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Fig. 1. Our system is the first to enable neuroscientists to interactively explore petascale volume data resulting from high-throughput
electron microscopy data streams. The volume can be visualized while the acquisition is still in progress, and without pre-processing
all data into a 3D multi-resolution hierarchy as required by all previous systems. Shown here: 21,494×25,790×1,850 mouse cortex.

Abstract— This paper presents the first volume visualization system that scales to petascale volumes imaged as a continuous
stream of high-resolution electron microscopy images. Our architecture scales to dense, anisotropic petascale volumes because it:
(1) decouples construction of the 3D multi-resolution representation required for visualization from data acquisition, and (2) decou-
ples sample access time during ray-casting from the size of the multi-resolution hierarchy. Our system is designed around a scalable
multi-resolution virtual memory architecture that handles missing data naturally, does not pre-compute any 3D multi-resolution rep-
resentation such as an octree, and can accept a constant stream of 2D image tiles from the microscopes. A novelty of our system
design is that it is visualization-driven: we restrict most computations to the visible volume data. Leveraging the virtual memory
architecture, missing data are detected during volume ray-casting as cache misses, which are propagated backwards for on-demand
out-of-core processing. 3D blocks of volume data are only constructed from 2D microscope image tiles when they have actually
been accessed during ray-casting. We extensively evaluate our system design choices with respect to scalability and performance,
compare to previous best-of-breed systems, and illustrate the effectiveness of our system for real microscopy data from neuroscience.

Index Terms—petascale volume exploration, high-resolution microscopy, high-throughput imaging, neuroscience.

1 INTRODUCTION

Recent advances in high-resolution microscopic imaging result in vol-
ume data of extreme size. In neuroscience, electron microscopy (EM)
volumes of brain tissue are produced by physically cutting very thin
sections of about 25-50nm, and imaging each section at 3-5nm pixel
resolution [4]. This resolution is necessary in order to be able to trace
neural connections in the area of Connectomics [4, 23], which is the
main target domain of the visualization system presented in this paper.
However, even sub-millimeter tissue blocks imaged at such resolutions
comprise terabytes of raw data, and neuroscientists target much larger
volumes of several petabytes. A further complication is the acqui-
sition time itself. Measuring a single terabyte of data, even by using
fully automated Scanning Electron Microscopes (SEM), may take half
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a week [4]. As neuroscientists strive to measure large blocks of brain
tissue to enable the analysis of brain function, a high-throughput ac-
quisition process has to continuously stream data over months or even
years. In this scenario, existing visualization approaches fail. Tradi-
tional algorithms require complete knowledge of all data, for exam-
ple in order to pre-compute an octree or kD tree multi-resolution rep-
resentation. For high-throughput microscopy this is infeasible, since
pre-processing the data into a hierarchical representation incurs an un-
acceptably large gap between acquisition and visualization. Therefore,
it is necessary to develop novel visualization paradigms and systems in
order to facilitate the interactive exploration and analysis of large-scale
microscopy data streams.

We have identified the following major system design goals:

(G1) Scalability to the petascale, even for dense instead of sparse data.

(G2) Accommodate high-throughput acquisition of 2D microscopic
image tile streams. New image data can arrive continuously.

(G3) Visualize incomplete, incompletely registered, and changing
data. Image alignment information can be updated dynamically.
Data can be re-imaged dynamically with different parameters.

(G4) Accommodate highly anisotropic (e.g., 1:10) data.

(G5) Avoid pre-computation that requires knowledge of all data.

(G6) Avoid computation and storage for data that are not visible in the
visualization as much as possible.
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Fig. 2. System overview. Petascale volumes are acquired as a stream of image tiles from the microscope. Each raw image tile is processed
individually in the input stream. Everything else is visualization-driven: Ray-casting operates in virtual volume space, detecting cache misses for
visible volume blocks. Only these blocks are then constructed in 3D by stitching and resampling the corresponding tiles from the 2D input stream.

This paper introduces the first visualization system that fulfills these
goals, enabling the interactive exploration of petascale microscopy
data streams. Our system combines the following contributions:

• A novel visualization-driven paradigm for out-of-core volume
construction and visualization. Only visible 3D volume blocks
are constructed from the raw 2D image data (G1, G2, G5, G6).

• A novel multi-resolution virtual memory scheme, where all data
comprise a virtual multi-resolution volume, naturally handling
missing data and dynamic updates (G2, G3). Our architecture
achieves scalability via a multi-level page table hierarchy (G1). It
naturally accommodates highly anisotropic data (G4), in contrast
to an octree that would become unbalanced and less efficient.

• Visible image data are resampled directly into the resolution re-
quired for visualization, avoiding the pre-computation of a 3D
multi-resolution hierarchy (G5, G6).

This visualization-driven pipeline is enabled by a GPU-based ray-
caster that detects visible data in virtual volume space, generating
cache misses for missing physical data. These cache misses are then
propagated backwards to construct, fetch, and cache only visible data.

2 RELATED WORK

Our system is related to a lot of prior work, and we can only highlight
the most important connections here. Our visualization stage uses
GPU volume ray-casting [20], which has become the most common
approach for GPU volume rendering. However, GPU volume render-
ers are often restricted by GPU memory size. In order to accommo-
date large volumes, out-of-core and multi-resolution approaches have
been developed. LaMar et al. [21] and Weiler et al. [31] were among
the first to use hierarchical octree bricking schemes for hardware-
assisted volume rendering. Other hierarchical approaches were pro-
posed by Boada et al. [3] and Guthe et al. [11], who use a hierarchical
wavelet representation and screen-space error estimation for LOD se-
lection. All previous multi-resolution volume renderers require the
multi-resolution hierarchy to be built in a pre-process, which is not
feasible for our scenario of dynamically streaming image data. A pre-
processing step is also required by all previous systems that support
streaming of volume data for progressive rendering, such as the ViSUS
system [28]. The ImageVis3D/Tuvok system [19] supports both sliced-
based volume rendering and ray-casting. Large data are subdivided
using a kD tree, which is also exploited for distributed rendering [8].
Each brick in the tree is rendered in one rendering pass. There is rel-
atively little published work on single-pass GPU octree ray-casting.
Gobbetti et al. [10] determine the potential visibility of octree nodes
together with the corresponding partial tree on the CPU, which is then
downloaded to the GPU. Octree traversal on the GPU follows explic-
itly stored rope links between adjacent nodes. Actual visibility is only
taken into account in an indirect manner by using occlusion queries.
Octree traversal without rope links is usually performed by adapting
kD tree traversal algorithms to octrees [6, 7], most of which were de-
veloped for ray-tracing geometry [9, 27, 15] or iso-surfaces [17]. The

visualization stage of our system performs single-pass ray-casting, de-
tecting the visibility of small blocks on-the-fly. This is also done by
the Gigavoxels [6] and CERA-TVR [7] systems. In contrast to our vir-
tual memory scheme, however, these systems perform explicit octree
traversal using the kd-restart algorithm [9]. The data resolution is re-
fined or coarsened by iteratively changing the set of nodes/bricks that
are resident in node/brick pools stored in GPU memory. This requires
holding the entire path from every leaf to the root in GPU memory, and
can result in large numbers of updates per frame. Our system avoids
both of these drawbacks. Detailed comparisons of our system with the
approaches of these systems are given in Section 8. Clipmaps [29]
are an approach for rendering very large mipmaps that essentially also
uses a virtual memory space. However, clipmaps have to use a fixed
toroidal updating scheme. In contrast, our architecture can address
small 3D blocks that are packed arbitrarily into a larger cache texture.
This packing is similar to adaptive texture maps [18], but with fully dy-
namic updates. Virtual 2D texturing approaches have been proposed
for adaptive shadow map rendering [22], as well as for state-of-the-art
game engines [30]. In contrast to our system, these approaches com-
bine virtual memory management with a tree structure. Another class
of large-scale volume rendering systems is purely CPU-based, in order
to avoid GPU memory limitations altogether. Much research has been
devoted to volume rendering on large supercomputers [5, 16, 26]. This
is especially useful in the context of in-situ visualization of large-scale
simulations, where the visualization is computed on the same machine
as the data, avoiding the need to move large data. However, this is not
a feasible approach for microscopy data. Our data streams do not orig-
inate from large-scale simulations, but from acquisition setups that are
not directly connected to a supercomputer. Our system streams data to
the GPU-based visualization, but only as required by actual visibility.

