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Abstract We present a novel practical and efficient

mathematical formulation for light intensity calibration

of Multi Light Image Collections (MLICs). Inspired by

existing and orthogonal calibration methods, we design

a hybrid solution that leverages their strengths while

overcoming most of their weaknesses. We combine the
rationale of approaches based on fixed analytical models

with the interpolation scheme of image domain methods.

This allows us to minimize the final residual error in light

intensity estimation, without imposing an overly con-

straining illuminant type. Unlike previous approaches,

the proposed calibration strategy proved to be simpler,

more efficient and versatile, and extremely adaptable

in different setup scenarios. We conduct an extensive

analysis and validation of our new light model compared

to several state-of-the-art techniques, and we show how

the proposed solution provides a more reliable outcomes

in terms of accuracy and precision, and a more stable

calibration across different light positions/orientations,

and with a more general light form factor.
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1 Introduction

Multi-Light Image Collections (MLICs) are groups of

photographs taken from the same viewpoint while chang-

ing lighting conditions. The acquired data consists of an

image stack where each pixel is associated with a series

of reflectance measurements. These samples are used to

extract visual surface properties useful for a wide variety

of tasks (e.g., exploration, data classification, surface re-

lighting, non-photorealistic visualization), and employed

in many different applications (e.g., cultural heritage

(CH), natural science, industry, medical imaging) [28].

The core of all MLIC-based algorithms resides in the

translation from measured reflectance changes into a set

of parameters that digitally represent surface properties.

Since the nature of those changes is strongly related

to the light variation, a key question is if and to what

extent light conditions have to be known beforehand.

Although some methods aim only at a qualitative ob-

ject reconstruction, to provide quantitative, reliable and

repeatable outcomes, geometric and radiometric light

calibration is mandatory.

Light calibration assigns an incident light direction

and intensity to each MLIC measurement. Each method

exploits a specific strategy, by relying on some cali-

bration targets, and adopting a particular light model.

While light positions and directions can be accurately

computed by available techniques, conversely, a general,

practical and reliable light intensity calibration is still

an open problem. A small number of measurements on

unobtrusive targets in the scene are enough to obtain a

precise light position and direction. However, with an

unknown light form factor, an accurate light intensity

computation requires the sampling of a high portion

of the camera field of view, and it typically demands

for an additional capture devoted only to calibration
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(e.g., flat fielding based approaches) (see Sec. 2). Unfor-

tunately, this scenario is not applicable to some widely

used capture settings (e.g., free-form MLIC acquisition).

This paper presents a novel practical and efficient

light intensity calibration. We propose a hybrid math-

ematical solution for a new light intensity model that

combines an analytical light (similarly to the standard

rationale behind all physically-based calibration meth-

ods), and an interpolation-based term, which is used

by image-domain calibration techniques that model the

light without explicitly computing its physical parame-

ters. In this way, we take inspiration from the strengths

of those orthogonal existing methods (physically-based

vs image-domain), while overcoming most of their weak-

nesses. The resulting approach has the advantage of

both relaxing the constraint of a fixed form factor, and

better minimizing the final residual error. To sum up,

our two main contributions are:

– A new light model which is both general enough to be

employed in a wide range of MLIC capture scenarios

with different kind of illuminants, and capable of

providing, at the same time, a reliable light intensity

approximation with low calibration errors;

– An extensive study to evaluate the performance of

the proposed solution together with several com-

monly used state-of-the-art approaches for MLIC-

based light intensity calibration.

Synthetic and real-world experiments prove how the

proposed method surpasses the calibration performances

of the state-of-the-art approaches in a more general

scenario.

2 Related Work

Light calibration is a wide well-known topic in the vi-

sion community. It plays an important role for a huge

amount of methods/applications [28], e.g., Photometric

Stereo [34], RTI [8], or SV-BRDF modeling [19]. Differ-

ent illumination conditions might be considered, e.g.,

collinear [4], point [22], extended area lights [11], or

global illumination [17]. It is out of the scope of this

paper to provide an exhaustive survey of all those tech-

niques. Conversely, we focus on the approaches strictly

related to ours. The main purpose is to efficiently cal-

ibrate the geometry and the radiometric behaviour of

a near light source. This is a common scenario that

provides for each MLIC measurement a proper value for

the light direction and intensity.

Calibrated vs Uncalibrated Methods. The first

dilemma is whether to have light parameters given a-

priori (e.g., obtained by a pre-calibration), or to employ

an auto-calibration strategy, which simultaneously per-

forms a specific task and estimates the incident lighting.

While calibrated methods are more controlled and result

in a more accurate output, uncalibrated solutions do

not require any calibration target in the scene, enabling

their use in the ”wild”. Uncalibrated Photometric Stereo

[5] is a well studied research area among this type of

auto-calibrated MLIC processing. To cope with the ab-

sence of a-priori knowledge of light parameters, they

rely on different kind of assumptions. Some of them con-

sider a surface with Lambertian reflectance [25,2], while
others can deal with general isotropic materials [20,31],

but they require an evenly spaced light constellation.

