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Abstract
Current characterization methods of the so-called Bulk Heterojunction (BHJ), which is the main material of Or-
ganic Photovoltaic (OPV) solar cells, are limited to the analysis of global fabrication parameters. This reduces the
efficiency of the BHJ design process, since it misses critical information about the local performance bottlenecks
in the morphology of the material. In this paper, we propose a novel framework that fills this gap through vi-
sual characterization and exploration of local structure-performance correlations. We also propose a formula that
correlates the structural features with the performance bottlenecks. Since research into BHJ materials is highly
multidisciplinary, our framework enables a visual feedback strategy that allows scientists to build intuition about
the best choices of fabrication parameters. We evaluate the usefulness of our proposed system by obtaining new
BHJ characterizations. Furthermore, we show that our approach could substantially reduce the turnaround time.

1. Introduction

Organic photovoltaic solar cells (OPV) represent a promis-
ing low-cost, low-weight, and flexible alternative for har-
nessing solar energy. An OPV is a device composed of
three main parts: the anode, the cathode, and the so-called
Bulk Heterojunction (BHJ) that is sandwiched in between
the electrodes (anode and cathode) [WG12], as shown in
Fig. 1(a). The BHJ is a blend of two materials, called donor
and acceptor, which are separated by an “interface.” The
BHJ has a very complex intermixed composition with hier-
archical structures spanning several spatial scales.

The photovoltaic process occurs in a sequence of stages:
exciton generation, exciton diffusion, charge separation,
charge transport, and charge collection. This is illustrated
in Fig. 1(a). At each stage of the photovoltaic process, its
performance is critically affected by the morphology of the
BHJ. The objective of the BHJ design is to maximize the
generated photoelectric current. This requires the charges
(holes, electrons) to reach the electrodes as fast as possible.
To achieve this, the paths of the charges should be as wide
and as straight as possible. However, these design criteria
conflict with another requirement: increasing the area of the
interface surface. In order to harvest more excitons by the
interface, the neighboring parts of the interface need to be
as curly and as close to each other as possible, in order to
increase the probability of excitons reaching the interface.

Even though OPV solar cells bear a great potential, before
they will be able to compete with other solar technologies,

some challenges have to be addressed. The most important
of these are low efficiency and short life time. Several ap-
proaches exist that have resulted in varying degrees of suc-
cess. One promising approach is to control the BHJ mor-
phology during fabrication. Current BHJ exploration tech-
niques mainly depend on expensive and time-consuming
lab tools. These traditional tools deal with the morpholo-
gies as black boxes with no knowledge of the photoelectric
current within. Their workflow therefore depends on trial-
and-error and does not efficiently characterize complex BHJ
morphologies with respect to many critical local properties.
Accordingly, scientists in OPV research are still lacking a
sufficient understanding of the best BHJ material design.

In this paper, we propose a novel framework for explor-
ing one of the critical features of OPV solar cells, called
charge path bottlenecks. So far, scientists intuitively refer to
bottlenecks as the parts in the BHJ routes that cause con-
tention of charges and hence delay. However, they cannot
detect and analyze these features since their tools lack ac-
cess to the geometric features underlying this phenomenon.
Furthermore, the detection of the design structures that re-
duce bottlenecks is complicated since it involves conflicting
design requirements. In our framework, we solve this prob-
lem through the following contributions:

• A geometric model that formalizes a previously only in-
tuitive charge bottleneck definition.

• The extraction of new structural features of the morphol-
ogy that can be correlated with these charge bottlenecks.
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Figure 1: (a) A 2D illustration of the underlying physics of the photoelectric current generation process. (b) A 2D illustration
of the bottleneck computation steps (for the donor part). The figure illustrates the computation steps over one sample cross-
sectional area (S). We only refer to the donor in the current paper, since the acceptor bottlenecks can be analogously extracted.

• The generation of an abstraction for the BHJ morphology,
which we call the BHJ backbone, that visualizes the topol-
ogy of the structural features of interest. In this way, visual
clutter is removed, enabling spatial analysis of the BHJ
morphology. Moreover, this abstraction allows for multi-
variate analysis by sampling the morphology into a mini-
mal set of features that influences the correlation analysis.

