
SparseLeap: Efficient Empty Space Skipping
for Large-Scale Volume Rendering

Markus Hadwiger, Ali K. Al-Awami, Johanna Beyer, Marco Agus, and Hanspeter Pfister

(a) (b) (c) (d)

Fig. 1. Comparison of empty space skipping methods. Bold rays denote where the volume is sampled; dots depict look-ups for
empty space skipping. (a) No empty space skipping: everything is sampled; (b) Standard rasterization of non-empty bounding geome-
try allows skipping empty space before the first and behind the last non-empty sample, but samples everything in-between. (c) Octree
empty space skipping incurs many tree traversal steps in the fragmented space around fine-grained structures. (d) SparseLeap skips
long segments of empty space even around intricate structures, rasterizing geometry into per-pixel linked lists of ray segments.

Abstract—Recent advances in data acquisition produce volume data of very high resolution and large size, such as terabyte-sized
microscopy volumes. These data often contain many fine and intricate structures, which pose huge challenges for volume rendering,
and make it particularly important to efficiently skip empty space. This paper addresses two major challenges: (1) The complexity of
large volumes containing fine structures often leads to highly fragmented space subdivisions that make empty regions hard to skip
efficiently. (2) The classification of space into empty and non-empty regions changes frequently, because the user or the evaluation
of an interactive query activate a different set of objects, which makes it unfeasible to pre-compute a well-adapted space subdivision.
We describe the novel SparseLeap method for efficient empty space skipping in very large volumes, even around fine structures. The
main performance characteristic of SparseLeap is that it moves the major cost of empty space skipping out of the ray-casting stage.
We achieve this via a hybrid strategy that balances the computational load between determining empty ray segments in a rasterization
(object-order) stage, and sampling non-empty volume data in the ray-casting (image-order) stage. Before ray-casting, we exploit the
fast hardware rasterization of GPUs to create a ray segment list for each pixel, which identifies non-empty regions along the ray.
The ray-casting stage then leaps over empty space without hierarchy traversal. Ray segment lists are created by rasterizing a set of
fine-grained, view-independent bounding boxes. Frame coherence is exploited by re-using the same bounding boxes unless the set
of active objects changes. We show that SparseLeap scales better to large, sparse data than standard octree empty space skipping.

Index Terms—Empty Space Skipping, Volume Rendering, Segmented Volume Data, Hybrid Image/Object-Order Approaches

1 INTRODUCTION

In volume rendering, a significant part of the computational effort goes
into computing a large number of samples from the underlying scalar
field. Therefore, one of the most important basic performance opti-
mizations is trying to avoid sampling empty space, i.e., regions where
the samples do not contribute to the volume rendering integral. This
process is usually called empty space skipping or space leaping [6].

In recent years, advances in data acquisition techniques have
tremendously increased the resolution, size, and complexity of the vol-
ume data that need to be visualized. One example are high-resolution
microscopy volumes, where the individual voxels can be on the order
of micrometers down to a few nanometers in resolution. In neuro-
science, for example, the corresponding volume data sets can be mul-
tiple to hundreds of terabytes in size [14]. Often, such volumes con-
tain finely detailed structures, such as axons and dendrites of brain tis-
sue [2] or thin blood vessels [31]. However, large volumes containing
intricate structures pose a huge challenge to empty space skipping.

• Markus Hadwiger, Ali K. Al-Awami, and Marco Agus are with King
Abdullah University of Science and Technology (KAUST), Thuwal,
23955-6900, Saudi Arabia. E-mail: {markus.hadwiger, ali.awami,
marco.agus}@kaust.edu.sa.

• Johanna Beyer and Hanspeter Pfister are with the John A. Paulson School
of Engineering and Applied Sciences at Harvard University, Cambridge,
MA, USA. E-mail: {jbeyer, pfister}@seas.harvard.edu.

Manuscript received 31 Mar. 2017; accepted xx xxx. 201x. Date of
Publication xx xxx. 201x; date of current version xx xxx. 201x. For
information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org. Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

Standard empty space skipping techniques, such as those based
on octrees, perform well for relatively large connected areas classi-
fied as either fully empty or fully non-empty. However, fine-grained,
non-homogeneous regions can lead to severe performance problems
when fine structures cause the surrounding space to be subdivided very
finely, as depicted in Fig. 1(c). We refer to this as the fragmentation
of space incurred by a space subdivision such as an octree, which can
ultimately lead to very high costs for skipping empty space.

SparseLeap. We propose the novel SparseLeap method for efficient
empty space skipping in GPU volume rendering. SparseLeap is a hy-
brid object-order (rasterization) / image-order (ray-casting) approach
that retains high performance even for large volumes containing fine,
intricate structures, because it avoids unnecessary fragmentation of
space. Balancing the overall load between object-order and image-
order stages allows us to combine the advantages of both worlds.

Our method comprises several key components: First, we intro-
duce an occupancy histogram tree that hierarchically tracks three oc-
cupancy classes for volume regions: empty, non-empty, and unknown
(Sec. 5). Second, we describe a traversal algorithm for the occu-
pancy histogram tree that extracts view-independent occupancy geom-
etry of nested bounding boxes only where the occupancy class changes
(Sec. 6). This significantly reduces the fragmentation of space. Third,
we introduce ray segment lists, which are per-pixel linked lists of con-
secutive segments of differing occupancy class. These lists are gener-
ated by rasterizing the occupancy geometry, while merging successive
segments of the same class, such as several consecutive empty seg-
ments, into a single segment (Sec. 7). Finally, empty space skipping
during ray-casting is now a simple linear list traversal that skips “as-
long-as-possible” empty ray segments without hierarchy traversal.

Fig. 2. Empty space skipping for large, finely detailed volume data. Large volumes are often sparse and contain thin structures with many
individual objects. This leads to highly fragmented empty regions, which makes empty space skipping via tree traversal inefficient because of many
small incremental skips. Our SparseLeap method enables efficient fine-grained empty space skipping for such sparse volumes with fragmented
empty regions using a hybrid object/image-order approach. (a) and (b): more than 4,000 segments in the SEM Mouse Cortex volume; (c) and (d):
a subset of less than 100 segments; (a) and (c) show the volume rendering; (b) and (d) also show our occupancy geometry (green and red boxes).

Contributions. In this paper we make several key contributions:
(1) A novel method for efficient empty space skipping in large, com-
plex data sets that significantly reduces the fragmentation of space
that usually occurs when skipping fine-grained structures in a volume.
(2) The design and implementation of efficient algorithms and data
structures that combine the advantages of object- and image-order ap-
proaches that allow empty space skipping during ray-casting without
hierarchy traversal. (3) A performance evaluation of SparseLeap, and
a comparison to standard octree-based empty space skipping on sev-
eral large volume data sets with different levels of sparsity.

2 BACKGROUND ON EMPTY SPACE SKIPPING

The goal of empty space skipping is to exclude regions in the volume
from sampling that are classified as empty, i.e., regions that are not
contributing to the output image. How this can be done depends on
the (often hierarchical) volume subdivision employed, as well as on
the actual volume rendering method, such as ray-casting or texture
slicing, using either a single-pass or a multi-pass rendering approach.

Image-order empty space skipping. State-of-the-art image order
volume rendering methods, such as GPU octree ray-casting [3], fol-
low each ray from tree node to tree node. Nodes that are marked as
empty can simply be skipped. These decisions are often computed for
each ray independently, without exploiting coherence between rays or
between successive rendering frames, which is typical for GPU ray-
casters [5, 11]. Even more importantly, for volumes with thin struc-
tures (e.g., the neurites in Fig. 2), octrees subdivide space very finely,
and many spatially adjacent nodes will have the same type (empty or
non-empty). The corresponding high level of tree refinement forces
ray traversal to proceed in unnecessarily small spatial increments. See
Fig. 1(c). This large overhead makes empty space skipping ineffi-
cient, and significantly reduces the potential performance improve-
ment. Spatial subdivisions that are able to adapt better to thin struc-
tures, such as kd-trees, can alleviate these problems, but are rarely
used in practice [3], because their subdivision is extremely dependent
on the spatial locations of non-empty voxels. If the transfer function
or the active set of segmented objects changes frequently, adapting a
kd-tree to the new spatial characteristics is not feasible in real time.