Another method [18] relies on specific light positioning

constraints (e.g, light along a line or in a plane), but

it can only extract partial information about the scene

(depth cues only). Another class of methods estimates

the light direction and intensity through learning-based

algorithms [6,7]. These methods exhibit a poor mod-

eling of the light field, but they are pretty robust in

the specific task of normal map estimation. However,

they fail if the task is more general (e.g., appearance

modeling), where both a good normal and a high quality

light field are required.

Some methods try to model complex materials under

unknown lighting. Dong et al. [10] recover spatially vary-

ing surface reflectance in unknown natural illumination;

unfortunately, they rely on a non-fixed view acquisition

(appearance-from-motion), and a-priori knowledge of

object geometry. Another limitation is that they can

retrieve only a single light direction/intensity per image

(far point/collinear light). Papadhimitri and Favaro [26]

try to solve uncalibrated Photometric Stereo with a

near-light, but their light position estimation is not ac-

curate enough (error in the order of centimeters with
a 60cm light distance) to be used for further compu-

tation (e.g., SV-BRDF modeling). Huang et al. [15]

propose an uncalibrated alternating minimization ap-

proach to simultaneously compute the normal map and

the near-light parameters; unfortunately, they still need

calibration targets in the scene, and they impose a point

light model, which is not a general and common scenario

(e.g., spot light). Migita et al. [23] propose a targetless

optimization approach to compute shape and isotropic

material properties. However, they impose a point light

model without considering the distance decay factor,

with an high average light direction error of 20 degrees.

For all those reasons, light direction and intensity cal-

ibration remains a mandatory step for methods and ap-

plications devoted to a high quality, quantitative shape

and material modeling. There are two main approaches

to light calibration in MLIC, i.e., the Image domain and

the Physically-based calibration.
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Image domain calibration. These methods use

calibration targets to measure light direction and inten-

sity for a small amount of pixels, and then they compute

the light properties for the whole image domain through

interpolation techniques. Ciortan et al. [9] extract the

light directions from four pixels by using four glossy

spheres, and linearly interpolate those directions across

the image domain. They sample light intensity values

in a white Lambertian target, and interpolate them by

a cubic polynomial. Giachetti et al. [13] use the same

rationale, while changing the interpolation function to
a quadratic polynomial. While simple and practical in

many scenarios, these methods lack accuracy, since they

completely ignore the geometry of the light (position or

orientation), and the radiometric behaviour of the light

field (distance or angular attenuation). They can man-

age non-collinear light, but the closer the illumination

becomes (near-light field), the less the 2D interpolation

is reliable. The resulting error strongly impact the MLIC

processing such as normal computation, BRDF fitting,

relightable image modeling. Other methods [32,3] aim

at finding a data driven light vector field. They employ

a flat fielding correction obtained by the acquisition of

a calibration target before the actual capture. While

extremely accurate, this is not generally applicable to all

types of MLIC acquisitions (e.g., a free form case, when

it is not possible to do two equal captures); moreover,

even with fixed light domes, it does not consider inten-

sity repeatability issues between one acquisition and the

other, which is not rare with low-cost illuminants.

Physically-based calibration. In this class of meth-

ods an analytical light model is imposed, and the in-

formation measured through the calibration targets are

used to find its parameters. Analytical light modeling

is a well studied field, with seminal approaches that

represent the image formation model of linear illumi-

nants [16]. Others couple the point light model with

a perspective camera to solve near-field Photometric

Stereo [22]. Similarly, Huang et al. [15] employ a point

light with the distance fall-off and camera vignetting.

Xie et al. [35] and Quéau et al. [29] present a LED-based

calibration that includes a decay of light intensity driven

by the angle with the optical axis. They assume a fixed

LED light, whose parameters are known a-priori, and

only its position, direction and intensity have been cali-

brated. Pintus et al. [27] address this limitation with a

non-linear optimization to find the unknown optical axis

and the exponential decay parameters. Similarly, Ma

et al. [21] use a perspective camera and a Lambertian

calibration plane to estimate the non-isotropic Radiant

Intensity Distribution (RID) of a near point light source.

While these methods are very accurate, most of them

are tailored to a specific light form factor, and they

are not generally applicable. Some are computationally

expensive with slow non-linear optimizations. To ensure

convergence, some have to capture many samples across

the image, which requires a separate acquisition only for

the calibration; again this makes those methods hardly

applicable in a MLIC free-form scenario.

Our contribution. The proposed technique takes

inspiration from those extreme strategies. Our hybrid

approach takes the best characteristics from both, and

results in a more practical, efficient and generally ap-

plicable method. We take into account physically-based
light features (3D position, direction, intensity distance

decay) while keeping the light model extremely simple

(dimensionless point light). Conversely, we take insights

from the image domain methods. Rather than blindly

interpolating the measures on the calibration target,

we first remove all the physically-based contributions

modeled by our simple light source, and then we show

how the residual error is a more tractable data that can

be efficiently represented by image domain interpolation.