However, we see the main contribution of our work in the
description of a complete framework for the analysis of BHJ
morphologies given as three-dimensional scalar fields.

We demonstrate the validity of our approach by showing
how our framework generates new BHJ characterizations. In
order to evaluate the results, we have obtained user feed-
back from domain experts. We also show that our proposed
system has enabled dramatic time savings in the exploration
process of OPV data, which paves the way for faster explo-
ration of OPV materials in the future.

2. Related Work

This section discusses the most relevant related work
grouped into three different categories.

2.1. Analysis of Charge Paths in Organic Photovoltaics

Domain scientists need to detect parts in the BHJ morphol-
ogy with high charge densities and understand the structural
features that cause this problem. To support this goal, sci-
entists have designed a simulation of this phenomenon for
sinusoidal structures [GN07], and have correlated the sine
width to the charge density. This simulation is suitable for
regular structures but not random ones, such as the BHJ
structures. Hence, this simulation was later extended for
BHJ [KG12]. However, it was still not possible to correlate
structural features with charge densities. As a result, domain
scientists started to move in the direction of studying the ge-
ometric features of charge paths rather than the behavior of
the charges themselves. For this purpose, scientists have de-
veloped an approximation model [WTCG12b] that extracts

a representative set of charge paths that reflects the physi-
cal intuition. However, that work depends only on statistical
analysis and is therefore not suitable for exploring geomet-
ric features such as bottlenecks. Furthermore, it is unable to
explore the interplay between conflicting design parameters.
We address these limitations in the current work.

2.2. Morphology Abstraction and Feature Extraction

Our bottleneck model requires the extraction of local do-
main features as well as the measurement of local proper-
ties such as their size. A Voronoi-like decomposition of the
pore-space of porous materials has been proposed [HBP∗12]
to aid the determination of the pore space skeleton. In
our approach, we employ a hierarchical watershed algo-
rithm [Beu94, CB97] on the distance map [JBS06] with
persistence-based simplification [ELZ02]. This enables the
decomposition of the BHJ morphology at potential bottle-
necks. In addition, we propose an abstract model that sim-
plifies the BHJ structure. This model is based on a conven-
tional thinning algorithm [Pud98]. Examples of other tech-
niques to achieve simplified representations include Reeb
graphs [PSBM07], distance field-based methods [GDN∗07],
extremum graphs [CLB11], and other topological meth-
ods [BGG09, HBP∗12]. Geometric path computation is
also important to analyze molecular structures [KFR∗11,
LBH11], but these methods do not apply to our application.

2.3. Geometric and Visual Path Analysis

In our work, we use graph-based models to enable
knowledge-based exploration of the underlying data. Previ-
ous work applied knowledge-based visualization of charge
paths to molecular data [ALK∗12]. In this work, we ex-
clusively focus on nanoscale data. One requirement for
our method is to visualize charge paths in relation to the
surrounding geometry. Similar ideas have been used be-
fore [JM10, LGD∗05], but employed vector fields resulting
from simulations. In our work, we instead employ a set of
representative paths that are extracted based on the intuition
of domain scientists about the physics of OPV materials.
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Figure 2: An overview of our framework comprising preprocessing, storage, and interactive visual exploration. The workflow
illustrates the dependency among different system modules as well as typical steps performed by users for visual exploration.

In general, abstractions are often needed to be able to
focus on important features, both for visualization and for
comparative and statistical analysis. Path abstraction models
include the ones proposed in [TvW99, LCMH09, HBP∗12].
These abstractions can be rendered using simple lines or
triangulated tubes, but also using more advanced rendering
methods [KLG∗13, KGPS13].

3. Overview

This section provides an overview of our framework, de-
scribing the type of data we are dealing with, the crucial
abstraction of charge paths, and the overall workflow.