Object-order empty space skipping. An alternative to putting al-
most all of the computational load on the ray traversal stage (e.g., the
GPU fragment shader) is to move some of this load into a preceding
object order stage. In volume rendering, two approaches are com-
mon [3]: (1) Multi-pass out-of-core volume rendering often subdivides
the volume into relatively large bricks, and each brick is rendered sep-
arately [7]. Empty bricks are simply excluded from rendering. This
approach is usually restricted to a very coarse granularity, i.e., large
bricks, due to the large overhead of multiple rendering passes. (2) Ras-
terization of approximate bounding geometry allows the ray-casting
stage to exclude some empty space [1, 15, 48]. See Fig. 1(b). These
approaches can usually only skip “exterior” empty space, or also have
to resort to multi-pass rendering and large brick sizes. It is possible to
extend these approaches for skipping interior space [40], but this re-
mains unfeasible for hierarchical subdivisions of very large volumes.

The goal of our SparseLeap method is to combine the best of these
two worlds in a novel hybrid approach that leverages both object-order
and image-order components, using fast GPU rasterization.

3 RELATED WORK

The overall volume rendering process and empty space skipping tech-
niques are intimately tied together in most cases. Therefore, we briefly
review papers on volume rendering in a comprehensive sense, before
focusing more specifically on empty space skipping approaches.

Volume rendering. Recent scalable volume rendering approaches
for large data sets typically use GPU ray-casting [5, 11, 14, 15, 23].
In these approaches, large volume data are often represented by an
octree, which is then traversed on the GPU using either explicit links
between nodes [11], or with octree traversal methods adapted from kd-
tree traversal in ray tracing [5, 8]. An important recent development
is ray-guided volume rendering, which scales with the output image
instead of with the input data set size [5, 8, 14]. In our work, we
employ a similar ray-guided volume rendering approach. A survey of
large-scale volume rendering techniques is given by Beyer et al. [3].

Volume representations. Skipping empty space is often tied to the
specific volume representation used. The simplest representation is a
regular grid of volume bricks [3]. Kd-trees can adaptively subdivide
the volume according to various criteria [41, 43]. Kd-trees are also
common for rendering on clusters [7]. However, more often large vol-
umes are represented using octrees [4, 5, 10, 11, 13, 28, 38, 42, 47].
Octrees are less adaptive than kd-trees, but are easier to update after
changes to the transfer function or after en-/disabling segmented ob-
jects. Page table hierarchies are an alternative that has been shown
to scale well to very large data [14]. A recent representation for ray-
casting voxelized geometry are sparse voxel octrees [25, 26]. Another
alternative are adaptive mesh refinement (AMR) hierarchies [18, 19,
46]. Hybrids between grids and trees have also been used [24, 39].
Bounding volume hierarchies (BVHs) are standard in ray tracing, and
can be applied to volumes [22], but are not commonly used for regular
volume data. Specific representations for sparse volumes can improve
storage, performance, or both [24, 35]. The data structure used for
empty space skipping is usually intricately linked with the underly-
ing volume representation and rendering method, e.g., standard octree
empty space skipping stores non-empty volume data in the same oc-
tree, which is traversed for rendering and empty space skipping at the
same time. In contrast, the SparseLeap data structures for empty space
skipping are decoupled from the underlying volume representation.

Empty space skipping. Traditionally, object-order vs. image-
order volume rendering refers to slicing vs. ray-casting ap-
proaches [6]. In the context of empty space skipping, object-order
mainly refers to the involvement of the rasterization of some kind of
bounding geometry that approximates the non-empty parts of the vol-
ume [1, 40, 48], such as bounding boxes [15] or proxy spheres [30]. If
octree or kd-tree nodes are rendered in separate passes, empty space
can simply be skipped by excluding the passes of empty nodes [7, 29].
Exploiting ray coherence can improve performance [27], for example
by re-projecting the previous frame [21, 44] or occlusion frusta [34].

Ray-casting (GPU)

Output:class
change:

no class
change:

emit
bounding
box

Traversal Rules

Occupancy Geometry Generation (CPU)
Occupancy Geometry

Output:

L0

L1

L2 smaller boxes
override
larger boxes

?
?

?

?
?

?

?
?

?
???

??

L0 (root)

L1

L2

empty
non-empty unknown

Occupancy Histogram Tree (CPU)

?

???

b d

non-empty space rendered volume

update
transfer
function

Rasterization (GPU)

Ray Segment List

screen pixels per-pixel linked list

Output:Ray Segment Generation (GPU)

non-empty emptyunknown

?
?

?

c
?

?

?

a

zoom/
rotation

Fig. 3. SparseLeap algorithm overview. (a) The occupancy histogram tree stores hierarchical volume occupancy information, using the classes
empty, non-empty, and unknown. (b) Traversal of the occupancy histogram tree creates occupancy geometry whenever nested regions differ in
occupancy class. The occupancy geometry can be re-used for multiple frames. (c) The occupancy geometry is rasterized into ray segment lists,
merging successive segments of the same class. (d) Ray-casting leaps over empty space via linear traversal of the ray segment list of each ray.

In the same context, image-order mainly refers to GPU ray-casting
methods that perform empty space skipping per pixel during the vol-
ume sampling step. Typical examples are GPU octree-based ray-
casting methods [5, 11] that traverse the octree during ray-casting and
skip nodes that are marked as empty. Some work has specifically tar-
geted fibrous structures [33, 36]. It has been shown that AMR hierar-
chies work better for skipping empty space around thin structures than
octrees [18, 19]. However, well-adapted space subdivisions are unfea-
sible to update interactively in response to transfer function changes
or en-/disabling of segmented objects. Strategies for skipping empty
space have also been implemented in hardware architectures [32].

SparseLeap is a hybrid method with object- and image-order stages.
Hybrid strategies have been employed successfully before, for exam-
ple in the polygon assisted ray casting (PARC) by Avila et al. [1], and
by Westermann and Sevenich [48]. Early approaches often employed
graphics hardware rasterization, while performing ray-casting on the
CPU. Sobierajski and Avila [40] were able to skip interior empty space
instead of only exterior space, by rasterizing a grid of bounding boxes
into multiple depth layers, which, although stored very differently, has
similarities with our ray segment lists. Bounding geometry can also be
represented efficiently, for example using run-length encoding [45].

Geometry and per-pixel linked lists. We take inspiration from
occlusion/visibility culling, which is a standard problem in computer
graphics that aims at avoiding rendering geometry that is invisible or
occluded. Seminal papers are the hierarchical z-buffer [12], and hi-
erarchical occlusion maps [50]. Recent output-sensitive volume ren-
dering architectures [3] refer to this property as ray-guided [5] or
visualization-driven [14], ray-casting only non-occluded volume re-
gions. SparseLeap employs this strategy to only rasterize geometry
where the volume is known to be potentially visible and non-empty.

To create our ray segment lists, we take inspiration from re-
cent order-independent transparency (OIT) methods that use per-pixel
linked lists [49]. However, our lists do not need to be sorted after ras-
terization, which avoids a big performance bottleneck. An alternative
is performing rasterization intertwined with volume rendering by do-
ing both in CUDA kernels [20]. The latter approach is very flexible,
but we target exploiting the faster hardware rasterization of GPUs.

4 ALGORITHM OVERVIEW

Fig. 3 depicts the SparseLeap algorithm and its main data structures.
We use an occupancy histogram tree to track volume occupancy of
regions. Whenever the user enables/disables objects or updates the
transfer function, we use the occupancy histogram tree to generate
occupancy geometry. For each new view, we rasterize this geometry to
generate a linear ray segment list per ray. Ray-casting then leaps over
empty space via linear traversal of the ray segment list of each ray.

Occupancy histogram tree. We track volume occupancy hierar-
chically, using the three occupancy classes empty, non-empty, and un-
known. Each node of the occupancy histogram tree represents a region
of the volume. Each leaf node is assigned an occupancy class that is
determined via standard culling, i.e., by comparing volume region in-
formation, such as min/max scalar value and the set of contained ob-
jects, against the current transfer function and the currently active set
of objects. Each non-leaf node stores an occupancy histogram that is
computed by propagating occupancy information up the tree. Each
occupancy histogram is the sum of all occupancy histograms below its
node. Therefore, each node stores the total count of leaf nodes of the
entire corresponding sub-tree in each of the three occupancy classes.
Using the non-standard occupancy class unknown facilitates lazy (de-
layed) culling (see Sec. 5.1), which is important for very large data.