Our light calibration can be efficiently solved by linear

optimization, and, being numerically more stable, does

not require a dense sampling of the light field. This

results in a smaller calibration target that can be easily

inserted in the scene without decoupling the calibration

and the actual MLIC acquisition; this avoids repeata-

bility issues across different captures. Moreover, it can

be generally applicable to different MLIC setups (from

fixed domes to free-form) and light types.

3 Method

We present here a general and practical model for cali-

brating the spatially varying intensity of a light source.

By performing some measurements on a diffuse target

of known reflectance, the model is capable of assigning

the proper light intensity value to each pixel in each

MLIC image.

First of all, we consider a Lambertian diffuse target,

which has an optical response equal to:

w (u, v) =
1

π
ρ (u, v)φ (u, v)

xs − x (u, v)

‖xs − x (u, v)‖
· n̂ (1)

where w is the measured value within the white target

at the image pixel coordinates (u, v), ρ is the target

response, φ is the light intensity, xs is the 3D position

of the light, x is the 3D position of the measured point on

the white target corresponding to the pixel (u, v), and n̂

is the planar normal. From the light position calibration

step xs, x and n̂ are known. We use a common white

paper with a known constant ρ.

Unlike previous approaches, we propose to model the

term φ as the combination of both a physically-based
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term and a 2D interpolation function (for simplicity,

when it is not needed, we drop out the u, v dependency):

φ = φIφP (2)

The physically-based term φP is modeled as a simple

isotropic, point light source, and it takes into account

the physical position of the light in 3D, its absolute

light intensity, and the light intensity decay due to the

squared distance between the light and the illuminated

point in space. We can write this term as:

φP =
φ0

‖xs − x‖2
(3)

where φ0 is the absolute light intensity at a unitary

distance from the light. The general spatially varying

nature of the light (e.g., spot like model) is captured by

the term φI , which we model within the image domain.
Depending on the type of interpolation function, this

term is explicitly a function of the pixel (u, v) or of the

light direction d̂ = xs−x/‖xs−x‖ (which in turn depends

on the image pixel coordinate in an indirect way). More-

over, different formulations exhibits a different set of

parameters p. So, the final light intensity model will be:

φ =
φ0

‖xs − x‖2
φI (· · · ,p) (4)

where · · · might be the 2D image domain (u, v) or the

2D hemispherical domain of light directions d̂. Beside

the specific parameterization, our idea is to define φI
as a general term expressed with a linear combination

of basis functions. We can generalize the mathematical

representation of φI as:

φI (· · · ,p) =
∑
i

piβi (· · · ) (5)

where βi are the basis functions. This formulation has

the advantage of being very efficient, since it involves

only a linear system to calibrate the light. Moreover, it

can be generalized to a wide range of light types depend-

ing on the capability of the functions βi to represent

a general spatially varying light field. To the extreme,

the term φI might be not only a set of more complex

bases or functionals, but also it can be expressed as a

generalized mapping between a 2D field (image pixels

or light directions) into a scalar field (light intensity),

e.g. through a neural network implementation.

For the sake of presentation and its clarity, among

all the possible implementations in this paper we con-

centrate on five possible formulations of the φI term,

ranging from the most simple, straightforward solutions

(e.g., linear interpolation), to more complex bases. We

call these solutions with the prefix Residual-, since one

possible interpretation of this term is that it interpo-

lates, in a 2D manifold domain, a residual error done

when trying to fit a physically-based model. In partic-

ular, we explore here two main approaches. The first

is a polynomial based interpolation; we consider three

implementations of it, i.e., a linear interpolation (Resid-

ualLinear), a quadratic term (ResidualQuadratic), and

a cubic function (ResidualCubic). The form of those

terms respectively is:

φI (u, v,p) = p0u+ p1v + p2 (6)

φI (u, v,p) = p0u
2 + p1v

2 + p2uv + p3u+ p4v + p5 (7)

φI (u, v,p) = p0u
3 + p1v

3 + p2u
2v + p3uv

2 + p4u
2+

+ p5v
2 + p6uv + p7u+ p8v + p9

(8)

The second approach is derived by the consideration

that, once we fix the light position and we remove the

quadratic dependency on the distance (by using the

physically based term φp), we can see that interpolating

across the domain (u, v) is equivalent to interpolate in

the light direction domain across the hemisphere above

the object. For this reason, a good choice for φI is a set

of bases specifically designed to approximate functions

defined on a sphere or a hemisphere. We propose here

two alternatives, i.e., the Spherical Harmonics basis,

and the so called hemispherical basis or H-Basis [14].