3.1. BHJ Data

The BHJ morphologies that we are analyzing in this work re-
sult from computer simulations (see Sec. 9 for details). Each
morphology is given as discrete scalar field, where each
voxel is assigned an acceptor volume fraction value φ. These
fraction values are between 0 and 1. By tracing the distribu-
tion of these variables, individual phases can be identified,
i.e., φ = 0 corresponds to pure donor, while φ = 1 corre-
sponds to pure acceptor, respectively. In the regions separat-
ing individual phases, the volume fraction changes smoothly
across the thin interface. By reconstructing the iso-contour
corresponding to the iso-value φ = 0.5, the interface can be
identified. We use this interface in our subsequent analysis.

3.2. Charge Path Approximation Model

A charge path is the trajectory of a charge from the point
of its creation to the corresponding electrode (either anode
or cathode). In this work, we study paths for two types of
charges: excitons and holes. Fig. 1(a) illustrates that (1) the
path of an exciton starts from the point of creation in the
donor and ends at an interface, and (2) the path of a hole
starts from the point of creation on the interface and ends
at some point on the anode. Note that electrons can be han-
dled in the same way as holes. The only difference is that
they travel through the acceptor to the cathode. We are in-
terested in the shape of the charge paths rather than tracking
the charges themselves. For this purpose, we use the set of

shortest paths based on a model that has been proved to pro-
vide sufficient information about the geometry of the whole
charge paths vector field [WG12].

3.3. Workflow

We summarize the proposed system in Fig. 2. Our workflow
is divided into three main parts: preprocessing, storage, and
interactive visual exploration.

In the preprocessing step, we compute the bottleneck in-
dicator at certain points and the geometric features of each
charge path. The computation of the bottlenecks requires ex-
tracting cross-sectional areas between neighboring parts of
the interface. Before extracting these areas, we first simplify
the morphology into its backbone, defined as the medial axis
of the morphology. The backbone provides a reduced view
of the morphology supporting correlation analysis as well
as spatial exploration of the cluttered parts. Then, we extract
the areas around each voxel on the backbone only. Moreover,
we compute the set of shortest paths from the morphology as
well as features of interest of these paths.

In the storage step, we cache the data resulting from
preprocessing to eliminate unnecessary computations in the
subsequent interactive visual exploration step.

For interactive visual exploration, we provide a variety
of views: the backbone view, the charge paths view, scat-
ter plots, and volume rendering. The backbone visualizes
relevant information via user-defined color codings. Scatter
plots visualize data derived from the backbone. Users can
explore multivariate correlations via the scatter plots as well
as filter a volume with respect to a certain range of parame-
ters. For spatial analysis, users select one point in the filtered
volume, and retrieve the charge paths around this point to ex-
plore their features. Users can select regions of interest from
the whole set of charge paths using simple GUI widgets.

4. Morphology Simplification

In order to be able to analyze the BHJ morphology more ef-
fectively in terms of charge paths, we first need to simplify
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Figure 3: A 2D illustration of the invidivual steps of extracting the structural features that are used for computing the bottleneck
indicators and exciton diffusion probabilities. Note that in our framework these steps are performed entirely in 3D.

it. For this, we first compute the backbone of the BHJ mor-
phology. We then compute cross-sections of the morphol-
ogy, which is important for the calculation of the charge path
bottleneck indicator that we will introduce in Section 5.1.

4.1. Backbone Computation

As a first step to analyze the morphology, we compute its
backbone to provide a less cluttered visual representation
as well as to make the computations more efficient. The
backbone is defined as the medial axis of the morphology
(see Fig. 3). To compute the medial axis, we apply thin-
ning [Pud98] based on the Euclidean distance field of the
donor part with respect to the interface. The thinning is per-
formed by removing voxel by voxel from the segmented ob-
ject until only a string of connected voxels (the skeleton)
remains. The voxel skeleton is then converted into a spatial
graph that passes through the medial axis of the donor. The
Euclidean distance to the nearest boundary is stored at every
point in the spatial graph. This structure simplifies the mul-
tivariate morphology analysis as discussed in the subsequent
sections. Furthermore, it allows us to compute cross-sections
of the morphology along the backbone.