3 SYSTEM OVERVIEW

Figure 2 depicts an overview of our system. Although image data
propagate from left to right, the majority of the pipeline (Fig. 2, right
half) is visualization-driven by the actual visibility of small 3D blocks
(323 voxels) determined during ray-casting, which is propagated from
right to left. After introducing basic terminology, we give an overview
of each pipeline stage from left to right. The subsequent sections then
discuss each stage in reverse order, following the visualization-driven
nature starting on the right with visualization and going backwards.

Terminology. Our system is inspired by standard virtual memory
architecture [13], and throughout the paper we use similar terminol-
ogy (see Fig. 3). We virtualize 3D volumes by subdividing them into
small 3D blocks (e.g., 323 voxels). Only the working set of currently
required blocks is resident in a large 3D cache (texture), which is up-
dated dynamically. The original volume becomes a virtual volume that
is accessed via a page table: a 3D index texture where each voxel is
a page table entry that maps the corresponding block’s position in the
cache, or is flagged as unmapped, i.e., not resident in the cache. The
same approach can be used to virtualize page tables, referring to the
top-level page table in the resulting hierarchy as the page directory.
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Fig. 3. Virtual memory architecture and visualization-driven pipeline. A virtual multi-resolution volume comprises a hierarchy of resolution levels `
(left, horizontal), each of which is virtualized via a hierarchy of page tables (vertical). Ray-casting accesses virtual multi-resolution addresses (`,p)
(center right), performing on-the-fly translation to addresses in the block cache via the multi-resolution page directory and the page table cache
(center left). Accesses to blocks in virtual memory that are unmapped, i.e., not mapped to a cache block, generate cache misses (center right).
These enable visualization-driven construction of volume data (right), as well as updating page table cache and block cache only for visible blocks.

Data acquisition (Section 7). The microscope deposits each ac-
quired image tile (e.g., 12,000× 12,000 pixels) into the acquisition
archive. This archive stores the acquired raw data together with ad-
ditional meta information including magnification, position, and ori-
entation (the alignment matrix) of acquired image tiles, and is either
co-located with the microscope or is a central shared file system.

Raw tile processing (Section 6). This stage continuously polls the
acquisition archive for new image tiles, and automatically processes
each new tile for storage in the visualization archive. This can be the
same actual storage used for acquisition, but for organizational reasons
it is often better to separate the two archives. Processing comprises
construction of a 2D mipmap for each tile, subdivision of each mipmap
level into smaller sub-tiles for optimized disk access, and optional im-
age compression. Each new raw image tile is processed immediately,
independent of tile registration/alignment and visualization.

Registration. Computing the alignment of raw image tiles is an
independent component outside the scope of this paper that asyn-
chronously updates the alignment matrices associated with raw image
tiles. However, in order to facilitate coarse-to-fine registration, this
component can access the 2D tile mipmaps stored in the visualization
archive. No image data are changed by registration. Actual stitching
of tiles is performed only on-demand in the volume construction stage
of our pipeline. Updates of alignment matrices are picked up by the
input stage of raw tile processing and are propagated forward.

Visualization-driven volume data construction (Section 5). This
stage is driven entirely by the visualization stage, which requests voxel
data for visible 3D blocks from a resolution level matching the current
display resolution. In order to fulfill these requests, first all 2D image
sub-tiles that intersect the 3D target block are determined and fetched.
The requested 3D voxel data are then created by stitching and resam-
pling these 2D sub-tiles directly into the 3D target grid and resolution.
Stitching is determined by the alignment matrix associated with each
image tile. Fast stitching and resampling to any target resolution is
facilitated by the 2D tile mipmaps stored in the visualization archive.

Visualization (Section 4). The visualization component of our
pipeline performs GPU-based ray-casting. However, its design differs
from previous systems in several important aspects. Instead of creat-
ing and traversing a tree structure—such as an octree or a kD tree—
our system employs a multi-level, multi-resolution virtual memory ar-
chitecture (Fig. 3) that scales well to extremely large volume sizes.
Volume space comprises a virtual multi-resolution volume that is sam-
pled directly during ray-casting (Section 4.2). Missing data generate
cache misses at the granularity of small 3D blocks, which by defini-
tion are visible data. These cache misses generate requests for data that
are propagated backwards in the pipeline, triggering the visualization-
driven construction of volume data from 2D image tiles (Section 5).

4 VISUALIZATION

The visualization stage of our pipeline has been designed to operate in
a fully virtualized volume space, which is a crucial design goal of our
system. We achieve this by considering the 3D bounding box of the tis-
sue block to be imaged to comprise a virtual multi-resolution volume.
This structure is similar to a virtualized 3D mipmap. However, the
down-sampling ratio between successive resolution levels can be dif-
ferent for each axis in order to accommodate anisotropic voxel aspect
ratios. We access this virtual volume space via an efficient multi-level,
multi-resolution virtual memory management architecture. Compared
to a traditional octree or kD tree multi-resolution representation, using
a virtual multi-resolution volume has the following main advantages:

• It is more efficient for deep resolution hierarchies. No tree traver-
sal is required, and no tree structure needs to be maintained.
Maximum efficiency is achieved for any desired resolution when
all visible data of that resolution are resident in the cache. Ren-
dering arbitrary slices also becomes a straightforward operation.

• Any sample can be fetched directly from any resolution level.
This enables jumping between resolutions without constructing
intermediate lower resolutions, which greatly helps to reduce the
latency incurred by on-demand volume construction (Section 5).

• The down-sampling ratio between resolution levels can be arbi-
trary. For the anisotropic voxel aspect ratios of most EM data,
this avoids the problem of an octree becoming unbalanced when
the resolution is not decreased along all three axes in every level.

4.1 Virtual Multi-Resolution Volume Representation
In order to determine a 3D reference space for our entire pipeline, the
extents of the 3D tissue block to be imaged are queried from the elec-
tron microscope at startup. This space then constitutes virtual volume
space, which is addressed via normalized floating-point coordinates
p = (x,y,z) ∈ [0,1]3. Furthermore, this space is extended to form a
virtual multi-resolution volume by introducing a hierarchy of resolu-
tion levels (Fig. 3 left, horizontal). This facilitates addressing voxels
of a desired size via a virtual multi-resolution address (`,p), where
the integer ` is the resolution level. During ray-casting, samples are
fetched at positions (`,p), computing ` from the desired level of de-
tail (Section 4.2). However, before actual voxel data can be accessed,
(`,p) must be translated to a coordinate in cache (texture) space, which
is done on the fly using a hierarchy of page tables (Fig. 3 left, vertical).