While keeping the basic advantages of Spherical Har-

monics and requiring the same amount of coefficients,

the H-Basis is designed to represent irradiance signals

over the hemisphere of possible surface normals, and
generally exhibits less error than other hemispherical

bases. The two light models we propose that are derived

from these two bases are the ResidualRSH (RSH stands

for Real Spherical Harmonics), and the ResidualHBasis

approaches, and the resulting φI are:

φI(d̂,p) =

N∑
l=0

l∑
m=−l

pml Y
m
l (d̂) (9)

φI(d̂,p) =

N∑
i=0

piHi(d̂) (10)

where Y ml (d̂) and Hi(d̂) respectively are the Real Spher-

ical Harmonics and the H-Basis functions.

3.1 The calibration pipeline

After having introduced our new light model, we describe

now how to use it to perform the actual light calibration.

This consists in three main parts, the prerequisites and

the setup, the light positions estimation, and the light

intensity calibration.
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Fig. 1: MLIC acquisition setup. The camera points toward the
object, surrounded by some calibration targets (glossy spheres
and a white frame).

3.1.1 Prerequisites

The prerequisites of our calibration method are the

same as in standard MLIC pipelines. We share the

same acquisition devices, scene setup, object topology,
capture procedure, and type of input data. In particular,

similarly to other light intensity calibration methods [9,

13,27], our solution needs to sample the light intensity

in a small portion of the image, and on a planar target

of known optical response. In order to do that, we also

require the information about light positions in the

camera reference frame. These requirements are general

enough that can be met by standard MLIC capture

settings and pre-processing routines. Moreover, among

the standard capture procedures, we consider the one

that is the most challenging from the calibration point

of view, i.e., the free-form MLIC acquisition, where

the light is hand-held and freely moved around the

object. This setup does not allow a fixed and more

precise calibration; conversely, it requires that a light

calibration is run for each MLIC image independently,

and it is not repeatable from one acquisition to another.

Without loss of generality, among all the available,

standard free-form MLIC setups, we choose the one

with the object under study surrounded by both some

glossy spheres (for light geometry calibration), and a

white planar frame (for light intensity calibration); we

adopt this setup since it is easy to realize and it is

the most common one (see Figure 1). As usual, all the

involved elements are designed to build a framework

that is extremely simple and usable by non-experts with

a minimal training.

After the acquisition, the input of our calibration are

a series of captured raw images, the intrinsic parameters

of the camera lens, and the radius of the glossy spheres.

3.1.2 Light position calibration

Before modeling the light intensity, we need to extract
some geometrical information from the acquired data.

For the results presented in this work, we adopt the

following workflow. We undistort the original images

and segment the glossy spheres. The projection of a

sphere onto an image is a 2D conic. We compute the

sphere 3D positions by combining camera intrinsic pa-

rameters and the equation of the 2D conics [33]. Since

the spheres are on the planar frame, from the 3D conics

we can compute the plane equation. After these steps,

for each pixel belonging either to a sphere or to the

planar target we are capable of launching a ray and

finding the corresponding 3D position. Given the 3D

positions of the spheres, we use the technique proposed

by Ackermann et al. [1] to compute the 3D position xs
of each light in the MLIC.

3.1.3 Light intensity calibration

The knowledge about the camera parameters, the ge-

ometry of the scene, and the light position allow us to

compute, for each pixel in the planar target, the 3D

position of the point on the plane, the direction of the

light ray, and the distance between the light source and

that point. The information we miss is the intensity

of the light at that point. From the equations above,

we can express the single measurement k done on the

planar target as:

wk =
1

π
ρ

(
xs − xk
‖xs − xk‖3

· n̂

)
φ0
∑
i

piβi (· · ·k) (11)

Calibrating the light intensity means solving a system of

equations to find the values of φ0 and pi. Generally, given

K measurements, we can consider φ0 as the following

average:

φ0 =
1

K

∑
k

[
φ0
∑
i

piβi (· · ·k)

]
=

=
1

K

∑
k

wkπ

ρ

1
xs−xk

‖xs−xk‖3
· n̂

(12)

and we can compute the light parameters pi by solving

a simple linear system Bp = w, where B is the matrix

with the values of the basis functions, and w is the

known term that includes the measurements, φ0, and

all the geometrical terms.
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4 Results

We validate the proposed solution by comparing its

performances with those of various techniques that are

both commonly used calibration strategies or state-of-

the-art approaches. We separate this analysis into two

main phases. First, we conduct a series of synthetic

experiments to test the proposed model in a completely

controlled manner (Sec. 4.1). Then we investigate if

the synthetic results are confirmed in several kind of

real-world scene acquisitions and calibrations (Sec. 4.2).

4.1 Synthetic tests

To render the synthetic MLICs, we need to define a
synthetic scene, with a reference frame, some camera

parameters, some virtual calibration targets, an illumi-

nation source with a series of positions/orientations (one

for each MLIC image). Without loss of generality, for all
tests we consider the camera centered at the origin of

the reference frame, and pointing to the negative z-axis.

