-tracer for a first result. Besides the described dis-
advantages of using a local approach, a big advantage compared to
our global approach is that the auto-tracer computes a result nearly in-
stantly. However, according to our expert the resulting surfaces are far
from complete and need thorough inspection. As a result they are used

a

b

c

not set
-4.5
0

4.5

Fig. 9: Comparison of the horizons extracted during the expert eval-
uation. a shows a screen capture of Petrel with the extracted surface
using the conventional workflow. b shows the result using our work-
flow. The relative height is encoded in the surface coloring, but with
slightly different colormaps for a and b . We imported the result from
Petrel into our application to compare it to our result. Error plots on
the ground truth surface are shown in c . The left image shows Petrel,
with gaps in the surface marked in yellow, the right shows our result.

Saltdome

Channels

Fig. 10: Screenshot of the 1422× 667× 1024 voxel dataset. The
horizon surface, which was interpreted during our evaluation, clearly
shows the important features of the dataset.

mostly for guidance during a manual interpretation rather than for di-
rectly producing final results. After this first slice, the expert gradually
refined the interpretation by manually adjusting every tenth slice fol-
lowed by another 3D trace. After 60 minutes, the expert finished 18
slices with a distance of ten, covering roughly 60% of the dataset.

Comparison. Figure 9 shows comparisons of the created surfaces.
For the manually interpreted part, it can be seen that the results of both
approaches are quite similar. The lower third shows the part that was
not reached within the time frame. There, large holes and also a phase
jump can be seen, which clearly shows that the automatic tracing alone
is not sufficient to reach acceptable results with the conventional work-
flow. After the 60 minutes, we also measured the time for computing
the velocity model and the deformed seismic cube (see Table 4).

After the interpretation, we conducted a brief interview with the ex-
pert. The expert was impressed by the live depth conversion in combi-
nation with the prism-based workflow. Having three well tops on each
2D slice and being able to match the interpretation directly to the tops
in the depth domain was really helpful in finding the correct surfaces.
A big advantage of the global optimization used for the automatic trac-
ing is the possibility to set constraints and force the auto-tracer through
defined points. Also, it will always result in a closed surface even
when the data is unclear. A point that we did not expect was made by
the expert that the prism-based approach was also very motivating in
contrast to the standard approach of going from slice to slice. The data
on nearby slices is often very similar, making slice-based interpreta-
tion a very tedious process so that subtle, but important, changes are
sometimes missed by the interpreter.

Student Evaluation. Since the second evaluation session was car-
ried out by students rather than experts we do not want to make any
claims regarding the quality of the extracted surfaces besides the fact
that all important structures were found by the students and are visible
in the resulting surface (compare Figure 10).

After a brief introduction, both students were able to work on their
own. The two students approached the dataset slightly differently. Stu-
dent 1 added 25 additional pseudo well positions to cover the area of
interest outside the provided well tops. The result were rather large
prisms used for the surface extraction. Student 2 added roughly 100
additional points resulting in much smaller prisms. As a result, Student
1 spent only about two and a half hours on the extraction of the horizon
on the prism sides, but had to wait about an hour for the computation
of the 3D surface. Student 2 on the other hand spent about four hours
tuning the horizon on the large amount of prisms, but since the com-
putation on the smaller prisms ran much faster, Student 2 barely had
to wait for the computation.

Conclusion. We can say that the expert was able to work with our
system on his own after a short introduction. He was able to extract
surfaces close to manual interpretations in a very short time. While
we used a small dataset with the domain expert, we are able to show
that the presented approach scales well for larger datasets with the ad-
ditional student evaluation. Being able to match an interpretation in

the time domain to ground truth data in the depth domain not only
speeds up the interpretation process significantly, but also allows for
very exact results without tedious back and forth between the different
domains. By using asynchronous computations in the background, it
is also possible to minimize waiting times for the interpretation, even
though the global optimization technique is much more computation-
ally demanding than local approaches. Following the evaluation, our
partners installed our application on a testing system where it is now
used for experimental projects.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced and evaluated SeiVis, a novel, in-
teractive application for integrated seismic interpretation and the cre-
ation of subsurface models. The main contributions are a novel joint
time/depth domain workflow for creating subsurface models, merging
time and spatial depth domains using on-the-fly volume deformation,
live exploded views using seismic horizons as cutting geometry be-
tween volume parts, a horizon-enhancing shading mode, and the inte-
gration of these techniques into an integrated workflow for seismic in-
terpretation and depth conversion. The expert evaluation that we have
conducted has clearly shown the advantages of this new workflow.

In the future, we would like to extend the interpretation capabilities
of our system to include the extraction of faults, in order to be able
to create more complete subsurface models. We think of computing a
likelihood of belonging to a fault for each voxel, and using this like-
lihood as an additional input to the cost function to steer the horizon
tracker along faults, using the same global optimization process.

ACKNOWLEDGMENTS

Parts of this work were funded by the Austrian Research Funding
Agency (FFG) in the scope of the COMET K1 project ”RT-Analysis
3D” (No.824190).

Fig. 11: Example rendering of a dataset of size 240×240×1509 with
heavily compressed top and bottom layers, using exploded views in
combination with standard direct volume rendering.