4.1.1 Resolution Hierarchy
The virtual multi-resolution volume is comprised of discrete resolution
levels, from `= 0 (highest resolution) to `= `max (coarsest resolution).
Fig. 3 (left) depicts this hierarchy horizontally. In contrast to a mipmap



or an octree, our hierarchy does not enforce a fixed down-sampling ra-
tio between levels. Every resolution level can be imagined as compris-
ing its own volume in the normalized [0,1]3 volume space, but without
constraining the amount of voxels to be any particular fraction of the
next finer level. Addressing any voxel via a normalized coordinate p is
straightforward when the resolution of each level in voxels is known.
Being able to choose an arbitrary resolution for each level enables ar-
bitrary resolution reduction between levels. This would also facilitate
the efficient representation of sampled scale space, such as with a hy-
brid pyramid scheme [24]. There, the scale parameter increases by
less than a factor of two between levels, and the grid resolution is only
reduced (halved) every cumulative increase of scale by a factor of two.

Access to resolution levels. The volume corresponding to a level `
can be accessed by using virtual multi-resolution addresses (`,p). The
access is performed via the page table hierarchy of level `. An im-
portant trait of our architecture is that, although any level ` can be
accessed directly, the only multi-resolution structure that is required
to do this is the small multi-resolution page directory described below.
Apart from this, the individual volumes comprising the resolution hi-
erarchy are fully virtualized and only represented implicitly.

Resolution reduction. We start with the full resolution, and choose
each axis in the next level to be either half or the same resolution, de-
pending on voxel anisotropy, so that anisotropy is gradually reduced.
Fig. 3 (left) shows a simple version of this process, where the depicted
anisotropy is 1 : 2 from {x,y} : z in ` = 0, which is reduced to 1 : 1
from ` = 1 onward. This is achieved by defining the same resolution
in z for `= 0 and `= 1. Section 8.1.1 discusses more details.

4.1.2 Page Table Hierarchy
The individual virtualized volumes comprising the resolution hierar-
chy described above are accessed via a hierarchy of page tables, which
is depicted vertically in Fig. 3 (left). The basic idea is to virtualize a

1: float3 p, ray; int4 pDirEntry, pTableEntry;
2: function SAMPLECURRENTPOSITION( int ` )
3: float sample = 0.0;
4: if !PAGEDIRECTORYINDEXSAMEASPREVIOUS( `, p ) then
5: int3 pDirAddress = pageDirBase[ ` ].xyz + p * rpd(`).xyz;
6: pDirEntry = texture3D( texPageDir, pDirAddress );
7: end if
8: int pagingFlag = pDirEntry.w;
9: if pagingFlag != UNMAPPED && pagingFlag != EMPTY then

10: if !PAGETABLEINDEXSAMEASPREVIOUS( `, p ) then
11: int3 pTableAddress = pDirEntry.xyz + ( p * rpt (`).xyz ) % bpt .xyz;
12: pTableEntry = texture3D( texPageTableCache, pTableAddress );
13: end if
14: pagingFlag = pTableEntry.w;
15: if pagingFlag != UNMAPPED && pagingFlag != EMPTY then
16: int3 voxelAddress = pTableEntry.xyz + ( p * rv(`).xyz ) % bvox.xyz;
17: sample = texture3D( texBlockCache, voxelAddress );
18: else
19: p += SKIPEMPTYSPACEPAGETABLEENTRYRECURSIVE( ray, `, p );
20: end if
21: else
22: p += SKIPEMPTYSPACEPAGEDIRECTORYENTRY( ray, `, p );
23: end if
24: if pagingFlag == UNMAPPED then
25: int blockID = COMPUTEBLOCKIDFORPOSITION( `, p );
26: REPORTCACHEMISS( blockID );
27: end if
28: return sample;
29: end function
30: function CASTRAYFORIMAGEPIXEL( int x, int y )
31: p = FETCHRAYSTART( x, y ); ray = FETCHRAYDIRECTION( x, y );
32: repeat
33: int ` = COMPUTEDESIREDSAMPLERESOLUTIONLEVEL( p );
34: float sample = SAMPLECURRENTPOSITION( ` );
35: APPLYTRANSFERFUNCTIONANDCOMPOSITING( sample );
36: p += ADVANCETONEXTSAMPLE( ray, ` );
37: until early ray termination or volume exit
38: end function

Fig. 4. Address translation and ray-casting. Each virtual multi-resolution
address (`,p) is translated to a block cache texture coordinate on-the-fly.

large volume for out-of-core visualization using a 3D page table con-
taining indices for addressing small voxel blocks (e.g., 323) stored in
the 3D block cache (Fig. 3, center) with a single page table entry. The
block cache is implemented as a 3D texture that serves as “physical”
memory in the virtual memory scheme. In addition to the index, each
page table entry can be marked as either unmapped or empty (see be-
low). However, for very large volumes, the page table itself becomes
too large. We therefore apply the basic concept recursively, obtaining
a hierarchy of page tables with t levels, where all levels except the root
of the hierarchy (top row of Fig. 3, left) are also virtualized. We call
this root page table the multi-resolution page directory.

Multi-resolution page directory. Since the page directory is not
virtualized, it is always completely resident in GPU memory. For a vir-
tual multi-resolution address (`,p), the parameter ` determines which
resolution level should be accessed. Each directory entry references
a block of page table entries in the page table cache (Fig. 3), which
stores blocks of the same size from any hierarchy or resolution level.

Page tables. Each page table entry references either another block
of page table entries in the hierarchy level below it, which is then also
stored in the page table cache, or a block of voxels in the block cache.
The former case is only relevant if there are more than two page table
hierarchy levels (t > 2), i.e., more than the page directory and the page
table below it. Figure 3 shows only two hierarchy levels (t = 2).

Page table entry flags. Every page table entry has a flag field that
can be set to either one of two special values (see also Fig. 4):

Unmapped entries correspond to blocks in the virtual multi-
resolution volume that are not mapped to a block in the block cache.
(Mapped blocks simply have the flag cleared.) If such a page table en-
try is accessed during ray-casting, a cache miss is generated. Addition-
ally, the extent of the block will either be skipped over as empty space,
or a lower resolution will be selected dynamically (Section 4.2.3). The
cache miss then results in a request for the volume construction stage
(Section 5) to asynchronously construct the block’s data. After the
data have arrived at the visualization stage, the page table entry will
be mapped. This resets the unmapped flag. If, however, the volume
construction stage instead replies that the data for the requested block
do not exist (yet), the unmapped flag will instead be changed to empty.

Empty entries correspond to blocks in the virtual multi-resolution
volume that are known to be empty. Blocks can be classified as empty
for two different reasons: (1) The voxel data of the block are either
all zero or do not exist, and will thus be classified as empty irrespec-
tive of the current transfer function. This case is reported by the vol-
ume construction stage (Section 5). (2) The block’s data are available,
but currently invisible (transparent) given the current transfer func-
tion. This case is identified whenever the transfer function changes.
Ray-casting performs empty space skipping for empty blocks (Sec-
tion 4.2.3). However, no cache miss will be reported for empty blocks,
because they never need to be mapped to a block in the block cache.

4.1.3 Address Translation
Figure 3 (center) illustrates the individual steps of translating a virtual
multi-resolution address (`,p) to a physical address in the block cache
using the page table hierarchy. The implementation is described by the
pseudo code in Fig. 4. We show this process for two hierarchy levels
(t = 2), but the extension to more levels is straightforward.