The camera has a field of view of about 60 degrees and a

resolution of 1845×1232 pixels, with a centered principal

point. The virtual target is a grey Lambertian diffuse

plane; its normal is collinear with the frame z-axis and

it is positioned in front of the camera at a distance of

about 400cm. Across the experiments we modify the

number of lights, their types, and their attributes (po-

sition, orientation, intensity). We employ 5 light types:

Isotropic, an isotropic point source; Area, a spherical

area light (radius equal to 1cm); SpotBW00, a spot light

with linear axial decay and no central beam of constant

intensity (BW stands for Beam Width); SpotBW10, a

spot light with linear axial decay and a 10 degree cen-

tral beam of constant intensity; LambertLED [29], a

Lambertian LED. Although synthetic, to obtain a high

quality, realistic rendering of our scenes, we employ the

physically-based renderer Mitsuba [24], and we render

high-dynamic range images with half floating point pre-

cision. Figure 2 shows some MLIC images rendered with

our 5 light types positioned at the same location.

We test nine calibration algorithms: Collinear, Point,

Spot [27], Quadratic [13], ResidualLinear, ResidualQuad-

ratic, ResidualCubic, ResidualRSH, and ResidualHBasis.

Collinear is the most common and widely used direc-

tional approximation of light model. Point is the analyt-

ical model of an isotropic point light. Spot is a spot light

with an axial decay modeled as φ (θ) = φ0cos
µ (θ) [29,

27], where φ0 is the intensity at the light axis, θ is the an-

gle between the emitting direction and the light axis, and

µ is the exponential falloff. Quadratic is the image do-

main interpolation of light intensity by using a quadratic

polynomial. The methods starting with Residual are

based on the proposed approach, and they respectively

model the residual with a linear, quadratic, or cubic

polynomial, Real Spherical Harmonics (RSH) [30], or H-

Basis [14]. All the calibration techniques use only a small

subset of all the pixels in the planar target (Training

set) located at the edge of the image. In this manner, we

want to simulate a real acquisition, where the number

of pixels belonging to calibration targets are minimized

(and are typically at the edge of the image). We employ

the remaining pixels to check the calibration error (Test

set). We perform a calibration for each single MLIC
image independently. After the estimation of the light

intensity parameters, for each Test pixel we compare

the original rendered value with that predicted by the

calibrated model. Then, we compute some error statis-

tics and error maps, in order to evaluate and rank the

algorithms’ outcomes.

We present four different synthetic tests. In the first,

the MLIC has been built with the classic structure of
a dome light constellation. We place 52 lights evenly

distributed across an hemisphere of 30cm radius. In the

second experiment, we investigate calibration perfor-

mances from a very near to a far illuminant condition;

while keeping a chosen direction constant, we vary the

distance between the light and the center of the tar-
get within a range from 20cm up to 2.7m. The third

test aims at showing the calibration performance as

a function of the main incident angle. We build a 16

image MLIC with a fixed light distance (about 330cm),

and we change the zenith angle from 5 to 80 degrees.

Finally, we take the first 52 light MLIC, and we test the

robustness of the calibration techniques by simulating

an error in the light position calibration. The distorted

light positions are obtained by randomly moving each

light from zero to one centimeter away from the correct

positions.

For each test, we produce five MLICs (each for a dif-

ferent type of light), and we launch the nine calibration

techniques on them. We then evaluate the quality of

the calibration by computing the average relative error

between the original image and the predicted one. The

relative error is expressed as:

er =
1

N

∑
Ω

|p− p̃|
p

(13)

where p and p̃ respectively are the ground truth and the

predicted pixel value, Ω is the domain of Test pixels,

and N is the number of pixels. For each test we then plot

the cumulative average relative error across all pixels,

all MLIC images, and all calibration techniques. The

average relative error is expressed as a percentage in

logarithmic scale, and we include some vertical lines to

depict the minimum and maximum errors. We see that,
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(a) Isotropic (b) Area (c) SpotBW00 (d) SpotBW10 (e) LambertLED

Fig. 2: MLIC Images. Some example of MLIC images created by a physically-based rendering engine (Mitsuba) under different
light types. The rendered object is a virtual planar target of known optical response.

(a) 52 Light Dome MLIC (b) Near to Far Light

(c) Front to Raking Illumination (d) 52 Light Dome MLIC - Noisy

Fig. 3: ResidualRSH and ResidualHBasis vs state-of-the-art techniques. We compare the cumulative average relative error
values of the ResidualRSH, the ResidualHBasis, and all the other techniques, computed across all the images within the MLICs
of all light types. Vertical lines depict the minimum and maximum relative errors. Each plots refers to a different experiment. (a)
a 52 light dome-like MLIC. (b) the error as a function of the distance between the light and the center of the target; we fix the
light direction and vary the distance from 20cm to 2.7m. (c) the error as a function of the zenith angle (from 5 to 80 degrees).
(d) the same 52 light dome-like MLIC as before, where we randomly apply a noise/bias ranging from zero to one centimeter to
all the light positions. ResidualRSH and ResidualHBasis exhibit the best performances across different capture scenarios.

among Residual -based algorithms, ResidualRSH and

ResidualHBasis are always better than the others. So,

to avoid too cluttered plots, from now on we compare

only these two best ones with the other state-of-the-art

methods.

