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Figure 1: Visual analytics environment for COVID-19 modeling, visualization, and decision support. The map view shows the
status of the spread on day 41 of simulation in the Oklahoma State. Detailed statistics (number of sick cases, people that need
hospitalization, and deaths) for the selected counties (Oklahoma City and Tulsa) are shown on the right. Decision measures ’media
alerts’ and ’school closures’ are applied on day 1 and day 10, respectively. Interface to configure model parameters is also shown.

ABSTRACT

Public health officials dealing with pandemics like COVID-19 have
to evaluate and prepare response plans. This planning phase requires
not only looking into the spatiotemporal dynamics and impact of the
pandemic using simulation models, but they also need to plan and
ensure the availability of resources under different spread scenarios.
To this end, we have developed a visual analytics environment that
enables public health officials to model, simulate, and explore the
spread of COVID-19 by supplying county-level information such
as population, demographics, and hospital beds. This environment

*e-mail: shehzad.afzal@kaust.edu.sa
†e-mail: sohaib.ghani@kaust.edu.sa
‡e-mail: hjsmith@ou.edu
§e-mail: ebertd@purdue.edu
¶e-mail: markus.hadwiger@kaust.edu.sa
||e-mail: ibrahim.hoteit@kaust.edu.sa

facilitates users to explore spatiotemporal model simulation data
relevant to COVID-19 through a geospatial map with linked statis-
tical views, apply different decision measures at different points in
time, and understand their potential impact. Users can drill-down
to county-level details such as the number of sicknesses, deaths,
needs for hospitalization, and variations in these statistics over time.
We demonstrate the usefulness of this environment through a use
case study and also provide feedback from domain experts. We also
provide details about future extensions and potential applications of
this work.

Index Terms: Human-centered computing—Visualization—
Visualization application domains—Visual analytics

1 INTRODUCTION

Public health officials often need to analyze simulations of epidemic
models to improve preparedness, planning responses, and mitigate
the impact of pandemics like COVID-19. During the planning and
preparatory stages, they need to explore different scenarios and de-
cision measures, and study the impact of these decision measures
on controlling the pandemic’s spread. They also have to analyze
the availability of different resources during the various phases of



an epidemic outbreak keeping in view the outputs from simulation
models and their current stocks, and make plans accordingly. In
their analysis tasks, they often need to explore simulation outputs in
a spatiotemporal environment where they can analyze the spread pat-
terns and the evolution of spread across space and time, interactively
explore and filter, apply decision measures and analyze their impact
at different points in space and time, modify model parameters, and
explore different scenarios.

The goal of this work is to provide a visual analytics environment
to facilitate COVID-19 modeling, exploration, and visualization.
The analysts and public health officials can provide county-level
information such as population statistics, demographics, medical re-
sources, and analyze the model simulation results in multiple linked
views of our visual analytics environment. The environment enables
spatiotemporal exploration of model simulation outputs, and sup-
ports users to apply decision measures at different points in time to
create and study different spread scenarios and evaluate the response
effectiveness in containing the spread. This work is an extension of
our previous epidemic modeling work related to Pandemic Influenza
and Rift Valley Fever [4, 19]. The main contributions of our work
are as follows. 1) COVID-19 modeling and simulation, extending
our work on Pandemic Influenza [4, 19], 2) A visual analytics en-
vironment where users can explore COVID-19 spread scenarios,
apply different decision measures to create scenarios, adjust model
parameters, and prepare plans to ensure availability of resources.
This work is completed in collaboration with domain experts and
scientists working in public health, epidemic modeling, emergency
response, and decision support to facilitate COVID-19 response.

2 RELATED WORK

Several visual analytics and visualization based works have been
presented in the last few years for analyzing epidemic or pandemic
data [10, 15]. Preim and Lawonn [23] recently published a detailed
survey of visual analytics tools designed for the management of
infectious diseases, chronic diseases, and other healthcare issues.

One major area for the management of infectious disease is to
design an interactive spread model with various parameters. Liang
et al. [18] designed a visualization based malaria spread model to
understand the spread of malaria under different climate conditions.
Maciejewski et al. [19] also designed a tool kit for understanding
the spread of influenza. Recently, various tools and models have
been implemented to model the spread of COVID-19 under various
conditions [11, 12, 14, 20, 26, 28, 30]. Predictive analytics is often
used to understand and forecast epidemic spread [5, 7, 9, 16, 21].
Researchers have also utilized social media data to understand and
predict the spread of epidemics [6, 24, 27]. Mobility data have also
been used to study the outbreak of epidemics in certain areas [8, 32].