REFERENCES

[1] J. F. Blinn. Models of light reflection for computer synthesized pictures.
In Proceedings of the 4th annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’77, pages 192–198, 1977.

[2] A. Blinov and M. Petrou. Reconstruction of 3-d horizons from 3-d seis-
mic datasets. IEEE Transactions on Geoscience and Remote Sensing,
43(6):1421–1431, 2005.

[3] S. Bruckner and M. E. Gröller. Exploded views for volume data. IEEE
Transactions on Visualization and Computer Graphics, 12(5):1077–
1084, 2006.

[4] L. Castanie, B. Levy, and F. Bosquet. Advances in seismic interpretation
using new volume visualization techniques. First Break Journal, pages
69–72, 2005.

[5] L. Castanie, B. Levy, and F. Bosquet. Volumeexplorer: Roaming large
volumes to couple visualization and data processing for oil and gas ex-
ploration. In Proceedings of IEEE Visualization Conference ’05, pages
247–254, 2005.

[6] K. Engel, M. Hadwiger, J. M. Kniss, C. Rezk-Salama, and D. Weiskopf.
Real-Time Volume Graphics. A K Peters, Ltd, 2006.

[7] E. L. Etris, N. J. Crabtree, J. Dewar, and Pickford. True depth conversion:
More than a pretty picture. CSEG Recorder, 26:11–22, 2001.

[8] M. Faraklioti and M. Petrou. Horizon picking in 3d seismic data volumes.
Machine Vision and Applications, 15:216–219, 2004.

[9] T. Höllt., J. Beyer, F. Gschwantner, P. Muigg, H. Doleisch, G. Heine-
mann, and M. Hadwiger. Interactive seismic interpretation with piece-
wise global energy minimization. In Proceedings of the IEEE Pacific
Visualization Symposium 2011, pages 59–66, 2011.

[10] N. Keskes, P. Zaccagnino, D. Rether, and P. Mermey. Automatic ex-
traction of 3-d seismic horizons. SEG Technical Program Expanded Ab-
stracts, 2(1):557–559, 1983.

[11] O. D. Lampe, C. Correa, K.-L. Ma, and H. Hauser. Curve-centric vol-
ume reformation for comparative visualization. IEEE Transactions on
Visualization and Computer Graphics, 15(6):1235–1242, 2009.

[12] P. Lavest and Y. Chipot. Building complex horizons for 3-d seismic. SEG
Technical Program Expanded Abstracts, 12(1):159–161, 1993.

[13] M. Levoy. Display of surfaces from volume data. Computer Graphics
and Applications, IEEE, 8(3):29 –37, may 1988.

[14] M. J. McGuffin, L. Tancau, and R. Balakrishnan. Using deformations for
browsing volumetric data. In Proceedings of IEEE Visualization 2003,
pages 401–408, 2003.

[15] D. Patel, S. Bruckner, I. Viola, and M. E. Gröller. Seismic volume vi-
sualization for horizon extraction. In Proceedings of the IEEE Pacific
Visualization Symposium 2010, pages 73–80, 2010.

[16] R. Pepper and G. Bejarano. Advances in seismic fault interpretation au-
tomation. Search and Discovery Article 40170, Poster presentation at
AAPG Annual Convention, pages 19–22, 2005.

[17] C. Rezk-Salama, M. Scheuering, G. Soza, and G. Greiner. Fast volu-
metric deformation on general purpose hardware. In Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware,
HWWS ’01, pages 17–24, 2001.

[18] T. Ropinski, J. Meyer-Spradow, S. Diepenbrock, J. Mensmann, and K. H.
Hinrichs. Interactive volume rendering with dynamic ambient occlusion
and color bleeding. Computer Graphics Forum (Eurographics 2008),
27(2):567–576, 2008.

[19] M. Ruiz, I. Viola, I. Boada, S. Bruckner, M. Feixas, and M. Sbert.
Similarity-based exploded views. In Proceedings of 8th International
Symposium on Smart Graphics, pages 154–165, 2008.

[20] Schlumberger Information Solutions. Petrel seismic to simulation soft-
ware. http://www.slb.com/services/software/geo/petrel.aspx.

[21] F. Schulze, K. Bühler, and M. Hadwiger. Direct volume deformation.
In Computer Vision and Computer Graphics. Theory and Applications,
volume 21 of Communications in Computer and Information Science,
pages 59–72. Springer Berlin Heidelberg, 2009.

[22] U.S. Energy Information Administration. International energy outlook
2010, 2010.

[23] R. Westermann and C. Rezk-Salama. Real-time volume deformations.
Computer Graphics Forum, 20(3):443–451, 2001.

	Introduction
	Related Work
	Workflow
	Current Practice
	Joint Time/Depth Domain Workflow
	Discussion

	Horizon Extraction
	Motivation for the New Cost Function
	The New Waveform-Based Cost Function

	Cost Function-Based Volume Rendering
	Joint Time/Depth Domain Interaction
	Rendering Pipeline
	Volume Deformation
	Exploded Views
	Performance

	Evaluation
	Setup
	Results

	Conclusions and Future Work