Figure 3 shows the error statistics for the four experi-

ments. Of course, Collinear is definitely the worst in the

case of a near light scenario; in fact, we include it mostly

as a ”control” algorithm, a sort of upper bound for the

near light calibration error. Quadratic [13] is in general

the second worst method; this method can exhibit per-

image relative errors up to 70%, because it is not capable

of modeling the intensity mostly in raking light condi-

tions. Point is a very simple approach, and it proved to
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(a) (b)

Fig. 4: Spectralon and Color Checker MLIC. (a) one image
from the MLIC in the first experiment (Sec. 4.2.1). In the case
of a non-centered light axis (Sec. 4.2.2), we capture a MLIC by
deliberately orienting the light axis off the center of the scene.
On the right (b) we show how the object is still illuminated by
the LED light but the light cone is not centered. This creates
a less homogeneous light intensity across the image.

have a very stable behaviour; however, its error is bigger,

because it fails to model all the Spot or more complex

light types. Spot [27] can reach very low errors with all

the types of spot light. Unfortunately, while this error is

less than the previous ones, it remains high due to two

main reasons: it is not capable of dealing with lights

that slightly differ from the chosen analytical model;

even in the best case, its calibration is very unstable,

since the method proposed by Pintus et al.[27] has an
uncertainty in the initialization of the light axis, which

influences the resulting convergence of the optimization

routine, and affects the final local minimum of the light

parameters fitting. In the best cases, it produces very

low errors (comparable with those of ResidualRSH or

ResidualHBasis), but, as long as we move toward the
front light conditions its performance are comparable to

Point. The weaknesses of Point and (mostly) Spot are

evident in the noisy case, where those methods increase

by a relative error of about 0.5%. ResidualRSH and

ResidualHBasis prove to be more reliable and stable

across different light types and light positions, so that,

at the end, they keep a very low cumulative error.

4.2 Real-world scenes

We present five tests performed in a real-world setting.

In the first three experiments we capture an object of

known reflectance to quantitatively evaluate the cali-

bration approaches. In the last two tests, we measure

the calibration performances in terms of accuracy and

precision in estimating the surface normal and albedo.

4.2.1 Spectralon

The first real-world scene consists of a white target cali-

bration frame, a Spectralon [12], and a color checker. The

(a)

(b)

Fig. 5: Spectralon MLIC. Average relative error values com-
puted (a) for each image, and (b) across all MLIC images
and all light types. Vertical lines are minimum/maximum
errors. ResidualRSH and ResidualHBasis prove to be more
stable/reliable across different lighting conditions.

frame around the Spectralon is used for intensity calibra-

tion (Training pixels), while Test pixels are those on the

Spectralon. The target is made of common white paper,

with a response ρ of RGB = {0.783, 0.798, 0.835}; the

Spectralon has a reflectance response of about 0.99 in

all the visible spectrum. The MLIC has been acquired

by freely moving a LED light in the hemisphere above

this scene at a distance of half-meter. All images have

been captured with a 14bit precision. One image of the

scene is shown in Figure 4a.

We compute the average relative error for each image

and each calibration strategy (see Figure 5a). We report

also the cumulative relative error across all pixels and

all images (see Figure 5b). ResidualRSH and Residual-

HBasis exhibit the lowest average and maximum error.

It is about half of Quadratic. Although Spot resembles

the most the LED light used in the acquisition, Re-

sidualRSH and ResidualHBasis are more stable across

different light positions/directions. For the lights with a

zenith angle bigger than 60 degrees (#22 ∼ #27), Re-

sidualRSH and ResidualHBasis produce a quite smaller

error than Quadratic. For those angles they are com-

parable with Spot, which conversely tends to fail for

lights coming from above (#14, #9 or #15 ∼ #20).
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(a) Light #9 (b) Light #14 (c) Light #22

Fig. 6: Relative error maps. For three exemplifying light positions, we show the relative error maps by using the 9 calibration
strategies organized in a 3x3 grid (left to right and top to bottom): Collinear, Point, Spot (#1), Quadratic (#2), ResidualLinear,
ResidualQuadratic, ResidualCubic, ResidualRSH, ResidualHBasis (#3). The error histograms for methods (#1), (#2) and (#3)
prove how ResidualHBasis (ResidualRSH behaves similarly) is more stable/reliable across different lighting conditions.

This happens when convergence problems arise when a

less foreshortened relationship exists between the light

beam and the white target. In this case, the sampled

light intensity variation is not sufficiently heterogeneous

and complete for a robust Spot light fitting.

Figure 6 shows the spatially-varying relative error

maps across the Spectralon pixels for three MLIC lights.
We adjust the luminance levels for visual clarity sake.