Occupancy geometry. From the occupancy histogram tree, we ex-
tract a set of nested bounding boxes via a linear-time top-down traver-
sal, assigning each box an occupancy class. However, not every tree
node “emits” a bounding box. Using a simple set of traversal rules, we
emit geometry only when the occupancy class changes while travers-
ing down the tree. This leads to a significant reduction in both ge-
ometry and the corresponding fragmentation of space. Corresponding
to the spatial extent of nodes, box sizes decrease from the root node
down the tree. An important insight of SparseLeap is that the occu-
pancy class of a smaller box is able to override the class of the larger
box that contains it, over the extent of the smaller box. Finally, we ex-
ploit the coherence between successive rendering frames by re-using
the same occupancy geometry, unless the occupancy itself has changed
because the transfer function or the active set of objects has changed.

Ray segment lists. For each new view, the occupancy geometry is
rasterized into per-pixel linked lists that store a sequence of successive
segments (1D intervals) for each ray. Each segment corresponds to one
of the three occupancy classes. During rasterization, consecutive seg-
ments of the same class are merged into a single segment. We generate
all ray segment lists in parallel by rasterizing the occupancy geometry
stored in GPU memory. This approach leverages the extremely fast
GPU rasterization hardware, and in this way removes the most signif-
icant cost of empty space skipping from the GPU ray-casting shader.

Our method has similarities with GPU order-independent trans-
parency (OIT) approaches using per-pixel linked lists. However, we
obtain the ray segment lists in already sorted order, by rasterizing the
occupancy geometry accordingly (Sec. 6.2). Therefore, we do not
need to sort them afterward, which is a big difference to standard OIT.

Ray-casting. The ray segment lists enable empty space skipping
during ray-casting via a simple linear list traversal. The main change
to a standard ray-casting implementation is adding an additional outer
loop that traverses the ray segment list of the current pixel from front to
back along the ray, skipping each encountered empty segment. Volume
sampling is only performed for non-empty segments, as well as for
unknown segments. Therefore, the SparseLeap algorithm can easily
be integrated into any existing GPU ray-casting shader.

We now discuss the details of each major component of the Sparse-
Leap pipeline just outlined in the following sections.

5 OCCUPANCY HISTOGRAM TREE

The occupancy histogram tree depicted in Fig. 3(a) comprises a spatial
subdivision of the volume, i.e., each tree node corresponds to a specific
region of space. Our occupancy histogram tree is implemented as an
octree, i.e., the spatial region corresponding to each node is an axis-
aligned box. However, we emphasize that our occupancy histogram
tree serves a different purpose than a volume octree in standard vol-
ume rendering. Specifically, the occupancy histogram tree stores a
hierarchy of occupancy histograms over multiple possible occupancy
classes. In contrast to standard usage, encoding occupancy informa-
tion in histograms does not mean that every parent node of a non-empty
node is classified as non-empty as well. This is a crucial difference to
how occupancy information is propagated in standard volume octrees.

5.1 Occupancy Histograms and Occupancy Classes

An occupancy histogram is a histogram over the three occupancy
classes empty, non-empty, and unknown. The histogram stored in a
given node of the occupancy histogram tree stores one count for each
of the three occupancy classes. Each count corresponds to how many
leaf nodes of the sub-tree of that node belong to that occupancy class.
The leaf nodes of the occupancy histogram tree do not need to store a
full histogram. Instead, they directly store the occupancy class corre-
sponding to the spatial region represented by the leaf node.

Occupancy classes empty and non-empty. For each leaf node, a
culling step determines whether the spatial region corresponding to
the node is empty or non-empty, by comparing meta-data against the
current transfer function and the set of active objects. See below.

Occupancy class unknown. In order to be able to scale to very
large data, we allow for delayed culling, i.e., the lazy determination
of the occupancy classes empty or non-empty. This is facilitated by
the class unknown, which denotes that it is not yet known whether the
spatial region corresponding to a leaf node is actually empty or non-
empty. To fully support this, our ray-caster generates an occupancy
miss when it encounters a ray segment of class unknown (Sec. 8.2).

5.2 Tree Updates

In order to determine the occupancy class of a given leaf node of the
occupancy histogram tree, actual culling must be performed for that
node. Apart from allowing delayed culling (see below), we do this in
the standard way, i.e., by comparing stored meta-data of the leaf node
against global user-determined settings, such as the current transfer
function, and the current set of active (enabled) segmented objects:

• Segmented objects: Culling requires meta-data of the set of ob-
jects contained in each node. If all contained objects are globally
disabled, the occupancy class of the node will be set to empty.
Otherwise, it will be set depending on the transfer function.

• Transfer function: Culling requires meta-data of min/max scalar
value of each node. For completely transparent (zero opacity)
nodes, this will result in an occupancy class of empty, otherwise
in a class of non-empty. Iso-surfaces can be culled analogously.

Delayed culling. Culling can be performed in a delayed fashion,
where the occupancy class of a leaf node is initially set to unknown,
and only changed to empty or non-empty after the (asynchronous)
culling process has completed. In addition to delayed culling, our
implementation supports even computing the meta-data required by
culling in a delayed fashion. In order to support this, the meta-data are
allowed to be missing. When an occupancy miss is reported for a node
that is still missing its meta-data, it will be computed at that time.

Occupancy histogram propagation. The occupancy histograms
are computed by propagating the occupancy class information of leaf
nodes up the tree. In order to do this, we traverse the occupancy his-
togram tree recursively in depth first order, starting at the root: Each
non-leaf node first descends to its child nodes, and, after the child
traversal returns, computes its occupancy histogram as the sum of the
occupancy histograms of its child nodes, which are now correctly set.

Growing and pruning the tree. When an occupancy miss is re-
ported that corresponds to a node that does not exist in the occupancy
histogram tree, the tree is automatically grown to include that node.
The initial occupancy class of new nodes is always set to unknown.
It will be changed to empty or non-empty after culling has been per-
formed. We automatically retire unused (invisible) tree nodes, i.e.,
nodes that are occluded or outside the view frustum. Doing so makes
our approach output-sensitive, i.e., it scales with the visible output in-
stead of the whole volume. This is done by deleting nodes, and possi-
bly their entire sub-tree, using a least-recently used strategy (Sec. 8.3).

6 OCCUPANCY GEOMETRY GENERATION

From the occupancy histogram tree, the corresponding occupancy ge-
ometry illustrated in Fig. 4 is extracted by traversing the tree using
simple traversal rules that determine whether a node’s bounding box
should be emitted or not. Note that this process is view-independent.

6.1 Occupancy Histogram Tree Traversal
To generate the occupancy geometry, we traverse the occupancy his-
togram tree in breadth first order, visiting child nodes in a fixed order
(not in visibility order). The resulting occupancy geometry therefore
always stores larger boxes (coarser tree levels) before smaller boxes
(finer tree levels), which optionally allows stopping the traversal when
a given budget for the number of boxes has been reached.

According to the traversal rules below, a given node might simply
be skipped during traversal, or it might emit the geometry of the node’s
bounding box (we only store box center and size), together with the
node’s occupancy class, as well as the occupancy class of its parent.

(a) (b)

Fig. 4. Occupancy geometry generation and ray segments. (a) The
occupancy geometry comprises view-independent nested bounding
boxes of different occupancy class, reducing the fragmentation of space.
(b) Consecutive segments of the same occupancy class are merged
during rasterization of the occupancy geometry into ray segment lists.

Fig. 5. Ray events and ray segment list generation. Ray segment lists are generated by rasterizing nested occupancy geometry bounding
boxes. The rasterization of their front- and back-faces, respectively, results in ray events at the corresponding intersection positions: entry events
for front faces, and exit events for back faces. After all ray events have been rasterized (right), including possibly merging or deleting events, the
result is the final ray segment list (left): a sequence of ray segments (intervals between consecutive ray events), with one occupancy class per
segment: empty, non-empty, or unknown. Left: Occupancy geometry and corresponding output ray segment list. Right: Step-by-step generation.

Traversal rules. The occupancy histogram tree produces an array
of bounding boxes with occupancy classes using the following rules:

• The tree is traversed in breadth first order starting at the root.
Each node is passed in the occupancy class of its parent node.
The parent class for the root node is invalid, defined as not equal
to any other class. Therefore, the root node always emits its
bounding box (see below), i.e., the whole volume bounding box.

• Each node determines its occupancy class. For leaf nodes the
occupancy class is already stored in the node and does not have to
be computed. Each visited non-leaf node inspects its occupancy
histogram to determine its own occupancy class. The class is set
to the majority vote over the occupancy histogram, i.e., the class
that occurs the most often in all leaf nodes of its sub-tree.