Visual analytics based decision support tools are generally de-
signed to allow decision-makers to interactively change various
conditions and parameters and visualize outputs for making well-
informed decisions during epidemics or pandemics. Pandem-
Cap [29] is a decision support tool designed to help public health
decision-makers in studying the impact of various control measures
such as hospital beds required. Afzal et al. [4] introduced a deci-
sion history visualization and navigation tool that enables analysis,
management, and comparison between different epidemic spread
scenarios and decision measures. Recently, various decision support
tools have been designed for better management and mitigating the
outcomes of the COVID-19 [13, 22, 25, 31]. These tools are de-
signed for analyzing specific parameters and geolocations and lack
detailed visual analytics support for decision making. In this work,
we present an interactive visual analytics-based decision support
environment designed in collaboration with domain experts to help
make better decisions to manage COVID-19 situation.

3 VISUAL ANALYTICS ENVIRONMENT

Our visual analytics environment consists of multiple linked views
comprising the geospatial map view, time series visualizations, deci-
sion measures and filtering options, and time scroller to enable users
to display simulation data at different points in time. The visual
analytics environment is shown in Fig. 1. Users can interactively
explore the simulation data produced by the COVID-19 model in the
map view. Users can scroll through time and analyze the COVID-19
spread through the color-coded geographical representation of the
simulation model output. Users can select different counties on the
map, and corresponding time series are loaded in the linked time
series visualizations showing the number of sick cases, deaths, and
the number of people that may need hospitalization (Fig.1(right)).
This enables users to compare the statistics across multiple regions
on the map.

Users can apply any decision measure (shelter in place, school
closures, media campaigns) at any point in time by scrolling to
that day value and then enabling the decision measure. The model
then regenerates the simulation outputs incorporating that decision
measure. Parameters relevant to decision measures can be modified,
such as the number of days required to reach the full impact of the
decision measure, and decrease in the baseline prevalence due to
these decision measures. Users can also make adjustments in the
parameter settings of the model, location of the initial cases, en-
abling/disabling air transportation, spread rate, impact on different
demographics, and other similar settings through the interface op-
tions shown in Fig. 1. The input to this visual analytics environment
consists of county-level data that includes population, demographics,
airport locations, and the number of hospital beds.

4 COVID-19 MODELING

We extended our prior work on Pandemic Influenza modeling [4,19]
to model COVID-19. Similar to our Pandemic Influenza model, it is
a person-to-person contact model that is derived from compartment
models traditionally used for modeling infectious diseases. In SIR
compartment models [17], the entire population is divided into three
compartments: Susceptible (S), Infectious (I), and Recovered (R)
and the population transitions between these three compartments
based on equations for disease dynamics. The COVID-19 model
generates new sicknesses, deaths, and hospitalizations on a daily
basis for each county. Although the environment itself is flexible to
support any granularity level for spatial regions, but in this particular
implementation county is used as the smallest spatial unit. The
baseline prevalence curve that defines a probability of each person
getting infected with COVID-19 is approximated based on basic
reproduction number (Ro). This curve is then used to derive the
model and generate daily infections for each county.

There are other parameters defined for the COVID-19 model.
These parameters include mortality rate, time to death, recovery
rate and time, hospitalization rate, number of days in the hospital,
number of used beds, the incubation period (time from exposure
to an infected person to show symptoms), and shedding period
(time period during which an infected person remains contagious).
There is a spread rate parameter that controls the spatial dynamics
of COVID-19, controlling the speed at which it travels between
different counties. Air travel can also be enabled or disabled during
model simulation. We defined these parameters based on various
studies and reported information [2, 3]. Users can create different
scenarios by modifying different parameters of the model.

Since the impact of COVID-19 could be different depending on
the age groups, the input population is divided into different age
groups, and different baseline prevalence curve is defined for each
group. Person-to-person contact rate and spread rate can also vary
based on population density. In order to capture the variations in
the disease spread dynamics due to population density, each county
is classified into rural, small, or urban categories and a different



Figure 2: COVID-19 spread scenarios in Oklahoma State on day 41. (Left) Decision measure ‘shelter in place’ is applied on day 15, ‘media alerts’
on day 1, and ‘school closures’ on day 10. (Right) ‘Shelter in place’ is applied on day 10, ‘media alerts’ on day 1, and ‘school closures’ on day 5.

disease spread rate modifier is then used for each population density
class. Most of these model parameters can be modified through
an interface shown in Fig. 1. Other parameters can be modified
through input configuration files. Due to differences in population
density among counties (corresponding spread rate modifier) and
demographic variations (corresponding baseline prevalence curve),
COVID-19 can peak differently in different counties even if the
initial cases are defined at the same time. The number of available
beds in hospitals also has an impact on the number of deaths, and
this data defined at the county level is also passed as input to the
model. By default, the hospitals are considered to be 70 percent
occupied [19], but can be modified by the user according to the
hospital beds utilization status in counties.