4.2. Extraction of Cross-Sectional Areas

In order to identify potential bottlenecks in the BHJ mor-
phology, we need to segment the whole morphology into ar-
eas that reflect the gradual change in the routes’ thickness
from wide to narrow regions. To achieve this, we start with a
3D segmentation of the whole morphology that decomposes
the donor morphology at the constrictions (Fig. 3).

For this, we first compute the signed Euclidean distance
map, starting from all interface voxels, such that the distance
map inside the donor has negative values. We then apply a
watershed algorithm [CB97] on the distance map and subse-
quently apply a persistence-based [ELZ02] merging step to
create larger regions. To do so, we compare the scalar min-
ima of two regions to be merged with the scalar value at
the potential merge point. If the difference between one of
the minima and the scalar value at the merge point is below
a user-defined threshold, we merge the two regions. Other-
wise, the regions are not merged.

In the following steps, we are only interested in the cross-
sectional areas around the points on the morphology back-
bone. To determine these cross-sections, we compute the di-
rectional vectors (tangents) of the backbone in each point of
the backbone. The point on the backbone together with its
directional vector determine the plane of the cross-section.

Now, we can easily compute the 2D cross-sectional area
around each backbone point from the 3D segmented volume.
This is done by intersecting the plane given by the backbone
point and the directional vector with the 3D volume segmen-
tation, yielding a 2D cross-sectional area as shown in Fig. 4.
The cross-sectional area includes all voxels in the plane that
belong to the same region as the point on the backbone.

5. Intuitive Geometric Models for Performance

This section introduces two geometric indicators related to
the performance of a given BHJ material (morphology).

5.1. Geometric Indicators for Bottlenecks

Intuitively, if a charge path s at any point on the path does
not overlap with any other charge path, then the charge that
travels along the path s will be able to travel at maximum
speed. Conversely, the more paths share the same voxels,
the larger the possibility that charge contention happens and
hence a corresponding delay in charge transport is incurred.

Paths merge when they move from a wider area into a
narrower one, similar to an hour glass. Based on this ob-
servation, we define the bottleneck indicator K(S) at each
cross-sectional area S inside the morphology as follows.

Let j :R3→R be a scalar volume of path density. Consid-
ering a cross-sectional surface S (as illustrated in Fig. 1(b)),
we obtain the corresponding total bottleneck value K(S) as
the surface integral of the magnitude of the path density gra-
dients, normalized by the area A of S:

K(S) =
1
A

∫
S
‖∇ j‖dS. (1)

Areas in the morphology with large K(S) indicate the charge
path bottlenecks that the domain scientists are interested in.

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

404



A. Aboulhassan et al. / Visual Detection and Exploration of Performance Bottlenecks in OPVs

tangent

cross-sectional
plane

 backbone
segment

backbone
point

S: cross-sectional 
area

segmented data
with backbone

(a) (b)

Figure 4: A 2D illustration of the cross-sectional area extraction guided by the 3D segmentation and the backbone. The cross-
sectional area at a backbone point is the intersection between the plane perpendicular to the tangent at this point and the current
segment of the 3D segmentation. (a) illustrates how the plane of the cross-sectional area is determined. (b) illustrates different
examples of cross-sectional areas after intersection with 3D segments. Note that we perform these computations entirely in 3D.

5.2. Geometric Indicators for Exciton Diffusion

Another important measure for the effectiveness of the BHJ
is the probability of an exciton actually reaching the inter-
face. This exciton diffusion probability can be computed via
the following equation [SRS08, WTCG12a]:

W (d) = e−d/Ld , (2)

where d is the shortest distance from a point in the donor to
the interface, and Ld is a material-specific constant: the ex-
citon diffusion length. Thus, our geometric model for exci-
ton diffusion is simply the distance field that was computed
inside the donor with respect to the interface (see Fig. 3).
Hence, we can directly use the value of the distance field as
parameter d in Eq. 2 to obtain W (d) at any desired point.