• Geometry emission: Each visited node compares its occupancy
class with the class of its parent: If the class is the same, no
bounding box is emitted. If the class is different, a bounding box
with the respective occupancy class info is emitted for the node.

• If the already emitted number of bounding boxes exceeds a pre-
specified (optional) resource limit, traversal is stopped.

Occupancy geometry and fragmentation of space. Fig. 4(a) illus-
trates an example occupancy geometry of nested bounding boxes re-
sulting from these traversal rules. Fig. 2(b, d) depicts actual occupancy
geometry as green (non-empty) and red (empty) boxes. Using our ap-
proach, space is significantly less fragmented than when a standard
octree is used. However, we observe that some fragmentation of space
still remains. These cases are resolved during the subsequent rasteriza-
tion of ray segment lists, where consecutive ray segments of the same
occupancy class are detected and merged (Fig. 5). The overall result-
ing depth complexity is very low, which is visualized in Fig. 7 (left).

6.2 Occupancy Visibility-Ordering
The occupancy geometry itself is view-independent. However, the ras-
terization of ray segment lists below must be performed in visibility
order with respect to the current view point. Therefore, whenever the
view changes, we compute a visibility-sorted index array that refer-
ences the current occupancy geometry in front-to-back visibility order.

Visibility traversal. We traverse the occupancy histogram tree in
depth first order, visiting child nodes in front-to-back visibility order.
In contrast to a standard tree traversal in visibility order, we do not
only emit indices for leaf nodes, but for all non-leaf nodes as well.

In fact, each node index is emitted twice, such that the subsequent
rasterization is able to differentiate bounding box front and back faces,
respectively (in the fragment shader). Each non-leaf index is emitted
before its child nodes are visited, and is again emitted afterward. The
former index is marked for front face rasterization. The latter index
is marked for back face rasterization. Leaf node indexes are emitted
twice back-to-back: first for front face, then for back face rasterization.

Visiting all occupancy histogram tree nodes recursively in visibility
order proceeds in the following (standard) manner. Given a view point

(for perspective projection), or a view direction (for orthogonal projec-
tion), we compute in which of eight possible octants it lies. This octant
then determines the order in which child nodes have to be visited.

Relation to rasterization. This approach enables the subsequent
rasterization stage to generate ray segments in front-to-back order, and
achieve the desired property that smaller boxes inside larger boxes are
preceded by the front face of the enclosing larger box, and are suc-
ceeded by its back face. This is illustrated in Fig. 5. This property is
fundamental to achieving one of the major properties of the Sparse-
Leap algorithm: that the occupancy class of smaller occupancy geom-
etry bounding boxes correctly overrides that of larger bounding boxes.

7 RAY SEGMENT LIST GENERATION

Given the occupancy geometry and the computed visibility order, we
can now rasterize this geometry to create the corresponding ray seg-
ment lists, such as the ray segment list of the ray depicted in Fig. 5.
Rasterizing the occupancy geometry results in a sequence of ray
events. These events are processed directly during rasterization (in the
fragment shader), during which ray events may be merged or deleted.
The remaining ray events then form the resulting ray segment list.

7.1 Ray Events
Each fragment generated during occupancy geometry rasterization re-
sults in the creation of a ray event. Each ray event corresponds to the
intersection of a ray with one of the six faces of an occupancy geom-
etry bounding box, at a certain depth (position) along the ray. Each
box intersected by a ray produces two ray events: one for the intersec-
tion with a front face of the box, where the ray enters it, and one for
the intersection with a back face of the box, where the ray exits again
(Fig. 5). Each ray event therefore has an associated event type, which
depends on whether the fragment resulted from the rasterization of a
front face or a back face. Each ray event contains the following:

• Depth. The position (1D parameter) where the event was gener-
ated, i.e., where the ray has intersected a bounding box face.

• Event type (entry or exit). We store whether the event resulted
from entering a bounding box or from exiting (leaving) it, re-
spectively. Bounding box front faces produce entry events; back
faces produce exit events. This distinction is crucial for the cor-
rect on-the-fly merging and deletion of events (see below).

• Occupancy class. The occupancy class of the event can be either
empty, non-empty, or unknown. The occupancy class associated
with an event depends on whether the event is of type entry or
exit, respectively. For an entry event, the occupancy class is set
to that of the bounding box that generated the event. For an exit
event, it is set to the occupancy class of the box’s parent.

Correspondence to occupancy histogram tree traversal. The idea
of associating a different occupancy class with a ray event depending
on whether it is an entry- or an exit event is simple, but it actually
is what enables completely sequential, non-hierarchical “traversal” of
the occupancy histogram tree. Without this approach, whenever an

entry event is parsed, the current occupancy class would have to be
pushed onto a stack. Likewise, whenever an exit event is parsed, the
occupancy class would have to be popped off the stack again.

This point is important to emphasize: For each ray (output pixel),
traversing the corresponding linear list of ray events is equivalent to
hierarchically traversing the occupancy histogram tree along that ray.
However, in our rasterization stage, there is no tree to traverse, and
there is no need for a stack, or stack-less hierarchy traversal, which
would usually be required to traverse tree nodes in visibility order.

7.2 Ray Segment Lists
Each ray segment list is a singly-linked list for a given pixel that stores
ray events in front-to-back visibility order. Ray events and segments,
as they result from occupancy geometry, are illustrated in Fig. 5.

A ray segment is the interval bounded by two consecutive ray
events. Corresponding to the rasterization that produces each ray event
as described above, each ray segment is thus started either by a front
face or by a back face of a bounding box in the occupancy geometry.

Initial ray segment list. The default ray segment list for each pixel
is a single segment with occupancy class unknown that starts at the vol-
ume bounding box front face position and ends at the volume bounding
box back face position. This list comprises the corresponding two ray
events: entering the volume bounding box, and exiting it, respectively.

7.3 Occupancy Geometry Rasterization
The occupancy geometry array is rasterized in a single rendering pass.
For each fragment that is generated during rasterization, we invoke a
fragment shader that generates the ray segment list for that fragment.
Detailed pseudo code is given in the supplementary material.

Determining the event type. The first task of this shader is to
determine whether the fragment has resulted from the rasterization of
the front face, or the back face, of a bounding box. This determines
whether the corresponding ray event should be created with type entry
or exit, respectively. This event type has to be compared against the
flag stored in the occupancy geometry array, which kind of face should
be retained: fragments from front faces, or fragments from back faces.

7.3.1 Ray event merging and deletion during rasterization
In order to speed up the subsequent ray-casting stage, it is crucial to
avoid an unnecessarily high depth complexity (i.e., total number of
events per ray) in the ray segment lists. We achieve this by performing
on-the-fly merging and deletion of ray events during rasterization.

Our rules for processing ray events at the same position (depth) are:

• Two events of the same type (entry or exit) can always be merged,
retaining only the second event, and overwriting the first one.
The surviving occupancy class will be that of the second event.

• Two events where the first is of type exit, and the second of type
entry, can both be deleted when the occupancy classes of the
second event and the event before the first event match. This
happens for consecutive segments of the same occupancy class.

• Two events where the first is of type entry, and the second of
type exit, can both be deleted, independent of the corresponding
occupancy classes. This happens when a ray grazes a bounding
box edge or corner, generating two events at the same depth.

These rules can be executed simply for each incoming event (raster-
ized fragment) in the fragment shader whenever a fragment is pro-
cessed, accessing the tail of the ray segment list built so far. Never-
theless, since each rule transforms a consistent ray segment list into
a likewise consistent, updated ray segment list, this incremental up-
date strategy results in the desired, consistent ray segment list for any
arbitrarily long sequence of incoming events (rasterized fragments).

The second rule above will implicitly grow multiple consecutive
segments of the same occupancy class into a single longer segment.
Additionally, in order to handle boundary cases that would otherwise
result in an unnecessarily high depth complexity, we detect and re-
move all very short empty ray segments that cannot be merged into a
longer empty segment because they precede a non-empty segment.

8 RENDERING

In our implementation, volume rendering is performed via ray-casting
in a ray-guided volume rendering framework [14]. Adding Sparse-
Leap to the existing code was quite easy due to our conceptual separa-
tion of rendering and empty space skipping. Ray-guided volume ren-
dering is built on the basic principle of lazy evaluation. A data brick
is only loaded into memory when the brick is hit by the ray-caster.
Whenever the ray-caster hits a brick that has not yet been loaded, a
data cache miss for that brick is generated, which, in turn, triggers
that the brick will be loaded into memory. In SparseLeap, we extend
this concept further from the sole loading of volume data to the loading
and computation of the meta-data required by empty space skipping.