There are different decision measures that can be incorporated
into the model calculations. Whenever a decision measure is applied
at different temporal points in the model simulation, the baseline
prevalence is reduced by a certain value that is predefined for each
decision measure and can be adjusted by the user. The start time
of the application of the decision measure, along with the number
of days until the decision measure reaches the full impact, is also
incorporated in the model calculations. The decision measures
currently implemented in the system include school closures, media
alerts, and shelter in place orders. Users can also create and explore
different scenarios by using different combinations of these decision
measures that can be applied at different points in time.

5 USE CASE SCENARIOS

We discuss some use case scenarios to showcase how this visual
analytics environment can be utilized by public health officials to
prepare and plan their responses to COVID-19. Fig. 1 shows the
COVID-19 pandemic spread in the Oklahoma State based on the
simulation by the COVID-19 model originating from Oklahoma
City. This image shows the total number of infections on day 41
of the simulation in the combined age groups of 18-64, and 65
and over. In this particular scenario, the analyst is interested in
analyzing the total number of cases and how they change over time
in Oklahoma City and Tulsa. There are three decision measures
available for selection: media alerts, school closures, and shelter in
place. During the simulation, the analyst has enabled the decision
measure media alerts on day 1, and school closures on day 10 and
kept shelter in place disabled. The map view shows the population
percentage infected from COVID-19 and linked time series shows
the number of sick, hospitalized, and death cases in the two selected
cities. Air travel is also enabled in the spread simulation; that is why

the infections appear very quickly in Tulsa that is directly connected
to Oklahoma City through flights.

The analyst also wants to know the estimated duration and when
the cases will peak, based on the given model parameters and set-
tings, and selected decision measures. In this particular scenario,
cases peak around day 30, and the duration of the spread is close
to 75 days. The analyst then explores alternative scenarios such
as the impact of enabling shelter in place decision measure on day
15. Fig. 2(left) shows that the number of sick cases are dropped by
almost 25 thousand in Oklahoma City on day 41 when the cases hit
the peak. Similarly, the analyst creates another scenario by selecting
the same age group (18-64, and 65 and over) but excluding airports
in the model simulation. Decision measures are also applied earlier
in time like the previous case. Media alerts on day 1, school closures
on day 5, and shelter in place on day 10. Fig. 2(right) shows the
results of this simulation, and the number of infections near the peak
are reduced by almost 50 thousand in Oklahoma City.

In the next scenario, the analyst is interested in the utilization of
available beds during the course of the pandemic. Analyst selects the
’beds filled’ category to be displayed on the map. All age groups are
included while conducting this analysis. Decision measures media
alerts and school closures are applied at day 1 and 5, respectively,
while decision measure shelter in place is not applied. The analyst
is particularly interested in examining the county resources (number
of hospital beds) of Oklahoma City and Tulsa. Fig. 3 shows the
status of the entire Oklahoma State on day 5 and day 9. Hospital
capacity is set at 70% by default when the simulation is run. This is
also configurable as the user can change the capacity to any other
percentage value and then run the simulation. It can be seen in
Fig. 3 that on day 5 Oklahoma City and many other counties reach
their full capacity while Tulsa reaches around 80% of its total bed
capacity. On day 9, Tulsa also needs additional beds, as almost 96%
of these resources are utilized. This analysis helps the identification
of stress on county medical resources and provides some insights
about additional hospital beds needed to deal with this pandemic
scenario.

6 DISCUSSION AND PLANNED EXTENSIONS

This work was initiated as an effort to help public health officials
prepare and evaluate plans to deal with the COVID-19 pandemic.
Public health officials often need to evaluate the effectiveness of
different mitigative strategies before making policy decisions. One
of the main limitations is the lack of interactive visual interfaces and
visualization capabilities with existing models that can help them



Figure 3: The simulation of the number of beds filled on day 5 (left) and day 9 (right) due to COVID-19. Decision measure ‘media alerts’ is applied
on day 1, whereas ’school closures’ is applied on day 5. Oklahoma City and Tulsa are selected on both maps. (Left) On day 5, Tulsa is at almost
80 percent capacity, whereas Oklahoma City is at almost 93 percent capacity. (Right) On day 9, both counties have reached full bed capacity.

explore different strategies and evaluate the responses.
We looked into public health officials’ requirements who had

similar constraints while dealing with the COVID-19 pandemic
outbreak. One of their initial requirements was to get estimates
about the number of sicknesses, number of hospitalizations, and
duration of the pandemic. They also required a mechanism where
they can interactively modify model parameters and settings to create
and study different scenarios. In order to address these requirements,
we extended our earlier work on pandemic influenza modeling [4,
19] to implement a visual analytics environment for modeling and
visualization of COVID-19. Another requirement was to provide an
additional decision measure ‘shelter in place’ where they can explore
different scenarios by applying this measure at different points in
time and evaluate the dynamics of the spread and their responses.