6. Feature Extraction

This section describes how the BHJ features required for
subsequent analysis are extracted in our framework.

6.1. Size of the Cross-Sectional Areas

Our domain science collaborators want to explore the corre-
lation of the sizes of cross-sectional areas to the bottleneck
indicator defined in Eq. 1. We compute this size as the num-
ber of voxels intersecting the cross-section, since this is also
the smallest unit used for the features of charge paths.

6.2. Distance between the Interface and the Backbone

W (d) (Eq. 2) is an important measure for the domain sci-
entists, because correlating it with d allows them to estimate
the effectiveness of the BHJ. We propose to compute d at the
backbone points only, since they provide the worst case for
W (d), i.e., the farthest distance from the neighboring parts
of the interface.

Moreover, by extracting the bottleneck at the same back-
bone point as shown in Figs. 3 and 4, we get an effective
minimal set of indicators for the trade-off between W (d) and
K(S). For the computation of W (d), in this paper we use an
exciton diffusion length of Ld = 10 nm.

6.3. Charge Path Features

The bottleneck analysis discussed so far summarizes the be-
havior throughout the whole morphology. However, scien-
tists still need to explore the reasons behind this behavior in
detail. In order to support this, we allow scientists to visu-
alize the charge paths around each point on the backbone.
Scientists can then explore details about the bottleneck such
as the corresponding path density (see Fig. 1).

One other feature of interest is the tortuosity. Bottlenecks
are not the only source of delay in the charge transport; the
path length may also play an important role. We allow scien-
tists to explore this feature through the tortuosity indicator.
This indicator was also used by domain scientists in previous
statistical contexts [WTCG12b]. To compute the tortuosity,
we determine the length L of the shortest path from any point
in the donor to the electrode and relate it to the ideal path
length C, i.e., the length of a straight line between the ends
of the path without constraints. The tortuosity τ then is

τ =
L
C
. (3)

7. Visual Exploration

This section describes the capabilities for visualization and
interactive exploration that comprise the interactive visual
exploration step of our framework, as illustrated in Fig. 2.

7.1. Backbone Visualization

We visualize the topology of the backbone by rendering
trace lines between all consecutive nodes (see Fig. 5).

Exploration of a variety of scalar attributes on the back-
bone is enabled via color-coding (1D transfer functions).
This is illustrated in Fig. 5. In order to facilitate the visualiza-
tion of attributes, for each point on the backbone the prepro-
cessing step has pre-computed the bottleneck value, the area
extracted by segmentation around this point, and its shortest
distance to the interface. From the latter we also compute
and visualize the exciton diffusion probability (Eq. 2).

7.2. Scatter Plots

We create scatter plots by mapping each point on the back-
bone to one point in the scatter plot. The user can choose any
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Figure 5: An illustration of spatial exploration of the backbone: The backbone is color-coded via a user-defined transfer
function that highlights values of interest for the user (K(S) = 20 in this example). The user can then move a point probe to
regions with a high bottleneck value (here: yellow regions), and explore the surrounding area to ascertain its shape and size.
This information can guide experts in enhancing the morphology, e.g, by increasing the sizes of cross-sectional areas.

two backbone attributes as x and y dimensions of the scatter
plot: bottleneck value, area size, distance to interface, and
exciton diffusion probability (see Fig. 6).

To reflect the number of voxels that are mapped to a single
pixel in the scatter plot, we use a heat map; red represents
a large number, black a small one. We further enhance the
visualization of the path density by binning.

Our scatter plots serve two main purposes: (1) exploring
correlations between structural and performance features,
and (2) filtering by brushing in the attribute domain.

Brushing in any scatter plot enables users to select re-
gions according to attributes to be investigated further using
the spatial views, e.g., volume rendering. After a brushing
operation in a scatter plot, only voxels with values in the
specified range will be displayed and rendered (see Fig. 6).

7.3. Charge Path Visualization

Charge paths are rendered as trace lines to allow for study-
ing their topology. These lines are color-coded according to
scalar attributes, such as tortuosity (Fig. 7), or path density.