8.1 Ray Traversal
When the ray segment lists have been created as described above, the
actual ray-casting process only requires a very small modification from
a standard ray-casting loop. The standard loop that iterates from sam-
ple to sample is augmented by an additional outer loop iterating over
the ray segment list. This outer loop iterates linearly from ray segment
to ray segment along the ray. We do this by looking at consecutive
(overlapping) pairs of ray events in the ray segment list. Segments of
occupancy class empty are simply skipped, i.e., the ray position is ad-
vanced to the subsequent segment. Segments of occupancy class non-
empty, or of occupancy class unknown (they could be either empty or
non-empty, without knowing which), need to be sampled. Sampling is
performed exactly as in standard ray-casting, in any way desired.

8.2 Cache Misses and the Occupancy Histogram Tree
Our implementation of SparseLeap utilizes two different types of
cache misses. The first one supports output-sensitive culling and
empty space skipping. The second one is standard in ray-guided vol-
ume rendering, except for our use of the occupancy class unknown.

Occupancy misses. For segments of occupancy class unknown,
the ray-caster generates an occupancy miss, so that the actual occu-
pancy class (empty or non-empty) will be determined via culling. This
leads to an output-sensitive (i.e., ray-guided) approach with delayed
occupancy class updates: Volume bricks that are never intersected by
view rays (because they are occluded, or because they are outside the
view frustum) will not even get their occupancy class determined. The
latter is crucial for large data, because this means that their culling
meta-data need not be fetched or computed, culling need not be per-
formed, and occupancy class changes need not be updated in the oc-
cupancy histogram tree. Finally, sub-trees in the occupancy histogram
tree that have become homogeneous due to occupancy class updates,
i.e., where all nodes are now of the same occupancy class, are substi-
tuted on-the-fly by a single node of that occupancy class. Determin-
ing homogeneous sub-trees is trivial using the occupancy histograms.
Fig. 6 illustrates these delayed updates of occupancy classes in the oc-
cupancy histogram tree, driven by ray-casting and occupancy misses.

Data cache misses. Once the occupancy class of a volume brick
has been determined (which happened to resolve an occupancy miss),
further behavior depends on whether or not the actual volume data of
the brick are resident in the volume cache (a 3D texture [14]). If the
volume data are not resident and the occupancy class of the brick is
non-empty, a data cache miss will be generated, which, as in standard

?

?

?
?

?

??

?
?

?
?

?

??

??
?
?
?
?

?

Fig. 6. Delayed occupancy class updates. Left: Initially, everything is
unknown (the occupancy histogram tree comprises only the root node).
Center: Some nodes are now known to be empty. Note the subdivi-
sions. Right: As more nodes become known, the larger homogeneous
regions now known to be empty can be represented by single nodes.

Fig. 7. Space subdivision. We visualize the depth complexity of
empty space skipping traversal as pixel brightness (brighter means
more steps). For SparseLeap (left) this is the number of segments
(min = 1,max = 31,avg = 3.84). SparseLeap fragments space very lit-
tle. For octree-based empty space skipping (right) this is the number of
intersected nodes (min = 4,max = 45,avg = 13.44). Octrees incur a much
more fragmented subdivision of space. Data set: SEM Mouse Cortex.

ray-guided rendering will lead to the data being loaded. In all other
cases, no data cache miss will be generated. These are the cases when
the occupancy class is empty or unknown, or the data are already in the
cache. The reason for not generating a data cache miss in the unknown
case (where data will be sampled, if in the cache, see above) is that we
want to avoid burdening the system with loading new data that is not
yet known to be needed. In this case, the occupancy miss will simply
be resolved first, and only then will data be loaded, if actually needed.

Simplified implementation. While we have just described two dif-
ferent types of cache misses, the entire required functionality between
GPU and CPU can be implemented by the ray-caster reporting a sin-
gle, unified type of miss (essentially consisting of a brick ID). The
cache miss semantics described above leave only one choice for the
conceptual type of miss “meant” by the ray-caster in each case, so it is
always clear whether to resolve an occupancy miss or a data miss.

8.3 Cache Usage and the Occupancy Histogram Tree

For fully output-sensitive culling and empty space skipping, we track
usage information for nodes in the occupancy histogram tree, and re-
tire unused nodes over time. In our implementation, we combine this
with the usage reporting of the out-of-core memory management sys-
tem [14]. The ray-caster reports which parts of the volume it still
needs to be cached in the volume cache. From this, the corresponding
nodes in the occupancy histogram tree are computed. Unused nodes
are retired regularly using a least-recently used (LRU) scheme. This
approach keeps the size of the occupancy histogram tree in correspon-
dence with the currently visible part of the volume (the working set in
cache terminology). In this way, the occupancy histogram tree can be
made to scale with the current output size instead of the whole volume.

9 IMPLEMENTATION

Our implementation is integrated with a large-scale out-of-core ray-
casting system [14]. We use OpenGL with GLSL shaders for imple-
menting the entire SparseLeap pipeline. For the rasterization of the
occupancy geometry into ray segment lists, fragments need to be pro-
cessed in the same order as they are submitted to OpenGL, according
to the occupancy visibility ordering (Sec. 6.2). In order to be able to
guarantee this, the fragment shader executed during the rasterization
of the occupancy geometry makes use of the fragment shader inter-
lock capability of recent GPUs. This capability is exposed in OpenGL
by the ARB extension ARB_fragment_shader_interlock, whose usual
main application is order-independent transparency. For evaluation
and all timings that we report, we have used an NVIDIA Geforce Ti-
tan X (Pascal) GPU with 12 GB RAM, which supports this extension.

9.1 Data Management and Culling Granularity

Our goal is to decouple the empty space skipping architecture from the
actual volume rendering architecture. We therefore conceptually sep-
arate the meta-data needed for empty space skipping from the actual
volume data. In our case, meta-data refers to aggregated information
for box-shaped volume regions, such as the min/max value of the con-
tained scalar data, and a set of IDs of contained segmented objects.

Meta- and Volume Data Subdivision. Separating the handling
of meta-data from the actual volume data allows our implementation
to use a different granularity for skipping empty space than that for
managing volume data. Especially for finely detailed structures, empty
space skipping ultimately needs to be done with a finer granularity
(e.g., 163 blocks) than a brick size that is still feasible for memory
management (e.g., 323 blocks). We can currently use a granularity as
small as 43 blocks for empty space skipping of terabyte-sized volumes.

10 EVALUATION AND RESULTS

We evaluate SparseLeap using the volume data sets listed in Table 1,
and compare against a reference implementation of empty space skip-
ping using octree traversal, which we implemented in the same frame-
work [14]. Our approach scales better to finely detailed, sparse data.

10.1 Data Sets
Table 1 gives information on resolution and size of the data sets that we
have used. All volumes are segmented, and the table lists the number
of segmented objects (segments), and the occupancy (the percentage
of non-empty voxels vs. the total number of voxels) of each volume.

Connectome data set: SEM Mouse Cortex. A major motivation
for developing SparseLeap was the mouse cortex data set depicted in
Fig. 8. It is a high-resolution SEM (scanning electron microscopy) vol-
ume that our collaborators in neuroscience have manually segmented
sparsely, i.e., only a few thousand select structures were segmented
instead of densely segmenting millions of structures in the SEM. Neu-
roscientists analyze these volumes by zooming in on interesting areas,
and either examining individual segments, or using interactive visual
queries [2] to rapidly select different subsets of segments that are of in-
terest, such as axons connected to the red dendrite depicted in Fig. 8.

10.2 Comparison to the State of the Art
We evaluate our novel algorithm by comparing it to two other ap-
proaches: (1) rendering without empty space skipping as a baseline,
and (2) state-of-the-art image-order empty space skipping using an
octree. For the latter comparisons, we have implemented octree-based
empty space skipping, since this is the de-facto standard for volume
rendering of large data. Usually, ray traversal (octree traversal) and
empty space skipping are tightly linked: Rays intersect octree node
boundaries, and at that stage determine if the block should be sampled
or whether it can be skipped. The two major drawbacks are: (1) A lot
of tree traversal down (and maybe up) the tree is incurred; (2) It is usu-
ally not possible to skip multiple consecutive empty nodes in one step.
Each node has to be visited in turn, advancing the ray position to the
next node’s boundary after the current node has been traversed (sam-
pled or skipped). A lot of unnessary ray-box intersections are com-
puted. Different octree traversal approaches incur different amounts
of overhead [9, 16, 17, 37]. We have implemented the octree traversal
during ray-casting using the standard kd-restart algorithm [9].