They were also interested in functionality to evaluate the avail-
ability of hospital beds throughout the pandemic wave. They were
looking to input the total number of hospital beds at the county
level and their availability status, and then use COVID-19 model
simulations to estimate hospital beds’ requirements in different out-
break scenarios. We are currently working on extensions to this
functionality to support analyzing the availability of additional med-
ical facilities supplies such as ICU’s and ventilators at the county
level. In these extensions, analysts would be able to enter the cur-
rent number of these supplies at the county level and then analyze
the utilization status at different times in simulation based on the
baseline prevalence curve derived from the model.

Another desired feature was the capability to adjust the baseline
prevalence curve that is used to derive the model and calculate the
daily infections, which has a direct relation with the basic reproduc-
tion number (Ro). Once the user applies any decision measure, it
adjusts the baselines’ prevalence curve. This option is also config-
urable, enabling users to adjust each decision measure’s impact in
controlling the COVID-19 spread as shown in Fig. 1. This function-
ality also enables introducing additional decision measures, where
adjustments in the baseline curve based on that decision measure
can be driven by actual data or estimates.

The spatial dynamics of the disease are also controlled through
a spread rate parameter that is configurable in the visual analytics
environment. One of the planned extensions is to incorporate ad-
ditional datasets like connectivity information (road networks and
google maps traffic datasets) to dynamically adjust this attack rate
parameter. We also plan to utilize Cuebiq mobility insights [1], such
as Mobility Flows Analysis (quantifiable information about how
the populations cross the county boundaries over time) and Cuebiq
Mobility Index (CMI) (mobility trends patterns over time). These
datasets can be utilized for data-driven adjustment in the baseline
prevalence curve whenever a decision measure like ‘shelter in place’
is applied. Similarly, spread rate parameters can also be adjusted

based on these datasets. These datasets are also useful to introduce
additional decision measures in the model like social distancing, and
its effectiveness can be derived from these datasets.

If an analyst wants to explore and compare multiple scenarios and
combinations of decision measures at different points in time, there
is a need to provide an interactive decision history tree [4] like data
structure that facilitates management and comparison of different
decision paths. We plan to extend our previous work [4] to adapt
decision history visualization and navigation tool for COVID-19
modeling and visualization. We also plan to provide interactive
selection and quarantine of spatial regions on the map and study the
quarantine impact. We are also looking into datasets such as Cuebiq
contact, visit, and mobility indexes [1] to incorporate additional
decision measures, e.g., ‘economic reopening.’ To facilitate the task
requirements to compare the impact of different decision measures
applied on certain combination of spatial regions at different points
in time, we will extend the decision history visualization and naviga-
tion tool [4] with a support for thumbnails-based visual comparison
linked with nodes that represent decision measures.

This particular work is focused on analyzing the COVID-19 out-
break in Oklahoma State because public health officials were in-
terested in using visual analytics-based COVID-19 tools that can
facilitate understanding the spread dynamics, prepare plans, and
explore different scenarios. The feedback was generally positive,
and they found it useful in their analysis. They requested additional
features, such as the ability to analyze the utilization of medical
resources based on simulations in different spread scenarios. They
were also interested in additional data import features and the ability
to generate a combined summary for the entire state. We also plan to
explore how model uncertainties can be captured and communicated
to the decision makers through this visual analytics environment.
The environment itself is scalable and can be applied to a much
larger scale [19] provided that the required data is available.

7 CONCLUSION

This work presented a visual analytics-based environment for
COVID-19 modeling, visualization, and decision support to help
public health officials prepare and exercise response plans in pan-
demic outbreak scenarios. Utilizing this visual analytics environ-
ment, public health officials can explore COVID-19 county-level
simulation data generated by our model, apply different decision
measures to reduce the pandemic’s impact, and modify model param-
eters and settings to create and analyze different spread scenarios.
They can also use this environment to analyze the availability of
resources like hospital beds during different phases of COVID-19
spread at the county level. We provided several use-case scenarios
to demonstrate the effectiveness of the system.
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