Interaction. We allow users to select a spatial region of
interest to reduce visual clutter in the path visualization. In
order to explore the paths around a specific location, the user
needs to select this location in the spatial domain.

For this interaction, we use a point probe: a ball attached
to three orthogonal lines parallel to the x, y, and z dimen-
sions, respectively. The user can interactively move this
probe to any point of interest inside the bounding box of the
morphology. Then, the system retrieves all paths that pass
through a region of interest around the ball.

We also support further filtering via GUI widgets, such as
the maximum size of path bundles and the maximum path
length in each bundle. This is illustrated in Fig. 7.

8. Implementation Details

To extract charge paths, we use the software
GraSPI [WTCG12b], which has been used success-
fully in previous OPV research. GraSPI is based on the
Boost graph library. Details can be found in [WTCG12b].
We run the charge path computation process offline, gen-
erate the corresponding topology, and store it in text files.
Then, we load these data into our visualization software.
Our visualization approach is implemented in the Avizo
framework with both computation and interaction modules.
The ZIB version of Amira [Ami] on the other hand is used
for generating the segmentation. GraSPI uses an equiva-
lence between voxel-wise data and a graph to effectively
characterize the morphology.

By translating the discrete morphology into a graph,
GraSPI can use standard graph algorithms to find the shortest
paths and connected components. The graph is constructed
by considering each voxel in the morphology as a node. Each
node (voxel) gets a label: black for donors, white for accep-
tors, green for interface voxels, red for anode, and blue for
cathode. An edge is created between each voxel and its 26
neighbors. Each edge is given a weight according to the dis-
tance between the two corresponding voxels (i.e., 1,

√
2,√

3). GraSPI then uses the standard Dijkstra algorithm to
extract the set of shortest paths from this graph.

9. Evaluation

As case studies, we employ two different simulated data sets
that represent two main BHJ lab synthesis techniques, which
are called Solvent-Based Fabrication [WG12], and Thermal
Annealing [WTCG12b], respectively.

The former is used to create morphologies with different
patterns and connectivity by manipulating physical param-
eters such as pressure, donor/acceptor percentage, etc. The
latter is used to enhance the morphology performance by
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Figure 6: A comparison between different time steps of thermal annealing of Morphology A. Row 1 depicts the shape of the
morphology at each time step. Row 2 illustrates the corresponding backbone. Row 3 shows the correlation between the sizes of
cross-sectional areas and bottleneck values K(S) using scatter plots. The numbers indicate the highest bottleneck value. Row 4
shows correlations between distances d and exciton diffusion probablities W (d). The green lines show the value at d = 10 nm,
while the blue rectangle shows the interactive selection of all the points with d < 10 (this is displayed only for morphologies
that exhibit a distance of 10). The numbers indicate the lowest probability value. Row 5 illustrates histograms of the bottleneck
value distributions of the morphologies after filtering the corresponding backbone in Row 2 via the blue rectangles in Row 4.

successively coarsening it. This is mainly achieved by ex-
posing the morphology to a certain temperature for a certain
period of time. Scientists need to make decisions for the pa-
rameters to use in these experiments.

The main analysis task performed by material scientists
is characterization. The aim of characterization is finding
correlations between the structural features and performance
features in order to decide how to design the BHJ morphol-
ogy. By using the previous tools and workflow for our case
study, scientists characterize fractions of the material with
respect to a certain performance metric. For example, scien-
tists need to know which excitons (created in the donor) will
possibly recombine before reaching the interface. They al-
ready have knowledge that recombination will happen if the
distance is longer than Ld = 10 nm [WTCG12a]. Similarly,
scientists need to study other features such as the tortuosity
that also should be less than a value of τ = 1.1 [WTCG12b].

Accordingly, they need to know how thermal annealing
influences these fractions in order to learn their ideal val-
ues. Lab experiments cannot enable these types of charac-
terization since they provide no access to this level of detail.
A successful step towards obtaining this characterization is
through studying charge paths, as shown in [WG12]. How-
ever, this earlier work only used standard statistical meth-
ods, which limits it with respect to two major considerations:
(1) It is unable to detect bottlenecks, and (2) it can only study
fractions as independent parameters without the critical in-

terplay between them. We show in our evaluation how our
new proposed model succeeds in removing these limitations.