Due to anisotropic down-sampling, the multi-resolution page direc-
tory cannot be stored as a regular mipmap. Instead, we pack all reso-
lution levels ` ∈ [0, `max] into a single 3D texture texPageDir (Fig. 4).
The origin of each level is retrieved from a small array pageDirBase.
In order to compute look-up indexes from normalized coordinates p,
we use the following constants: rpd(`) is the total number of entries in
the page directory for resolution level `. rpt(`) is the total number of
entries in the virtualized page table of level `. rv(`) is the total number
of voxels in the virtualized volume of level `. Each page table block
comprises bpt entries, and each voxel block comprises bvox voxels.

4.1.4 Page Table and Cache Management
The multi-resolution page directory, the page table cache, and the
block cache are each implemented with one 3D texture whose con-
tent is managed by the CPU using a standard least/most-recently used



(LRU/MRU) scheme [13]. However, updates are initiated by the cache
misses reported by the ray-caster (Section 4.2.2). For each cache miss,
the CPU first checks if it can be fulfilled from the CPU block cache,
which is simply a larger version in CPU memory of the block cache
in GPU memory (Fig. 2). If the required block is resident in the CPU
block cache, it is downloaded into the GPU block cache, and the page
directory and page table cache are updated accordingly. Otherwise, a
request for the block of 3D volume data is issued asynchronously to
the volume data construction stage (Section 5). In this case, the down-
load of block data, as well as the corresponding page table updates,
are deferred until the 3D block constructed by that stage has arrived.

4.2 Ray-Casting Virtual Multi-Resolution Volumes
The pseudo code in Fig. 4 illustrates the major parts of the ray-casting
loop for a given view ray. The ray-caster marches along the ray from
sample to sample, performing hierarchical address translation for each
sample as described above. The sample position on the ray is given by
the corresponding normalized coordinate p in virtual volume space.
In order to obtain a virtual multi-resolution address (`,p), a suitable
resolution level ` must be chosen. A good choice of ` depends on the
desired level of detail, i.e., the resolution level to be sampled.

Computing a floating-point level of detail value lod(p) for each
sample can be done using existing strategies, e.g., estimating the pro-
jected screen space size of the corresponding voxel [6]. The integer
resolution level ` can then either be determined from lod(p) by round-
ing to the nearest integer, and sampling a single resolution level with
tri-linear interpolation, or computing the two adjacent resolution lev-
els, sampling both, and interpolating linearly in-between.

4.2.1 Exploiting Spatial Coherence for Page Table Look-Ups
Many successive samples along a ray will map to the same page di-
rectory/table entries. The corresponding look-up overhead can there-
fore be reduced significantly by exploiting this spatial coherence. The
closer a page table entry is to the root of the hierarchy (the page di-
rectory), the less frequently it needs to be fetched. For example, for
bpt = bvox = 32 and t = 2, for an axis-aligned ray the page table is
accessed only every 32 voxels, the page directory every 1024 voxels.

The ray-casting loop tracks the indices of the last used page direc-
tory/table entries. When the next sample along a ray maps to the same
entry, the result of the look-up from the previous sample is re-used in-
stead of fetching the entry again (see Fig. 4). Figures 6 and 7 illustrate
that this simple optimization in practice indeed reduces the required
number of page table accesses per ray to a very small amount.

4.2.2 Cache Miss and Usage Reporting
Cache misses are reported during ray-casting for unmapped page ta-
ble entries. A cache miss simply consists of a block ID that uniquely
identifies the voxel block that caused the miss. Depending on the de-
sired maximum size of resolution level ` = 0, the block ID is either a
32-bit or a 64-bit integer. For small blocks of 323 voxels, 32-bit IDs
are sufficient to address up to 128 teravoxels. Using 64-bit integers
enables scaling up to the exascale. In our implementation, every ray
tracks cache misses from front to back along the ray only up to a limit
of M cache misses (e.g., M = 4). Cache misses farther back the ray are
simply not reported in the same frame. This strategy not only makes
cache miss reporting scalable, but it also distributes cache misses and
the corresponding updates over multiple frames, which overall leads
to smoother frame rates. As soon as arriving block data and the corre-
sponding page table update fulfill a cache miss, no further miss will be
reported for this block, and the next ray-casting pass will report cache
misses farther back. This strategy also ensures that blocks will be up-
dated in approximately front to back order, which makes the latency
until data arrives less noticeable to the user. The list of cache misses
is cleared before every frame, which prevents data requests from be-
coming stale when the visibility of blocks changes.

Cache miss hash tables. Each ray stores cache miss block IDs into
a hash table shared with other rays, using atomic writes. We allocate
one hash table for each pixel tile of size N×N in screen space (e.g.,
N = 64). Each hash table is implemented as an array with a fixed
maximum number of entries per row. When a target row is already

full, the cache miss will simply be dropped. As before, this distributes
cache misses over multiple frames. Dropped misses will simply be
reported in a later frame if the corresponding block is still visible.

Cache usage reporting. In order to allow the LRU caching strategy
to track which cache blocks are in use, the ray-caster also tracks an in
use bit for every block in the block cache. The required number of bits
is equal to the number of available blocks in the block cache, which is
independent of the volume resolution and thus scalable.

Per-frame read-back. The cache miss hash tables and the cache
usage are read back from the GPU to the CPU once per rendering
frame. Due to the comparatively small size, the corresponding perfor-
mance impact is very small. Our current implementation reads back
300 KB of state for a screen resolution of 1024× 1024 and a block
cache size of 1GB, which takes less than 1ms on our test system.
4.2.3 Dynamic Resolution Hierarchy Traversal
Our system targets displaying volume data at exactly the desired level
of detail, with respect to the display resolution, instead of substituting
data of lower resolution. This goal is facilitated by being able to access
any virtual multi-resolution volume address (`,p) directly. However,
in the following cases, we adapt the choice of ` dynamically.

Handling unmapped blocks. When an address (`,p) is accessed
whose corresponding page table entry is unmapped, we employ one
of two user-selectable strategies: (1) The block is simply skipped as
though it would be empty. It will be displayed as soon as the corre-
sponding data have been constructed and the block has been mapped.
(2) The resolution level ` is increased dynamically, in turn testing
each successively lower resolution whether the corresponding block
is mapped. The maximum number of steps for this strategy is lim-
ited to a small number k, e.g., k = 4. The rationale for this is that
higher resolution reductions than typically 2k are of limited benefit to
the user. This scheme greatly improves the user experience, especially
during zoom-ins, whereas the performance impact is only small due
to exploiting spatial coherence in the same fashion as described be-
fore. That is, the reduced level `+ i with i ≤ k will be re-used for all
subsequent samples that map to the same page table entry.

Exploiting empty blocks. For empty blocks, we maximize the
amount of empty space that can be skipped with a single step via the
following strategy. If the page table entry corresponding to (`,p) is
empty, the ray-caster also iteratively accesses coarser levels (`+ i,p),
starting with i = 1. If the block of `+ i is also empty, i is increased
further. The amount of empty space that can be skipped is then deter-
mined by `+ i− 1, which is the largest block surrounding (`,p) that
is known to be empty. The performance overhead of this strategy is
at most one unnecessary increase of `, because all other increases are
guaranteed to improve performance by skipping larger empty areas.

Dynamic data streaming. In order to handle dynamically stream-
ing data, the raw tile processing stage notifies all later stages whenever
new data have arrived, or data have been modified, which includes the
change of alignment matrices. The visualization stage then unmaps
the corresponding blocks if they are mapped. They will then simply
be requested again, which ensures that they contain the correct data.