Fig. 7 contrasts the qualitatively very different approaches to sub-
dividing space for empty space skipping that our method employs vs.
the fragmented subdivision incurred by a standard octree approach.

10.3 Performance
We compare overall frame rates, as well as the overall depth complex-
ity incurred by accessing the empty space skipping data structure.

10.3.1 Rendering performance
Table 1 compares frame rates for ray-casting using the three evaluated
approaches: ray-casting without empty space skipping, ray-casting
with standard octree-based empty space skipping, and ray-casting us-
ing SparseLeap. We report frame rates for two different volume oc-
cupancy settings that allow us to compare performance between dense
and sparse volume scenarios. It can be seen that our approach always
outperforms ray-casting without empty space skipping. However, the
most significant performance gains are obtained for sparse volumes.

Fig. 8 (left) and Fig. 9 give a detailed evaluation for a single data
set (the SEM Mouse Cortex). We show the performance impact of dif-
ferent block sizes (Fig. 8) and data resolution levels (Fig. 9), for two

block size
323 163 83 43

block size

fp
s

323 163 83 43

SparseLeap ERT
SparseLeap

Octree ERT
Octree

no skipping ERT
no skipping

block size
323 163 83 43

block size
323 163 83 43

de
pt

h
co

m
pl

ex
ity

Sparse Volume Dense Volume Sparse Volume Dense Volume

SparseLeap avg
SparseLeap max

Octree ERT avg
Octree ERT max

Octree avg
Octree max

Fig. 8. Performance comparison for different culling granularities. Left: Frame rates for sparse (see right, top image) and dense (see right,
bottom image) volume occupancy settings. We compare SparseLeap against an octree-based approach, with and without early ray termination
(ERT), for block sizes of 43, 83, 163, and 323. Right: Depth complexity during ray-casting. The solid line represents the average depth complexity
over all rays, the dashed line represents the maximum depth complexity. (Viewport: 1,200×1,200, Geforce Titan X, data set: SEM Mouse Cortex.)

different volume occupancies (dense, sparse). In the latter, the perfor-
mance of ray-casting without empty space skipping is almost the same
for the sparse and dense cases, respectively. However, octree skipping
can be even slower than no skipping for some resolution levels in the
dense case. SparseLeap is more efficient in both scenarios.

Disabling rasterization. Alternatively to rasterizing the occupancy
geometry every frame, and then using the resulting ray segment lists
in the ray-casting shader, we can also disable the rasterization stage
and re-use the previous ray segment lists. This option can be used
whenever the view has not been rotated or moved, e.g., when only pa-
rameters such as lighting or sampling rate have been changed. In this
case, the existing ray segment lists can be re-used without performing
rasterization, leading to even higher performance. The corresponding
frame rates are reported in Table 1 in the second SparseLeap column.

10.3.2 Depth complexity (view-dependent)

Fig. 8 (right) shows a comparison of the depth complexity during ray-
casting using SparseLeap for different block sizes, compared with
standard octree empty space skipping (lower is better). Our hybrid
approach significantly limits the number of nodes that need to be ac-
cessed (rasterized) and that have to be visited during ray-casting. This
leads to a lower depth complexity compared with the octree approach.
We report the average depth complexity over all rays of the measured
frame, as well as the maximum depth complexity (dashed lines).

In SparseLeap, the average depth complexity stays roughly constant
when the granularity becomes finer. This is due to the fact that we
incur the fine granularity only where it is required by fine structures
inside the volume. On the other hand, in the octree-based approach a
finer granularity always leads to a higher depth complexity. This is due
to the fact that smaller blocks lead to a higher spatial fragmentation,
even in completely empty regions, corresponding to Fig. 7 (right).

SparseLeap 16
SparseLeap 8

SparseLeap 16 (no rasterization)
SparseLeap 8 (no rasterization)

Octree 16
Octree 8

no skipping ERT

L4 L3 L2 L1L4 L3 L2 L1

Sparse Volume Dense Volume

resolution levelresolution level

fp
s

Fig. 9. Performance comparison for different resolution levels. We
compare SparseLeap against an octree-based approach for block sizes
of 83 and 163, respectively, for a sparse and a dense volume (see Fig. 8,
right). L4 is the lowest data resolution, L1 the highest. Dashed lines
are for the performance of SparseLeap when the rasterization does not
need to be updated, e.g., when only the light direction changes. (View-
port: 1,200×1,200, Geforce Titan X, data set: SEM Mouse Cortex.)

10.3.3 Memory requirements
The GPU memory requirements of SparseLeap consist of two parts.
The first part is the storage required for the occupancy geometry. The
second part is the storage required for the ray segment lists.

GPU geometry (occupancy geometry vs. octree). Our occupancy
geometry always contains significantly fewer nodes than the equiva-
lent octree representation, which we have directly compared using our
two implementations. The reason for this is that many occupancy his-
togram tree nodes do not emit any geometry, whereas they do have to
be stored in an equivalent octree representation on the GPU. In prac-
tice, we have observed a memory usage of just several dozen to a few
hundred kilobytes for the occupancy geometry used by SparseLeap,
whereas the equivalent octree consumed several megabytes.

GPU ray segment list buffer. The storage for ray segment lists
depends on the screen resolution, and is equivalent to a frame buffer
with multiple layers. The actual memory requirement depends on the
average depth complexity, which, as shown in Fig. 7, is very low in
SparseLeap. For example, an average depth complexity of 4 requires
allocating a buffer of ‘four times the screen resolution’ linked list ele-
ments, plus allocating a linked list head pointer for each pixel. In our
implementation, the size of each list element is 12 bytes, and the size
of each list head is 16 bytes. For a screen resolution of 1,200×1,200,
a buffer of 154 MB suffices up to an average depth complexity of 8.

CPU memory. The CPU memory requirements between the occu-
pancy histogram tree and a standard octree structure are very similar.
Apart from standard child pointers, the histograms stored in the occu-
pancy histogram tree consume only three integer counts per node.

11 DISCUSSION

Important characteristics that make SparseLeap unique: (1) Raster-
izing intersections of rays with the occupancy geometry into ray seg-
ment lists moves the major cost of empty space skipping from the ray-
casting stage into the faster GPU hardware rasterization. (2) Empty
space skipping during ray-casting is not hierarchical. Each ray sim-
ply traverses the linear list of successive ray segments without costly
fine-grained hierarchy traversal. (3) Temporal frame coherence (re-
using occupancy geometry) as well as ray coherence (rasterization of
each bounding box maps to many pixels/rays at the same time) are im-
plicitly exploited. This amortizes the cost over successive frames as
well as over nearby rays. (4) SparseLeap is efficient even for drasti-
cally changing sparsity characteristics due to transfer function changes
and en-/disabling of segmented objects, without re-computing a space
subdivision. (5) Ray segment lists conceptually decouple empty space
skipping from volume sampling. This allows combining our approach
with any out-of-core strategy and any volume representation, e.g.,
grids, octrees, kd-trees, AMR, page table hierarchies, and so on.

Sparsity of data. The amount and structure of sparsity in the data
has a big influence on the efficiency of empty space skipping, which
naturally also incurs overhead (i.e., storing and computing meta-data,
look-ups in the data structure) that can only be amortized if the volume
that is being rendered is sufficiently sparse. Ideally, a volume renderer

Table 1. Data set statistics for the volumes used for the evaluation of our method (Sec. 10). We list data resolution in voxels, storage size for
original volume (’Images’) and voxel-level segmentation (’Labels’), number of resolution levels (3D mipmap levels equivalent to octree levels), and
number of (non-empty) segments (i.e., segmented objects) and average segment size in voxels. Occupancy in the Segment Statistics column
refers to the percentage of all non-empty voxels (i.e., the sum of all voxels of all non-empty segments) in the whole volume. Relative to this total
volume occupancy in the Segment Statistics column, we have measured two different occupancy of enabled segments settings (first row “dense,”
vs. second row “sparse”), by enabling different sets of segments. We compare rendering performance (frames per second) for ray-casting without
empty space skipping, octree-based empty space skipping, and SparseLeap. For SparseLeap, we report two frame rates: The standard case (’w/
rast.’), and the performance when the rasterization is not re-computed (’w/o rast.’), for example when only the light source is moved. To factor out
other influences such as the transfer function, all frame rates in this table have been measured without early ray termination (ERT). All timings are
for a 1,200×1,200 viewport on a Geforce Titan X. All data were rendered at a resolution level and zoom factor that spanned the whole viewport.