The two data sets that we have used in our evaluation are
summarized in Table 1.

9.1. Feedback of Domain Experts

This section discusses feedback of our domain science col-
laborators on (1) producing new BHJ characterizations, and
(2) the value of the provided visual analysis capabilities.

9.1.1. Producing New Characterizations

Fig. 6 demonstrates how our system enables scientists to ex-
tract novel BHJ characterizations. These characterizations
guide scientists to strategies for tailoring morphology struc-
tures (in the lab) that have fewer bottlenecks and better path
quality. The results show that the maximum value of the bot-
tleneck indicator K(S) continuously decreases as the ther-
mal annealing proceeds until the last time step, while for the

Data Set # Time Steps
Morphology A 37
Morphology B 39
Dimensions 561×141×71 voxels

Table 1: The data sets used in our evaluation. We have used
two 3D morphologies, each of which consists of several time
steps (one volume each) computed via thermal annealing.
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Figure 7: Charge path exploration for a sample morphology: Time step 21 of Morphology A. Typically, visualizing all charge
paths results in too cluttered visualizations. Hence, the user needs to navigate to a region of interest for which the paths are then
displayed. In the right column, the backbone of the data set as well as a big subset of the charge paths are shown to provide a
feeling for their cluttered nature. In the middle, a user-selected region in a scatter plot filters the back bone down to only a few
points. Then, the user selects a region of interest (10 by 10 voxels), whose center is a point interactively probed in the filtered
volume, using the GUI shown in the center. Finally, the final selected paths are color-coded according to tortuosity.

exciton probability diffusion W(d) the minimum is already
reached before the last time step. Domain experts have com-
mented that these correlations match their intuition and their
simulation results. The experts then selected the distances
less than 10 nm (similar to [WTCG12a]). The results show
that - until time step 21 - W(d) is 100% optimal while K(S)
has the highest values.

Using this combination of K(S) with the W(d) analysis,
the scientists could observe that the most favorable struc-
tures do not necessarily exist at the coarsest morphology but
earlier than the last time step (37). The determination of the
most favorable time steps can be made by using the multi-
view brushing feature of our system. The experts increased
the size of the blue rectangle such that it encloses all points
with smaller distance than 10 nm (Fig. 6, fourth row). They
then generated filtered bottleneck volumes at the backbone
points corresponding to the brushed value. The histograms
of the filtered values are shown in the fifth row of Fig. 6.

Scientists concluded that most favorable time steps lie
somewhere between time steps 21 and 27 because K(S) val-
ues are in general not high while more material fraction is
distributed within the 10 nm distance. To make this decision,
they further explored the time steps in detail and compared
the results. We demonstrate the scenario of this exploration
through time step 24.

Fig. 5 illustrates how spatial analysis is used to provide a
detailed level of analysis. The scientists explored if it is pos-
sible to make time step 21 match time step 24 more closely
by reducing the bottlenecks. First, they explored the whole
backbone for points with bottlenecks more than K(S) = 20

(an adequate value for comparison). Then, they displayed the
area around each point to ascertain its shape and size and to
explore strategies for editing it.

Fig. 7 illustrates the usefulness of the charge path visual-
ization. After filtering the volume to include only the useful
material, the experts selected the lowest points, since they
have potential for higher tortuosity. In Fig. 7, they can see
the charge paths with a tortuosity higher than 1.1 and iden-
tify the route of these paths. The domain scientists have com-
mented on this approach: “Having these regions identified,
it is possible to explore various ways for removing or miti-
gating the effect of bottlenecks, e.g., by increasing the local
cross-sectional area. This step is particularly important con-
sidering the multi-step nature of the photovoltaic in organic
solar cells, as an improvement of one performance indicator
can result in the deterioration of others.”