5 VISUALIZATION-DRIVEN VOLUME DATA CONSTRUCTION

The main responsibility of this pipeline stage (Fig. 2, center) is the
visualization-driven construction of 3D volume blocks via on-the-fly
stitching and resampling when the visualization stage requests them.
These requests originate from cache misses during ray-casting that
cannot be fulfilled from the caches in the visualization stage itself
(Section 4.1.4). The visualization-driven design of this stage is a cru-
cial property of our system that: (1) constructs 3D volume blocks only
when they are visible, and (2) directly constructs 3D blocks only at the
requested resolution. Instead of performing stitching and resampling
at a higher resolution and then down-sampling to a lower resolution,
we resample directly to the grid and resolution of the requested 3D vol-
ume block (Section 5.2). This approach is possible because our virtual
memory architecture does not require lower (or higher) resolutions to
be available (Fig. 3)—in contrast to octree-based systems [6, 7].

Efficient resampling of the 2D image tiles stored in the visualiza-
tion archive is facilitated by retrieving only the sub-tiles intersecting



the 3D target block, from a resolution level matching the target resam-
pling resolution (Fig. 5). A request for volume data is fulfilled in four
main steps: (1) all 2D sub-tiles that intersect the 3D target block are
determined. (2) for each sub-tile, the mipmap level matching the de-
sired resampling resolution is chosen. (3) for each 2D slice comprising
the 3D target block, the corresponding 2D sub-tile images are resam-
pled directly into the corresponding location in the 3D target grid. (4)
the resampled 3D block is transmitted to the visualization stage.

5.1 2D Sub-Tile Fetching
In order to quickly determine the 2D sub-tiles that intersect the 3D
target block, we maintain an index structure to find all 2D image tiles
comprising a z-slice in the final volume in O(log2 N), where N is the
number of slices. The problem of finding all 2D tiles intersecting the
3D target block, and then all sub-tiles, is thus reduced to a 2D problem.

Efficiently retrieving the sub-tiles overlapping the 3D target block
requires a compact index structure that easily fits into main memory
and can still be searched efficiently. Since some of the 2D sub-tiles are
potentially empty, we first compute 2D coordinates per sub-tile. Then
we traverse these sub-tile coordinates in Morton order (z order) [25],
and perform a run-length encoding on the indices, thus exploiting spa-
tial coherence. Since only entry- and exit-points of a space-filling
curve into a contiguous area are stored, the memory consumption of
this data structure is only O(

√
k), for k sub-tiles per tile. Retrieving a

specific set of sub-tile indices is then implemented efficiently by first
expanding indices by skipping non-contributing runs, followed by a
single read from the visualization archive for all relevant sub-tiles.

The index structure is updated via notifications sent by the raw tile
processing stage (Section 6). In case of an update event, the asso-
ciated alignment matrix is read, the associated bounding rectangle is
computed, and the index structure is updated accordingly. This does
not require actual image data. These are only fetched when the visual-
ization requests a 3D block. The same notification mechanism is also
used whenever the alignment matrix of an image tile has changed.

5.2 3D Block Stitching and Resampling
Stitching and resampling are performed directly on the 3D target grid
of the requested block. In order to avoid aliasing when resampling,
we have to apply a 3D pre-filter [12]. Because of the 2D nature of our
source data, we consider a separable 3D filter and convolution over a
neighborhood xi of a voxel x, using a tensor product kernel Wx,y⊗Wz
consisting of a 2D filter Wx,y in the (x,y) plane, and a 1D filter Wz

along the z axis. We define the pre-filtered 3D volume I3d as:

I3d(x) =∑
i

Wx,y⊗Wz (x−xi) ·S3d
2d

(
(T̃1,I2d

1 ), . . . ,(T̃N ,I2d
N )

)
(xi). (1)

The operator S3d
2d performs stitching of the N required 2D source im-

age tiles I2d
k into the 3D grid of I3d, where the pre-filter is then eval-

uated. This implicitly includes the reconstruction filter necessary for
resampling at an arbitrary position xi. The T̃k perform the affine trans-
formations for tile alignment. In our current implementation, the op-
erator S3d

2d chooses pixels according to their Euclidean distance to the
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Fig. 5. Visualization-driven stitching and resampling. Only visible 3D
blocks in the virtual multi-resolution volume are stitched and resampled,
computing the result at the requested resolution (`∈ [0,m]). Only the few
coarsest resolutions (`>m) are down-sampled after stitching level `=m.

center of the corresponding image tile (see below). We enable this in
Eq. (1) by using 2-vector images I2d

k , which are built from the scalar
source images I2d

k as I2d
k (x) =

(
I2d
k (x),D2d

k (x)
)
, where D2d

k (x) is the
distance between x and the center of tile I2d

k .
In order to make stitching followed by pre-filtering fast enough

for visualization-driven processing, we split up Eq. (1) into a
full-resolution pre-processing step for the pre-filter Wx,y, and a
visualization-driven step for evaluation of S at the requested target res-
olution. Instead of applying Wx,y in the volume construction stage, we
apply it to each source image tile in the raw tile processing stage to
compute the levels of a 2D mipmap, which is then stored in the vi-
sualization archive. We compute these pre-filtered 2D images Ĩ2d

k as:

Ĩ2d
k (x) = ∑

i
Wx,y (x−xi) I2d

k (xi). (2)

The volume construction step then only has to perform stitching of pre-
filtered image tiles, followed by application of the 1D pre-filter Wz:

I3d(x) = ∑
i

Wz (πz(x−xi)) ·S3d
2d

(
(T̃1, Ĩ2d

1 ), . . . ,(T̃N , Ĩ2d
N )

)
(xi), (3)

where πz means projection onto the z-coordinate and the xi now range
over a 1D neighborhood of x in z-direction. Ĩ2d

k is computed from
Ĩ2d
k as described above. This approach only approximates the result

of Eq. (1), because Eq. (2) applies the pre-filter Wx,y before stitching
is performed in Eq. (3), instead of afterward. However, it decouples
image stitching from pre-filtering and sub-sampling input image tiles.

In principle, an arbitrary filter Wz can be used as long as one is will-
ing to perform 2D stitching of all required input slices followed by 1D
pre-filtering. Our current implementation uses a box filter of size one
for Wz, i.e., nearest-neighbor interpolation along the z axis in Eq. (3).
This allows a 3D target block to be resampled by simply stitching the
image sub-tiles in 2D without performing actual 3D filtering, and stor-
ing the result into the correct 3D location. However, the general for-
mulation above allows additional pre-filters to be integrated, which
could even include the interpolation of intermediate slices in order to
reduce the quality degradation caused by highly anisotropic data.

Implementation. In order to avoid inefficient disk accesses of
small size, we request and construct 3D blocks larger than 323 voxels,
from which the actual 323 blocks are then extracted. We currently con-
struct 3D blocks of size 512×512×32 (see Sections 8.1.3 and 8.4.1).

Resampling is performed using texture mapping and fragment
shaders. After fetching all required sub-tiles from the correct res-
olution level of the 2D image tile mipmaps, each sub-tile is down-
loaded into a pool of 2D texture maps that is sampled by the fragment
shader. As reconstruction filter we either use GPU bi-linear filtering,
or a higher-order filter implemented in the fragment shader.