Dataset Description Data Size and Type,
Resolution Levels

Segment occupancy FPS (no ERT)
Statistics of enabled no skipping octree SparseLeap

segments w/ rast. w/o rast.

Present
492 x 492 x 442

Images: 107 MB (8 bit)
Labels: 107 MB (8 bit)
Resolution levels: 5

Segments: 18
Avg size: 425.3 K
Occupancy: 7.16 %

100 %
6.75 %

17
17

16
42

19
72

29
103

Aneurysm
512 x 512 x 512

Images: 134.2 MB (8 bit)
Labels: 134.2 MB (8 bit)
Resolution levels: 5

Segments: 55
Avg size: 9.25 K
Occupancy: 0.38 %

100 %
4.56 %

14
14

60
112

56
120

90
183

Stag Beetle
832 x 832 x 494

Images: 342 MB (8 bit)
Labels: 342 MB (8 bit)
Resolution levels: 6

Segments: 7
Avg size: 1.93 M
Occupancy: 3.96 %

100 %
12.0 %

12.5
12.5

29
47

45
83

63
129

Xmas Tree
512 x 499 x 512

Images: 130.8 MB (8 bit)
Labels: 130.8 MB (8 bit)
Resolution levels: 5

Segments: 101
Avg size: 83.94 K
Occupancy: 6.49 %

100 %
3.61 %

16
16

16
47

17.5
79

26
120

King Snake
1,024 x 1,024 x 795

Images: 833.6 MB (8 bit)
Labels: 833.6 MB (8 bit)
Resolution levels: 6

Segments: 4
Avg size: 153.7 M
Occupancy: 73.76 %

59.57 %
0.92 %

5.5
5.5

3
8.5

5.5
15

6.5
22

Dreh Sensor
2,048 x 2,048 x 2,048

Images: 8.59 GB (8 bit)
Labels: 8.59 GB (8 bit)
Resolution levels: 7

Segments: 85
Avg size: 9.46 M
Occupancy: 9.36 %

100 %
4.65 %

6
6

13
61

10
54

13
82

KESM Mouse Brain
2,380 x 9,216 x 2,039

Images: 44.7 GB (8 bit)
Labels: 89.4 GB (16 bit)
Resolution levels: 10

Segments: 59,162
Avg size: 5.38 K
Occupancy: 0.71 %

100 %
23.4 %

5
5

10
18

8
24

12
28

SEM Mouse Cortex
21,494 x 25,790 x 1,850

Images: 1.02 TB (8 bit)
Labels: 0.51 TB (16 bit)
Resolution levels: 11

Segments: 4,107
Avg size: 761.7 K
Occupancy: 1.22 %

56.29 %
6.76 %

16
16

7
42

17
64

26
96

should automatically detect the point at which empty space skipping
should be suspended, and switch to standard rendering for very dense
volumes. We defer a detailed investigation of this issue to future work.

Moreover, for some volume structures, an optimized octree imple-
mentation might sometimes be faster (when rasterization is enabled),
as can be seen in Table 1 for the Dreh Sensor data set. This, however,
depends on the arrangement in space and the sizes of the enabled seg-
ments. We want to investigate this issue in more detail in the future.

Scaling to extreme-scale data. Our overall architecture is output-
sensitive [3]. We perform culling only for potentially visible parts of
the volume, which is crucial for scaling to extremely large volume
data, where performing computations for large invisible parts of the
volume can be too slow [14]. This was made possible via the introduc-
tion of the occupancy class unknown, which enables delayed culling.

12 CONCLUSIONS

Our empty space skipping approach combines object-order stages and
image-order stages in a novel way to significantly reduce the traversal
complexity for leaping over empty space in large volumes that con-

tain finely-detailed structures. Our method is inspired by recent order-
independent transparency techniques on GPUs. However, in contrast
to these methods, we sort the bounding geometry for empty space skip-
ping on the CPU and avoid the necessity for any sorting to be done on
the GPU. For this, the rasterization performed by the GPU hardware
rasterization units needs to obey the ordering prescribed by the CPU
traversal. This is now possible by exploiting recent GPU capabilities
for enforcing the processing order of rasterized fragments. This com-
bination of a novel algorithm together with novel GPU capabilities for
order-independent transparency methods has enabled significant im-
provements for the volume rendering of large, complex structures.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful comments and for pointing us to re-
lated work. We thank John Keyser for the ‘KESM Mouse Brain’ data [31]. ‘Dreh Sensor’
courtesy of Siemens Healthcare, Components and Vacuum Technology, Imaging Solu-
tions; reconstructed by the Siemens OEM reconstruction API CERA TXR (Theoretically
Exact Reconstruction). This work was supported by funding from King Abdullah Univer-
sity of Science and Technology (KAUST) and KAUST award OSR-2015- CCF-2533-01.

REFERENCES

[1] R. S. Avila, L. M. Sobierajski, and A. E. Kaufman. Towards a com-
prehensive volume visualization system. In IEEE Visualization, pages
13–20, 1992.

[2] J. Beyer, A. Al-Awami, N. Kasthuri, J. W. Lichtman, H. Pfister, and
M. Hadwiger. ConnectomeExplorer: Query-Guided Visual Analysis of
Large Volumetric Neuroscience Data. IEEE Trans. on Visualization and
Computer Graphics (Proc. IEEE SciVis ’13), 19(12):2868–2877, 2013.

[3] J. Beyer, M. Hadwiger, and H. Pfister. State-of-the-art in GPU-based
large-scale volume visualization. Computer Graphics Forum, 8(34):13–
37, 2015.

[4] I. Boada, I. Navazo, and R. Scopigno. Multiresolution Volume Visualiza-
tion with a Texture-based Octree. The Visual Computer, 17(3):185–197,
2001.

[5] C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemann. Gigavoxels: Ray-
guided streaming for efficient and detailed voxel rendering. In Interactive
3D Graphics and Games, pages 15–22, 2009.

[6] K. Engel, M. Hadwiger, J. M. Kniss, C. Rezk-Salama, and D. Weiskopf.
Real-Time Volume Graphics. A. K. Peters, Ltd., 2006.

[7] T. Fogal and J. Krüger. Tuvok–An Architecture for Large Scale Volume
Rendering. In Vision, Modeling and Visualization, pages 139–146, 2010.

[8] T. Fogal, A. Schiewe, and J. Krüger. An Analysis of Scalable GPU-
Based Ray-Guided Volume Rendering. In IEEE Symposium on Large
Data Analysis and Visualization (LDAV ’13), pages 43–51, 2013.

[9] T. Foley and J. Sugerman. Kd-tree acceleration structures for a GPU
raytracer. In Graphics Hardware 2005, pages 15–22, 2005.

[10] E. Gobbetti and F. Marton. Far Voxels: A Multiresolution Framework
for Interactive Rendering of Huge Complex 3D Models on Commod-
ity Graphics Platforms. ACM Transactions on Graphics, 24(3):878–885,
2005.

[11] E. Gobbetti, F. Marton, and J. Guitián. A single-pass GPU ray casting
framework for interactive out-of-core rendering of massive volumetric
datasets. The Visual Computer, 24(7):797–806, 2008.

[12] N. Greene, M. Kass, and G. Miller. Hierarchical Z-Buffer Visibility. In
ACM SIGGRAPH ’93, pages 231–238, 1993.

[13] J. Guitián, E. Gobbetti, and F. Marton. View-Dependent Exploration of
Massive Volumetric Models on Large-Scale Light Field Displays. The
Visual Computer, 26(6-8):1037–1047, 2010.

[14] M. Hadwiger, J. Beyer, W.-K. Jeong, and H. Pfister. Interactive Volume
Exploration of Petascale Microscopy Data Streams Using a Visualization-
Driven Virtual Memory Approach. IEEE Transactions on Visualization
and Computer Graphics (Proc. IEEE SciVis ’12), 18(12):2285–2294,
2012.

[15] M. Hadwiger, C. Sigg, H. Scharsach, and K. Bühler. Real-Time Ray-
Casting and Advanced Shading of Discrete Isosurfaces. Computer
Graphics Forum (Proc. Eurographics ’05), 24(3):303–312, 2005.