9.1.2. Feedback on the Visual Analysis

Besides deriving the novel characterizations mentioned in
the previous section, the scientists have also commented on
the visual analysis framework that we provide.

First, they have made the following general comment on
the framework: “The tool provides means to develop intu-
ition regarding linking morphology with performance. Ulti-
mately, we envision this tool to enable design of fabrication
that leads to desired morphologies with improved properties.
An understanding how to improve performance by locally
modifying morphology is a very crucial step.”

On the other hand, the scientists have requested the fol-
lowing additions. First, they found it helpful to enrich the
backbone visualization. They showed particular interest in
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Figure 8: A comparison between two different data sets (Morphology A, and Morphology B). The backbone visualization reveals
that almost all parts are well-connected in Morphology A. However, Morphology B has many obvious islands (disconnected
parts) for all time steps of thermal annealing. The backbone helps with exploring this feature even in the cluttered parts of the
morphology. Scientists critically require this information, because a higher number of islands leads to reduced charge transport.

the branching vertices, since they could quickly infer the
potential for bottlenecks from them. Moreover, they com-
mented on the great benefit that the backbone provides, be-
sides the analysis introduced in this paper, since it reveals
connectivity. It shows all the routes from one point in the
donor to the anode. Furthermore, it can instantaneously de-
tect islands as shown in Fig. 8. Connectivity is important
because disconnected parts (islands) will trap the charges
rather than transport them. By a quick visual comparison,
scientists can see that Morphology B has a lot of discon-
nected parts vs. Morphology A which indicates less charge
transport. The scientists also showed interest in displaying
the segmentation as well, since similar conclusions can be
made from the boundaries between the segments.

One limitation of our framework pointed out by the do-
main scientists is the tortuosity analysis. The current frame-
work could visualize, for the first time, the local tortuosity.
However, it still depends on exploring each point in an ex-
haustive manner. It would be useful to have a quick summary
first, similar to the analysis in Fig. 6, which requires creating
a new model for this property.

9.2. Performance Analysis

The GraSPI run time for a typical 3D morphology (with
5.5M voxels) is 15 min on a typical work station (Intel Xeon
Quad 2 GHz, 12 GB of RAM). The visualization is run on
Intel Xeon X5550, 2.67 GHz processors, 24 GB RAM. The
morphology generation is run for 20 hours on a 160-nodes
cluster, each node with dual quad core AMD Barcelona 2.2
GHz and with 8 GB RAM.

Action Avg. CPU Time [s]
Preprocessing 99
Stored Data Loading 6.83
Volume filtering via scatter plots 0.56
Selected lines: 1713068 lines 27.47
Selected lines: 3800 lines 0.75

Table 2: Running times for all steps of our framework.

The visualization time taken by the main interaction tasks
is illustrated in Table 2. We display the average time taken
for Morphology A, time step 6, since it includes the largest
interface surface and the most complex structure. We no-
tice that the most time-consuming step is the preprocessing.
However, once the data are generated and stored, the rest of
the actions are quite interactive except in case of too many
lines selected for visualization. However, usually users avoid
a too large number of lines, since the corresponding visual-
izations become too cluttered.

These results show that the time required to perform
analysis tasks in general are dramatically reduced, since the
lab experiments that comprised our collaborators’ previous
workflow can take days to generate a single sample, and it
can therefore take months to reach conclusions.

10. Conclusions and Future Work

We have proposed the first framework for visual detection
and analysis of performance bottlenecks in OPV materials
based on geometric features of charge paths. To visualize
the complex BHJ morphologies, we use a novel visual rep-
resentation called the backbone, which provides a suitable
geometric abstraction. We have shown how this abstraction
enables efficient multivariate analysis. Our framework has
helped domain scientists to produce novel characterizations,
while at the same time drastically reducing the analysis time.

In the near future, we plan to extend the analysis to in-
clude more variables. Moreover, we plan to develop tools for
editing the BHJ morphology to further accelerate the design
of improved OPV materials.

Furthermore, our novel framework could pave the way for
analyzing similar complex material morphologies, such as
porous media, critical to other fields of science.
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