Stitching is performed during resampling using a GPU-based
method akin to Hoff et al.’s Voronoi computation [14]. In regions
where multiple tiles overlap, our domain experts prefer a selection of
one actual measurement value over a blend between all valid values. A
heuristic commonly used in this context is to select the pixel with the
minimum distance to its respective tile center. We use the alignment
matrix as texture matrix and render all contributing sub-tiles to an off-
screen buffer. Then we set the depth of each fragment to the distance
from the respective tile’s center and perform a depth test.

Stitched and resampled 3D blocks are then transmitted to the vi-
sualization stage, which fulfills its block request. If the volume con-
struction and visualization stages are running on two separate nodes,
the construction stage also caches resampled 3D blocks in memory,
and optionally on fast local SSD storage as well (Fig. 2).

Strategy for coarse resolution levels. Although the resolutions of
our target data result in deep resolution hierarchies (Table 1), the tip of
the hierarchy always corresponds to coarse resolutions. We define the
corresponding resolution levels as ` ∈ [m, `max], as depicted in Fig. 5.
We currently choose m such that it corresponds to the resolution of one
sub-tile times the number of image tiles comprising the full volume.
For all levels ` > m, we then use a different strategy. In order to fulfill
a 3D block request, we first compute the entire level `= m via stitch-
ing and resampling as described above. The block for ` > m is then
computed via simple down-sampling. The resulting hybrid strategy is



similar in spirit to clipmaps [29], where the coarsest mipmap levels are
always kept in memory, whereas only a clipped area of each finer level
is resident. However, our goal in this stage is dynamic stitching and
resampling of multiple image tiles, not rendering a single clipmap.

6 RAW IMAGE TILE PROCESSING

Our pipeline generates 2D mipmaps for the image tiles emitted by the
EM as soon as they arrive, by continuously polling the acquisition
archive. Each image tile has an affine transformation matrix attached
to it which corresponds to the movement of the EM. This matrix can
be iteratively refined by an external registration process to reflect im-
age tile alignment both in 2D and 3D. The image tiles are chopped
into 128× 128 sub-tiles. This allows for more efficient disk storage,
as well as more efficient resampling in the volume construction stage
(Section 5), since the image tiles emitted by the EM are rather large
(Section 7). Sub-tiles are optionally compressed using JPEG at 2bpp
and stored in the visualization archive. Furthermore, they inherit the
transformation matrix from the image tile (stored only once), augment-
ing it by an offset. Note that this stage is completely independent of
registration, which we regard as an external process, and subsequent
image alignment and stitching. It can thus be fully interleaved with
both dynamic registration and data acquisition by the EM. Only meta
data are forwarded to the volume construction stage. Actual data are
only transmitted in case the volume construction stage forwards an ac-
tual request from the visualization stage. Processing in this stage is fast
enough to keep up with the acquisition rate of the EM (Section 8.4.2).

7 IMAGE DATA ACQUISITION

The image tiles acquired by the EM are stored on a shared file system
archiving all acquired raw data. Our neuroscience collaborators use
a Scanning EM (SEM) apparatus with the following specifications.
Tiles comprising 12,000× 12,000 luminance pixels at 8bit precision
are emitted every 15 seconds (≈10 Mpixels/s). The SEM traverses a
section of the physical data sample in a scan-line fashion with 6%–
15% overlap between tiles. Both positional and rotational jitter are
artifacts of the apparatus. Positional jitter is on the order of a few
dozens of pixels, while rotational jitter does not exceed±5◦. Both can
be safely assumed to be normal-distributed. The overlap between tiles
is a requirement for the registration. In the future, our collaborators
would like to reach a scanning speed of first 20, and then 40 Mpixels/s.
The evaluation in Section 8.4.2 shows that our processing of raw image
tiles (Section 6) matches even these expected future numbers.

For testing different parameters of our system, we have imple-
mented an EM simulator to simulate continuous image acquisition
without requiring access or changes to the microscope setup. The
simulator reads already stitched and registered sections measured by
the EM. From these sections, rotated and translated tiles with mutual
overlap as per the above specifications are cut out and forwarded to
subsequent stages of our pipeline. The EM Simulator also supports
simulation of registration updates.
8 EVALUATION, COMPARISON, AND DISCUSSION

This section evaluates our system and compares it to previ-
ous approaches. Our ray-caster uses a GLSL fragment shader
where each fragment casts a single ray, together with the
NV shader buffer store extension for writing out cache misses
and usage. Tile processing also uses CUDA, OpenMP, and multi-
threading. Our test setup are three 12-core dual-CPU 3GHz machines,
48GB, with NVIDIA Quadro 6000. The visualization stage and GUI
were running on the first machine, the volume construction stage on
the second one, and the raw tile processing stage, as well as the EM
simulator, on the third one. The communication between stages is im-
plemented via TCP/IP and Winsocks2, on a 1Gb network. The block
cache was a 1GB texture, and the page table cache a 64MB texture.

Comparison to other systems. Our system is the first one that
targets interactive volume visualization and constructs 3D blocks of
volume data dynamically from high-resolution image streams. Our
visualization stage is most similar to the following two previous sys-
tems: The Gigavoxels system of Crassin et al. [6] performs ray-guided
streaming of voxel data, which only downloads voxel blocks to the

GPU when they become visible. However, these blocks have to come
from a pre-computed octree. Its main target are entertainment applica-
tions, for rendering opaque (voxelized) surfaces or pre-defined opacity
distributions such as static clouds. The interactive use of transfer func-
tions is not supported, and empty space skipping is only possible for
pre-determined homogeneous areas. The newer Siemens CERA-TVR
system by Engel [7] uses an approach similar to [6], but supports dy-
namic transfer functions and the corresponding empty space skipping.
It targets teravoxel volumes, but also requires a pre-computed octree
and its efficiency decreases for anisotropic voxel aspect ratios. Both
systems perform octree traversal during rendering, using the kd-restart
algorithm [9]. In the following sections, we perform in-depth compar-
isons of our system with octree traversal approaches, for which we
have implemented both kd-restart and kd-shortstack [15]. This shows
that our system scales much better to deep resolution hierarchies.

8.1 Scalability Analysis and Comparison
This section discusses and compares the major scalability aspects of
our system: scalability of the representation itself, scalability of traver-
sal during rendering, and scalability of cache updates and usage.

8.1.1 Scalability of Volume Representation

Table 1 illustrates the scalability of our multi-resolution virtual mem-
ory scheme. We first consider the resolution hierarchy. For a vol-
ume with (rx,ry,rz) voxels, and relative voxel dimensions (sx,sy,sz),
for the following computations we define rv = maxi(risi), to correctly
take into account arbitrary voxel anisotropy. For a volume resulting
from a microscope pixel resolution of 5nm and a slice thickness of
40nm, sx = sy = 1 and sz = 8. We choose a voxel block size of bvox,
and compute `max = dlog2(rv/bvox)e. The page table hierarchy is de-
termined by choosing a small number of hierarchy levels t, and a page
table block size bpt . The corresponding page directory size of reso-
lution level ` then is: rpd(`) =

⌈
drv(`)/bvoxe/bpt

t−1⌉, where rv(`) is
the size of resolution level `. A choice of t = 2 or at most t = 3 is
sufficient for extremely large volumes, due to the extreme logarithmic
scaling (essentially base bpt ). This leads to easily manageable page
directory sizes. Table 1 illustrates this scalability for example volume
sizes and different choices of bvox, bpt , and t. Following the same ar-
gument, and the fact that the maximum number of voxels in the view
frustum is independent of the full volume resolution, small page table
cache sizes are sufficient as well. Our implementation can reference a
visible frustum of 2,0482×16,384 with a 64MB texture.