[16] D. Horn, J. Sugerman, M. Houston, and P. Hanrahan. Interactive k-d tree
GPU raytracing. In Interactive 3D Graphics and Games, pages 167–174,
2007.

[17] D. M. Hughes and I. S. Lim. Kd-jump: a path-preserving stackless
traversal for faster isosurface raytracing on GPUs. IEEE Transactions
on Visualization and Computer Graphics (Proc. IEEE Visualization ’09),
15(6):1555–1562, 2009.

[18] R. Kähler, S. Prohaska, A. Hutanu, and H.-C. Hege. Visualization of
time-dependent remote adaptive mesh refinement data. In IEEE Visual-
ization, pages 175–182, 2005.

[19] R. Kähler, M. Simon, and H.-C. Hege. Interactive volume rendering of
large sparse data sets using adaptive mesh refinement hierarchies. IEEE
Transactions on Visualization and Computer Graphics, 9(3):341–351,
2003.

[20] B. Kainz, M. Grabner, A. Bornik, S. Hauswiesner, J. Mühl, and
D. Schmalstieg. Ray Casting of Multiple Volumetric Datasets with Poly-
hedral Boundaries on Manycore GPUs. ACM Transactions on Graphics,
28(5):1–9, 2009.

[21] T. Klein, M. Strengert, S. Stegmaier, and T. Ertl. Exploiting frame-
to-frame coherence for accelerating high-quality volume raycasting on
graphics hardware. In IEEE Visualization, pages 223–230, 2005.

[22] A. Knoll, S. Thelen, I. Wald, C. D. Hansen, H. Hagen, and M. E. Papka.
Full-Resolution Interactive CPU Volume Rendering with Coherent BVH
Traversal. In IEEE Pacific Visualization Symposium, pages 3–10, 2011.

[23] J. Krüger and R. Westermann. Acceleration Techniques for GPU-based
Volume Rendering. In IEEE Visualization, pages 287–292, 2003.

[24] M. Labschütz, S. Bruckner, E. Gröller, M. Hadwiger, and P. Rautek.
JiTTree: A just-in-time compiled sparse GPU volume data structure.
IEEE Transactions on Visualization and Computer Graphics (Proc. IEEE
SciVis ’15), 22(1):1025–1034, 2016.

[25] S. Laine and T. Karras. Efficient Sparse Voxel Octrees. In Interactive 3D
Graphics and Games, pages 55–63, 2010.

[26] S. Laine and T. Karras. Efficient Sparse Voxel Octrees - Analysis, Exten-
sions, and Implementation. Technical report, NVIDIA, 2010.

[27] S. Lakare and A. E. Kaufman. Light weight space leaping using ray
coherence. In IEEE Visualization, pages 19–26, 2004.

[28] E. Lamar, B. Hamann, and K. I. Joy. Multiresolution Techniques for
Interactive Texture-Based Volume Visualization. In IEEE Visualization,
pages 355–362, 1999.

[29] W. Li, K. Mueller, and A. E. Kaufman. Empty Space Skipping and Oc-
clusion Clipping for Texture-based Volume Rendering. In IEEE Visual-
ization, pages 317–324, 2003.

[30] B. Liu, G. J. Clapworthy, and F. Dong. Accelerating Volume Raycasting
using Proxy Spheres. Computer Graphics Forum, 28(3):839–846, 2009.

[31] D. Mayerich, J. Kwon, C. Sung, L. C. Abbott, J. Keyser, and Y. Choe.
Fast macro-scale transmission imaging of microvascular networks using
KESM. Biomedical Optics Express, 2:2888–2896, 2011.

[32] M. Meißner, M. Doggett, J. Hirche, and U. Kanus. Efficient space leaping
for ray casting architectures. In Volume Graphics, pages 149–161, 2001.

[33] Z. Melek, D. Mayerich, C. Yuksel, and J. Keyser. Visualization of fibrous
and thread-like data. IEEE Transactions on Visualization and Computer
Graphics (Proc. IEEE Visualization ’06), 12(5):1165–1172, 2006.

[34] J. Mensmann, T. Ropinski, and K. Hinrichs. Accelerating Volume Ray-
casting using Occlusion Frustums. In EG/IEEE Conference on Point-
Based Graphics, pages 147–154, 2008.

[35] K. Museth. VDB: High-Resolution Sparse Volumes with Dynamic Topol-
ogy. ACM Transactions on Graphics, 32(3):27:1–27:22, 2013.

[36] V. Petrovic, J. Fallon, and F. Kuester. Visualizing whole-brain DTI trac-
tography with GPU-based tuboids and LoD management. IEEE Transac-
tions on Visualization and Computer Graphics (Proc. IEEE Visualization
’07), 13(6):1488–1495, 2007.

[37] S. Popov, J. Günther, H.-P. Seidel, and P. Slusallek. Stackless kd-tree
traversal for high performance GPU ray tracing. Computer Graphics Fo-
rum, 26(3):415–424, 2007.

[38] F. Reichl, M. Treib, and R. Westermann. Visualization of Big SPH Sim-
ulations via Compressed Octree Grids. In IEEE Big Data, pages 71–78,
2013.

[39] D. Ruijters and A. Vilanova. Optimizing GPU Volume Rendering. In
Winter School of Computer Graphics, pages 9–16, 2006.

[40] L. M. Sobierajski and R. S. Avila. A hardware acceleration method for
volumetric ray tracing. In IEEE Visualization, pages 27–34, 1995.

[41] K. R. Subramanian and D. S. Fussell. Applying space subdivision tech-
niques to volume rendering. In IEEE Visualization, pages 150–159, 1990.

[42] M. Treib, K. Bürger, F. Reichl, C. Meneveau, A. Szalay, and R. West-
ermann. Turbulence visualization at the terascale on desktop PCs.
IEEE Transactions on Visualization and Computer Graphics (Proc. IEEE
SciVis ’12), 18(12):2169–2177, 2012.

[43] V. Vidal, X. Mei, and P. Decaudin. Simple empty-space removal for inter-
active volume rendering. Journal of Graphics Tools, 13(2):21–36, 2008.

[44] M. Wan, S. Aamir, and A. E. Kaufman. Fast and reliable space leaping
for interactive volume rendering. In IEEE Visualization, pages 195–202,
2002.

[45] M. Wan, A. E. Kaufman, and S. Bryson. High performance presence-
accelerated ray casting. In IEEE Visualization, pages 379–389, 1999.

[46] G. H. Weber, M. Öhler, O. Kreylos, J. M. Shalf, E. W. Bethel, B. Hamann,
and G. Scheuermann. Parallel cell projection rendering of adaptive mesh
refinement data. In IEEE Symposium on Parallel and Large-Data Visual-
ization and Graphics, pages 8–17, 2003.

[47] M. Weiler, R. Westermann, C. Hansen, K. Zimmerman, and T. Ertl.
Level-Of-Detail Volume Rendering via 3D Textures. In IEEE Symposium
on Volume Visualization, pages 7–13, 2000.

[48] R. Westermann and B. Sevenich. Accelerated volume ray-casting using
texture mapping. In IEEE Visualization, pages 271–278, 2001.

[49] J. C. Yang, J. Hensley, H. Grün, and N. Thibieroz. Real-time concurrent
linked list construction on the GPU. Computer Graphics Forum (Proc.
Eurographics Symposium on Rendering 2010), 29(4):1297–1304, 2010.

[50] H. Zhang, D. Manocha, T. Hudson, and K. E. Hoff. Visibility Culling
Using Hierarchical Occlusion Maps. In ACM SIGGRAPH ’97, pages 77–
88, 1997.

	Introduction
	Background on Empty Space Skipping
	Related Work
	Algorithm Overview
	Occupancy Histogram Tree
	Occupancy Histograms and Occupancy Classes
	Tree Updates

	Occupancy Geometry Generation
	Occupancy Histogram Tree Traversal
	Occupancy Visibility-Ordering

	Ray Segment List Generation
	Ray Events
	Ray Segment Lists
	Occupancy Geometry Rasterization
	Ray event merging and deletion during rasterization

	Rendering
	Ray Traversal
	Cache Misses and the Occupancy Histogram Tree
	Cache Usage and the Occupancy Histogram Tree

	Implementation
	Data Management and Culling Granularity

	Evaluation and Results
	Data Sets
	Comparison to the State of the Art
	Performance
	Rendering performance
	Depth complexity (view-dependent)
	Memory requirements

	Discussion
	Conclusions