The 3x3 grid on the left shows the relative error maps

for all the nine calibration approaches (left to right and

top to bottom): Collinear, Point, Spot (#1), Quadratic

(#2), ResidualLinear, ResidualQuadratic, ResidualCubic,

ResidualRSH, ResidualHBasis (#3). We analyze the his-

tograms of the (#1), (#2) and (#3) luminance relative

error. We omit ResidualRSH from the histograms for

clarity, since its performance is very similar to Residual-

HBasis. Figure 6a depicts how ResidualHBasis increases

the performance of both Spot and Quadratic. Figure 6b

and Figure 6c show how ResidualHBasis is more stable

than Quadratic or Spot, which sometimes are compara-

ble with ResidualHBasis, but they can be far worse than

it for some lights. This confirms the same trend in the

synthetic data and in the Figure 5a, where ResidualRSH

and ResidualHBasis prove to be more stable/reliable

across different pixels and different lighting conditions.

We include the color checker to ensure that the

intensity calibration methods ensure a correct white

balance. Spot, ResidualHBasis and ResidualRSH exhibit

similar (and good) white balance and color calibration

performance.

4.2.2 Non-centered light axes

In this experiment we select only a single azimuth angle

and a small set of zenith angles, and we test the perfor-

mances by varying the orientation of the light axis. In

particular, rather than pointing the light to the scene

center, we deliberately orient it in an extreme manner

(random for each light and far from the scene center),

with the only constraint of the scene being within the

(a)

(b)

Fig. 7: Non-centered light axis. Average relative error values
computed (a) for each image, and (b) across all MLIC images
and all light types. Vertical lines are minimum/maximum
errors. Quadratic and Spot exhibit an error up to 20%, and up
to five times bigger than the proposed approach. ResidualRSH
and ResidualHBasis prove to be more stable/reliable across
different lighting conditions.

light cone. Figure 4b shows this setting; in the upper

left part we can see the edge of the light cone, and the

scene is now illuminated in a less homogeneous manner.

In the case of the most raking lights (#1 ∼ #3,

#11 ∼ #13), Quadratic performs worse than Resid-

ualRSH and ResidualHBasis, and exhibits a maximum

error of about 20%. For high elevation angles Spot tends

to fail more; for light #7 it is five times ResidualRSH

or ResidualHBasis, and for light #10 the error is about

20%. Sometimes (#14), Spot is comparable with Re-

sidualRSH or ResidualHBasis even if it is a front light,
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(a)

(b)

Fig. 8: Torch lamp. Its light field cannot be easily modeled
by the point, spot, LED or other known types of lights. In
this scenario, our approach proves to better approximate this
more general light form factor.

because the high variability of light intensities in the

edge of the light beam (Figure 4b) helps the Spot fitting

algorithm in finding the right LED axis. Nonetheless, in
general, we can confirm that both ResidualRSH or Re-

sidualHBasis remain more stable/reliable while varying

light position and direction.

4.2.3 Real-world torch

Another advantage of the proposed light model is that

we can deal with an unknown, more general light form

factor. We present a MLIC obtained with a common

torch lamp, which consists of a LED light and a group

of lens in front of it. This cannot be easily modeled

by a point, spot, LED or other known types of lights.

By looking at the standard MLIC practices (e.g., CH

capture settings [8]), this is not an unusual, rare scenario.

Like the previous tests, we acquire a MLIC and we apply

all the calibration algorithms. Figure 8 shows both the

per image average relative error and the cumulative error

across all pixels and light positions. Since the considered

spatially varying light intensity cannot be modeled by

any of the physical models, it is evident how in this

experiment ResidualRSH and ResidualHBasis methods

exhibit better performances. While Spot, although not

Method
Albedo Normal Map

RMSE
PSNR

RMSE
PSNR

Luminance Degree
Collinear 0.174 21.23 16.177 17.05
Quadratic 0.058 30.82 7.981 23.16
Isotropic 0.108 25.39 3.580 30.11

Spot 0.031 36.10 2.341 33.79
Res/RSH 0.015 42.51 2.389 33.62

Res/HBasis 0.019 40.35 2.250 34.14

Table 1: Accuracy. Error between the ground truth albedo and
normal maps and those maps computed with the calibration
methods. We compute the error in terms of RSME of the
albedo luminance and the angle deviation in degrees, and in
terms of PSNR. Residual-based approaches exhibit the best
error statistics.

stable, in previous tests had performance similar to our

methods, here it is always worse than them. Moreover,

the minimum error of Spot is bigger than the average

of both ResidualRSH and ResidualHBasis (Figure 8b)

4.2.4 Accuracy (Fitting vs Flat-field)

To assess the accuracy of the several calibration ap-

proaches, we need to provide some sort of ground truth

data. We produced a calibrated MLIC by employing

a flat-field calibration. This approach consists in two

MLIC acquisitions with exactly the same lights (we use

a fixed light dome). In the first acquisition, a Spectralon

is used to measure the actual per-pixel light intensity.

Then, a second acquisition is performed by replacing

the Spectralon with the object we want to capture (see

Figure 9a). After that, we use this calibrated MLIC to

compute two surface properties, i.e., the albedo and the

normal map; we use these as two ground truth maps.