8.1.2 Scalability of Volume Traversal
In an octree-based scheme, locating a voxel in resolution level ` = 0
requires O(`max) traversal time from the root, which is logarithmic
in rv. In contrast, in our scheme any resolution level ` can be accessed
by going directly (O(1) time) to the page directory of `, and travers-
ing the page table hierarchy in O(t) time. Although this can also be
considered to be logarithmic in rv, since the choice of t depends loga-
rithmically on the volume resolution, t � `max. Moreover, since very
small t are sufficient for extremely large volumes, we consider t to be
a system constant that is chosen for the largest possible volume size.
Page table hierarchy traversal time then becomes O(1). In practice, we
keep the constant factor small by exploiting spatial coherence.

These differences in scalability also show up clearly in practice, see
the view depicted in Fig. 6. Fig. 7(a) compares the behavior of octree
traversal vs. our approach in practice for increasing visible resolution.
For octree traversal, we compare against kd-restart [9], as well as kd-
shortstack [15]. The former is used in the systems of [6, 7].

volume resolution vol size `max +1
t = 2 t = 3

16 32 16 32

32,7682×4,096 4 TB 11 64 32 4 1
120,0002×15,000 196 TB 13 235 118 15 4
512,0002×64,000 15 PB 15 1,000 500 63 16

2,000,0002×250,000 888 PB 17 3,907 1,954 245 62

Table 1. Scalability of the page table hierarchy. Page directory reso-
lutions resulting from bvox = 32, voxel anisotropy 1:8, and choices of
bpt = 16 or 32, respectively. We suggest the highlighted configurations.



Fig. 6. Hierarchy traversal complexity. For the view (`= 0) in (a), image (b) encodes the number of page table entries accessed by each ray in the
page table hierarchy (t = 2): avg= 2.9,min= 2,max= 8. Image (c) encodes the number of visited octree nodes for the same view using kd-restart [9]
as used by [6, 7]: avg = 21.9,min = 11,max = 77. Image (d) uses kd-shortstack [15] with a stack depth of 4: avg = 7.6,min = 4,max = 24.

8.1.3 Scalability of Cache Updates and Usage

Figs. 7(b,c,d) illustrate and compare the number of required cache up-
dates and the cache usage of our system vs. octree approaches. When
the cache needs to be filled for a completely new view, cache usage
and updates are the same. Our system requires page table block up-
dates in the page table cache, voxel block updates in the block cache,
and 3D block construction requests issued to the volume construction
stage (Section 5). Octree-based systems have to update the nodes in
the node pool, and the voxel blocks (bricks) in the brick pool [6, 7].
Our system needs to perform a much smaller number of updates for
each of these caches. For resolution level `= 0 and the view in Fig. 6,
our approach updates 2146 voxel blocks, whereas the octree requires
2768 updates. This difference becomes much more critical when 3D
blocks have to be constructed dynamically. For disk access efficiency,
instead of requesting individual 323 voxel blocks, we request blocks of
512×512×32 from the volume construction stage. The view in Fig. 6
requested 18 such 3D blocks with our approach, but 36 with an octree.
Considering the time it takes to construct each block (Section 8.4.1),
this constitutes a significant reduction in the latency perceived by the
user. In the page table cache, our system requires only a few page table
blocks (323) for this zoom-in. For level ` = 0, we have to update be-
tween 1 and 4 blocks, whereas the octree approach must update around
5,000 nodes. Although each octree node requires less storage [6, 7]
than a page table block, updating the octree node pool with thousands
of individual texture downloads constitutes a significant bottleneck.

8.2 Virtual Memory vs. Octree Traversal

Our approach and octree traversal differ significantly in the kind of
volume data for which either of the two approaches is efficient. Here,
we discuss these differences in theory. Section 8.3 and Table 2 then
illustrate the corresponding frame rate differences for real data.

Octree traversal is efficient when: (1) Large subvolumes can be
treated identically, i.e., they are either empty, homogeneous, or are
rendered at a lower resolution. (2) The hierarchy is not too deep, i.e.,
`max is not too large. The main reason for this is that tree traversal
always starts at the root (`= `max) and goes down the tree to smaller `.
This means that rendering low resolutions is much more efficient than
rendering high resolutions. This problem increases linearly with `max.
For empty space skipping, this means that detecting large empty sub-
volumes is efficient, because they are detected with a few traversal
steps. Conversely, detecting small empty subvolumes is inefficient.

Virtual memory access is most efficient when: (1) Only small sub-
volumes can be treated identically, i.e., data are either dense, or empty
space forms only small clusters. (2) Data should be rendered at high
resolution. (3) The hierarchy can be very deep (`max is large). This is
true because any desired resolution level ` can be accessed directly in
O(1) time, and ray-casting directly accesses the ` corresponding to the
screen resolution. The efficiency of virtual memory access decreases
when dynamic traversal of the resolution hierarchy is required (Sec-
tion 4.2.3). Nevertheless, even the worst case of going all the way to
`max is a O(`max) operation. However, octree traversal can be more
efficient in this case due to a lower constant overhead per traversal
step. In practice, however, reducing the resolution by too many levels
is not useful for scientists. When the reduction in resolution is limited

and `max is large, virtual memory access is more efficient than octree
traversal even when dynamic resolution traversal is required.

8.3 Ray-Casting Performance
Our ray-casting performance primarily depends on the amount of vis-
ible data, which is mainly determined by the transfer function and the
view. It does not depend significantly on the full volume resolution.
Table 2 (column ‘our’) gives typical average frame rates for render-
ing ` = 0 of microscopy volumes (D1-D3), as well as an industrial CT
volume for comparison (D4), to a 1024×768 viewport. D1-D3 are very
dense and do not allow or require a lot of empty space skipping. D4 was
used in [7] and contains a lot of empty space. A typical view of D4 that
we measured contained 22,058 323 voxel blocks, of which 61% were
classified as empty. Skipping this empty space as described in Sec-
tion 4.2.3 increased performance from 6fps to the listed 30fps (TF #2).
Fig. 7(c) plots frame rates over an animation sequence of volume D1.

For comparison, column ‘tree’ in Table 2 gives frame rates for ren-
dering using kd-restart traversal as in [6, 7]. Our frame rates for D1-D3
are consistently better, as expected. For D4, tree traversal in princi-
ple has the empty space skipping advantages described above. How-
ever, in our comparisons our approach (Section 4.2.3) was still always
faster. At least for this test volume, the empty areas are still not large
enough for tree traversal to leverage its theoretical advantages.

8.4 Data Processing
This section evaluates the visualization-driven construction of 3D vol-
ume blocks, and the EM-driven processing of raw image tiles.

8.4.1 3D Block Construction
This stage comprises the following steps: (1) retrieve required sub-
tiles from the visualization archive, (2) optional image decoding, (3)
data download to the GPU for stitching and resampling, and (4) read-
back of the stitched data to the CPU. The optional JPEG encoder at
a compression of 4:1 reads (and decodes) more than 300 Mpixels/sec
from a standard hard disk. To measure the performance of this stage,
we have issued a large number of requests for 5122 cross-sections of
the volume, varying the slice number requested to evaluate the 3D
construction. We measured the minimum, average, and maximum la-
tency in two scenarios. A worst-case scenario, for which we forced
our implementation to execute steps 1–4 single-threaded and serial-
ized to give an upper bound on the latency to be expected. The second
scenario runs steps 1–3 interleaved. Our findings are summarized in
Table 3. For the minimum latency, data has been cached by the OS

data set resolution size [GB] TF our tree

D1: mouse cortex 21,494×25,790×1,850 955
#1 75 61
#2 12 9

D2: hippocampus 1 18,000×18,000×304 92
#1 77 63
#2 19 15

D3: hippocampus 2 14,176×10,592×308 43
#1 72 58
#2 22 13

D4: rotation sensor 2,048×2,048×2,048 8
#1 55 44
#2 30 25

Table 2. Test volumes and frame rates [fps]. Frame rates are almost inde-
pendent of resolution, depending more on the transfer function. TF #1:
linear ramp. TF #2: semi-transparent (see Fig. 1). D4 only for reference.
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Fig. 7. Hierarchy traversal complexity and cache update/usage evaluation and comparison. (a) Log-scale traversal statistics (max,min,avg) over all
rays in a 1024× 768 image for a zoom-in from ` = 10 to ` = 0 (see Fig. 6): Page table hierarchy entries accessed (t = 2), vs. octree nodes visited
(kd-restart compares with [6, 7]). (b) Cache update/usage for voxel blocks, page table blocks, and 3D blocks requested for construction, vs. the
equivalent requests for an octree. Each resolution level was measured individually. (c,d): Statistics over a sequence of 30 animation frames with
cache re-use from frame to frame: Frame 1–11: zoom-in; frame 12–27: pan. Frame 18: the transfer function changes to more transparency. Total
for each frame vs. new to previous frame. (c) 3D block construction requests. (d) Voxel block and page table updates vs. node pool updates [6, 7].

and resides in CPU memory, while for the maximum latency data has
to be retrieved first. With increasing level `, data locality improves and
therefore also the latency. Since the number of 1282 sub-tiles required
to form the construction varies due to the overlapping input data, so
does the latency. We thus measure numbers normalized per sub-tile
as follows: Optional JPEG-decoding takes 0.12ms, while transferring
data to the GPU and rendering takes around 0.02ms per sub-tile. The
GPU-to-CPU read-back is independent of the amount of sub-tiles ren-
dered and takes around 0.68ms. The worst case latency (interleaved)
to retrieve a fully constructed 5122×32 block was around 1.7s (6.8ms
/ 323 voxels), while a block is typically constructed in less than 0.3s
(1.2ms / 323 voxels). A fresh start from empty caches takes up to 15s.

8.4.2 Raw Image Tile Processing
The data set depicted in Figs. 1 and 6 (Table 2: D1) comprises 11,689
image tiles of size 12,000×12,000 in the acquisition archive. We used
the EM simulator to generate these from 1,850 slices of size 21,494×
25,790 from the original data set. After raw image tile processing, this
data occupies 210GB for voxel data and 13.3MB for index structures
in our visualization archive. It is thus perfectly feasible to keep the
index data structure resident in CPU memory even for data sets in
the petabyte range. Further, our raw image tile processor achieves a
sustained performance of 85 Mpixels/sec. It is thus significantly faster
than the current measurement apparatus (yielding 10 Mpixels/sec [4])
and is able to keep pace with the future plans of our neuroscience
collaborators (40 Mpixels/sec), as well as our current implementation
of the EM Simulator, which achieves a sustained throughput of 45
Mpixels/sec on our test machine. All disk transfer is included in the
performance reported. The start-up latency for both the simulator and
the raw image tile processor is on the order of a few seconds.

8.5 Discussion and Limitations
Our system strives to enable neuroscientists to navigate and explore
petascale EM volumes. Instead of thinking about the system as a “typ-
ical” volume renderer, we view it as being more analogous to a Google
maps approach, albeit for dense 3D volumes instead of for 2D maps.

Limitations. Our system targets always rendering data correspond-
ing to the full screen resolution. This approach incurs two main draw-
backs. The first one is the latency until a complete image of the desired
data resolution is generated. The rendering frame rate, as given in Ta-
ble 2, is completely decoupled from the time it takes until missing
data have been constructed and downloaded into the GPU cache tex-
tures. When all visible data have arrived, a correct image is rendered
at high frame rates. However, this does not consider how long it takes
until a correct image is visible. Overall latency varies significantly,

serial performance interleaved performance
` min avg max min avg max

0 5.50ms 9.69ms 59.82ms 4.41ms 9.42ms 54.01ms
1 5.80ms 9.70ms 45.56ms 4.57ms 8.88ms 40.01ms
2 6.49ms 9.32ms 30.59ms 5.13ms 6.83ms 25.73ms
3 5.63ms 7.12ms 14.25ms 4.58ms 4.58ms 9.72ms

Table 3. Times for stitching and resampling to construct a 512× 512
cross-section from a given resolution level ` of volume D1 (Table 2).

and ultimately depends on the number of new 3D blocks that must be
constructed for a new frame in addition to already cached data. Our
system design strives to minimize this number and thus the latency, as
illustrated in Fig. 7(c), and often requires fewer—and never more—
blocks to be constructed than when tree traversal is used. Neverthe-
less, the worst case latency (Section 8.4.1) multiplied by the number
of required 3D blocks (Fig. 7(c)) can be several seconds until a fully
correct image is rendered when all caches are empty. Missing blocks
or blocks rendered with lower resolution can optionally be color-coded
for visual feedback on the current correctness of the rendered image.

The second drawback is that our system assumes that the current
working set, i.e., all visible data of the desired resolution, always fits
into the block cache. If this is not the case, a correct image cannot be
rendered. This problem can be handled by using distributed rendering
on multiple GPUs [1], or by performing multiple rendering passes [7].

Both of these drawbacks can be mitigated by using a global level of
detail bias to force lower-resolution rendering. This is also supported
by our system, but has not been used for the results reported here. Our
design goal was to avoid reducing rendering quality for interactivity.

Volume rendering of EM data. Our data are very dense and noisy,
as well as highly anisotropic. They thus do not easily facilitate high-
quality volume rendering, hindering the perception of connected struc-
tures in 3D. Tackling this problem is outside the scope of this paper.
However, neuroscientists at minimum require rendering arbitrarily ori-
ented slicing planes whose position and orientation can be changed in-
teractively, and the infrastructure required for this is almost the same
as for volume rendering, using a fully opaque “transfer function”.

9 CONCLUSIONS AND FUTURE WORK

We have illustrated that the two major design choices of our system
for the first time enable the interactive exploration of petascale elec-
tron microscopy data streams via: (1) visualization-driven 3D data
construction, and (2) a novel virtual memory scheme. The former de-
couples the multi-resolution hierarchy required for visualization from
data acquisition. This decoupling is crucial to achieving scalability
to the petascale for our target data streams. The latter decouples the
resolution hierarchy from the hierarchy for volume sampling during
ray-casting. This enables scaling to dense, anisotropic petascale vol-
umes that cannot be handled by previous systems. The latter have to
traverse the resolution hierarchy in logarithmic time, which becomes
a significant bottleneck for deep hierarchies. We essentially have dif-
ferent goals than previous systems: instead of favoring lower fall-back
resolutions and large clusters of empty space, we directly access any
target resolution in O(1) time. Data of (limited) lower resolution are
only used as a fall-back when the desired resolution is not yet avail-
able, but searching from high to low resolutions instead of vice versa.

In the future, we want to fully integrate our pipeline with the mi-
croscopy setup of our collaborators at the Harvard Center for Brain
Science. We are also working on integrating distributed rendering into
our system [1], which we consider to be orthogonal to the approaches
presented here. Finally, upcoming GPU hardware features, such as
partially resident textures [2] might allow tighter integration of our
system with GPU memory management.
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