In the setup used to acquire these MLICs we also in-

clude a white frame. We use this frame for two reasons:

first, to apply all the calibration methods to the sec-

ond capture only (without the information from the

Spectralon); second, to compensate slight differences

of light brightness due to non-perfect repeatability of

light conditions in the two consecutive captures. For

each calibration method we compute the correspond-

ing albedo and normal map. Finally, we measure the

accuracy of each method by computing the error be-

tween their albedo/normal maps and the ground truth

albedo/normal map. Table 1 presents the error statistics.

For the albedo, we compute the RMSE of the difference

Luminance, and the PSNR. For the normal map, we

compute the RMSE of the angular deviation in degrees,

and the PSNR. Residual -based calibrations exhibit the

best error performance. In the albedo, the RMSE of Re-

sidualRSH is about 50% of Spot, and 25% of Quadratic.

For the normal map, Residual -based methods exhibit an

error that is one third of Quadratic, while comparable

with Spot.
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(a) (b) (c)

Fig. 9: Repeatability. We acquire five MLICs of the object in ( a). For each calibration method and for each MLIC we compute
( b) the normal map and ( c) the albedo map, and then we estimate the per pixel standard deviation. The higher is the standard
deviation, the less repeatable is the calibration method, the less precision it exhibits. The 9 calibration strategies are organized
in a 3x3 grid (from left to right and top to bottom): Collinear, Point, Spot, Quadratic, ResidualLinear, ResidualQuadratic,
ResidualCubic, ResidualRSH, ResidualHBasis. ResidualRSH exhibits the best performance in terms of precision.

Method
Albedo Normal Map

Standard Standard
Deviation (σ) Deviation (σ)

Collinear 0.0124 0.0642
Quadratic 0.0103 0.0164
Isotropic 0.0069 0.0111

Spot 0.0071 0.0110
Res/RSH 0.0062 0.0109

Res/HBasis 0.0077 0.0117

Table 2: Precision. Average Standard deviation computed
from five MLIC captures of the same scene. Low values of
Standard deviation mean high precision.

4.2.5 Precision (Repeatability)

In the previous test we have analyzed the performance

of different calibration approaches in terms of accuracy.

Now we would like to test the precision (or measure re-

peatability). We take again the object in Figure 9a and

we acquire five different MLICs. For each calibration

strategy, we first calibrate the light (direction and in-

tensity), and then we process the five MLIC to compute

five surface normal and albedo maps. Now we evaluate

the level of repeatability by computing the standard

deviation of the five normal maps (or albedos). The pre-

cision of each calibration is proportional to the inverse

of that standard deviation. Figure 9b and Figure 9c

respectively show the nine standard deviations of the

normal and the albedo map; for the sake of clarity, we

apply a tone mapping to make the image contrast higher.

The 3x3 grid depicts the methods with the same order

presented in Figure 6. Collinear method has not only the

lowest accuracy but also the lowest precision. Similarly,

Quadratic has a high standard deviation (i.e., low preci-

sion). While Point exhibits a high absolute error (low

accuracy) in the previous tests, its precision is among

the lowest, comparable with ResidualLinear, Residual-

RSH, and Spot. Spot light proved to be not so reliable

in the absolute intensity measure (low accuracy), while

here its precision is the better than ResidualHBasis, and

comparable to ResidualRSH. Together with the previous

experiments, we can say that ResidualRSH and Resid-

ualHBasis prove to be the most stable/reliable in terms

of accuracy, while ResidualRSH also exhibits the best

performance in terms of precision.

5 Conclusions

We have presented a novel practical and efficient method

for light intensity calibration. The proposed illumina-

tion model is very simple, and results in a mathematical

formulation that relies on computationally efficient lin-

ear solvers. The combination of a fixed physically-based

term and an interpolation function that minimizes the

residual error makes it possible not to impose a fixed

light type; this makes our method very versatile, and

extremely adaptable to different setup scenarios. The

analysis of the performance of our method compared

to the most used light intensity calibration strategies

highlights how the proposed solution advances the state-

of-the-art in terms of accuracy and precision of both

light intensity fitting, benefiting further vision process-

ing (e.g., estimation of normal and albedo maps). The

presented evaluation provides the reader a broad view of

the topic, which is of practical use for both researchers

and practitioners. Our method can be easily and effi-

ciently integrated into heterogeneous, existing pipelines,

and even into web-services that take a raw MLIC and

automatically return a particular defined outcome for

visualization and relighting. Its integration in standard

pipelines does not require substantial changes, and can

be employed with a negligible training effort. The pre-

sented method has been applied to the classic MLIC
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setup. Since the light direction and intensity calibrations

are computed for each image independently, our method

can be employed in other, different setup conditions, e.g.,

multi-view MLIC. In the future we will investigate how

to adapt and exploit the proposed calibration solution

to those more complex capture scenarios.
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